167
Views
3
CrossRef citations to date
0
Altmetric
Notes

Aggregate boundary recognition of asphalt mixture CT images based on convolutional neural networks

&
Pages 1127-1143 | Received 15 Nov 2022, Accepted 24 May 2023, Published online: 10 Jul 2023

References

  • Al-Shibli, K., Macari, E., & Sture, S. (1996). Digital imaging techniques for the assessment of homogeneity of granular materials. Emerging technologies in geotechnical engineering. Transportation Research Record, 1526(1), 121–128. https://doi.org/10.1177/0361198196152600115
  • Bruno, L., Parla, G., & Celauro, C. (2012). Image analysis for detecting aggregate gradation in asphalt mixture from planar images. Construction and Building Materials, 28(1), 21–30. https://doi.org/10.1016/j.conbuildmat.2011.08.007
  • Cha, Y. J., Choi, W., & Büyüköztürk, O. (2017). Deep learning-based crack damage detection using convolutional neural networks. Computer-Aided Civil and Infrastructure Engineering, 32(2017), 361–378. https://doi.org/10.1111/mice.12263
  • Chen, A. Q., Airey, G. D., Thom, N., & Li, Y. (2023). Characterisation of fatigue damage in asphalt mixtures using X-ray computed tomography. Road Materials and Pavement Design, 24(3), 653–671. https://doi.org/10.1080/14680629.2022.2029756
  • Dan, H. C., Bai, G. W., & Zhu, Z. H. (2021). Application of deep learning-based image recognition technology to asphalt-aggregate mixtures: Methodology. Construction and Building Materials, 297, 123770. https://doi.org/10.1016/j.conbuildmat.2021.123770
  • Duan, Y. H., Zhang, X. N., Li, Z., Wang, D. Y, & Liu, Y. S. (2011). Methods about digital representation on surface profile of concrete aggregates from 2-D to 3-D based on X-ray computed tomography. China Journal of Highway and Transport, 24(6), 9–15. http://zgglxb.chd.edu.cn/EN/Y2011/V24/I6/9
  • Georgiou, P., & Plati, C. (2021). Microstructure characterisation of field and laboratory roller compacted asphalt mixtures. Road Materials and Pavement Design, 22(4), 942–953. https://doi.org/10.1080/14680629.2019.1634635
  • Gopalakrishnan, K., Khaitan, S. K., Choudhary, A., & Agrawal, A. (2017). Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection. Construction and Building Materials, 157, 322–330. https://doi.org/10.1016/j.conbuildmat.2017.09.110
  • Hou, Y., Chen, Y. H., Gu, X. Y., Mao, Q., Cao, D. D., Wang, L. B., & Jing, P. (2020). Automatic identification of pavement objects and cracks using the convolutional auto-encoder. China Journal of Highway and Transport, 33(10), 288–303. http://zgglxb.chd.edu.cn/EN/Y2020/V33/I10/288
  • Hu, J., Liu, P., Wang, D., & Oeser, M. (2018). Influence of aggregates’ spatial characteristics on air-voids in asphalt mixture. Road Materials and Pavement Design, 19(4), 837–855. https://doi.org/10.1080/14680629.2017.1279072
  • Jiang, J. W., Zhang, Z., Dong, Q., & Ni, F. J. (2018). Characterization and identification of asphalt mixtures based on convolutional neural network methods using X-ray scanning images. Construction and Building Materials, 174, 72–80. https://doi.org/10.1016/j.conbuildmat.2018.04.083
  • Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
  • Lecun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., & Jackel, L. (1990). Handwritten digit recognition with a back-propagation network. Advances in Neural Information Processing Systems, 2, 396–404.
  • Li, B. X., Wang, K. C. P., Zhang, A., Yang, E. H., & Wang, G. L. (2020). Automatic classification of pavement crack using deep convolutional neural network. International Journal of Pavement Engineering, 21(4), 457–463. https://doi.org/10.1080/10298436.2018.1485917
  • Li, Q., Yang, H. H., Ma, X., Ni, F. J. (2017). Evaluation of microstructure and damage evolution for asphalt pavements in an advanced repeated load permanent deformation test using X-ray computed tomography. Road Materials and Pavement Design, 18(5), 1135–1158. https://doi.org/10.1080/14680629.2016.1207555
  • Liu, J. W., Yang, X., Lau, S., Wang, X., Luo, S., Lee, V. C. S., & Ding, L. (2020). Automated pavement crack detection and segmentation based on two-step convolutional neural network. Computer-Aided Civil and Infrastructure Engineering, 35(11), 1291–1305. https://doi.org/10.1111/mice.12622
  • Ma, D., Fang, H. Y., Wang, N. N., Xue, B, H., Dong, J. X., & Wang, F. (2022). A real-time crack detection algorithm for pavement based on CNN with multiple feature layers. Road Materials and Pavement Design, 23(9), 2115–2131. https://doi.org/10.1080/14680629.2021.1925578
  • Majidifard, H., Adu-Gyamfi, Y., & Buttlar, W. G. (2020). Deep machine learning approach to develop a new asphalt pavement condition index. Construction and Building Materials, 247, 118513. https://doi.org/10.1016/j.conbuildmat.2020.118513
  • Majidifard, H., Jahangiri, B., Rath, P., Alavi, A. H., & Buttlar, W. G. (2021). A deep learning approach to predict Hamburg rutting curve. Road Materials and Pavement Design, 22(9), 2159–2180. https://doi.org/10.1080/14680629.2021.1886160
  • Masad, E., Muhunthan, B., Shashidhar, N., Harman, T. (1999). Quantifying laboratory compaction effects on the internal structure of asphalt concrete. Transportation Research Record, 1681(1), 179–185. https://doi.org/10.3141/1681-21
  • Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann machines. Proceedings of the 27th International Conference on International Conference on Machine Learning, Madison, WI: Omnipress, 807–814.
  • Onifade, I., Jelagin, D., Birgisson, B., & Kringos, N. (2016). Towards asphalt mixture morphology evaluation with the virtual specimen approach. Road Materials and Pavement Design, 17(3), 579–599. https://doi.org/10.1080/14680629.2015.1098561
  • Pauly, L., Hogg, D., Fuentes, R., & Peel, H. (2017). Deeper networks for pavement crack detection. 34th International Symposium in Automation and Robotics in Construction, 479–485.
  • Sha, A. M., Tong, Z., & Gao, J. (2018). Recognition and measurement of pavement disasters based on convolutional neural networks. China Journal of Highway and Transport, 31(1), 1–10. http://zgglxb.chd.edu.cn/CN/Y2018/V31/I1/1
  • Song, L., & Wang, X. C. (2021). Faster region convolutional neural network for automated pavement distress detection. Road Materials and Pavement Design, 22(1), 23–41. https://doi.org/10.1080/14680629.2019.1614969
  • Sun, Z. Y., Sha, A. M., Yao, Q. L., & Zhang, H. L. (2005). Realization of threshold segmentation algorithm in asphalt mixture. Journal of Chang’an University (Natural Science Edition), 25(6), 34–38. https://doi.org/10.3321/j.issn:1671-8879.2005.06.009
  • Tong, Z., Gao, J., Han, Z. Q., & Wang, Z. J. (2018). Recognition of asphalt pavement crack length using deep convolutional neural networks. Road Materials and Pavement Design, 19(6), 1334–1349. https://doi.org/10.1080/14680629.2017.1308265
  • Tong, Z., Gao, J., & Zhang, H. T. (2017). Recognition, location, measurement, and 3D reconstruction of concealed cracks using convolutional neural networks. Construction and Building Materials, 146, 775–787. https://doi.org/10.1016/j.conbuildmat.2017.04.097
  • Wang, L. B., Frost, J. D., & Shashidhar, N. (2001). Microstructure study of WesTrack mixes from X-ray tomography images. Transportation Research Record, 1767(1), 85–94. https://doi.org/10.3141/1767-11
  • Xing, C., Xu, H. N., Tan, Y. Q., Liu, X. Y., Zhou, C. H., & Scarpas, T. (2019). Gradation measurement of asphalt mixture by X-Ray CT images and digital image processing methods. Measurement, 132, 377–386. https://doi.org/10.1016/j.measurement.2018.09.066
  • Ye, W. L., Jiang, W., Tong, Z., Yuan, D. D., & Xiao, J. J. (2021). Convolutional neural network for pothole detection in asphalt pavement. Road Materials and Pavement Design, 22(1), 42–58. https://doi.org/10.1080/14680629.2019.1615533
  • Žbontar, J., & Lecun, Y. (2016). Stereo matching by training a convolutional neural network to compare image patches. Journal of Machine Learning Research, 17(1), 2287–2318.
  • Zelelew, H. M., Almuntashri, A., Agaian, S., & Papagiannakis, A. T. (2013). An improved image processing technique for asphalt concrete X-ray CT images. Road Materials and Pavement Design, 14(2), 341–359. https://doi.org/10.1080/14680629.2013.794370
  • Zhang, L., Yang, F., Zhang, Y. M., & Zhu, Y. (2016). Road crack detection using deep convolutional neural network. IEEE International Conference on Image Processing, 3708–3712. https://doi.org/10.1109/ICIP.2016.7533052
  • Zhong, Q. Y., Bekking, W., & Morin, I. (1995). Application of digital image processing to quantitative study of asphalt concrete microstructure. Transportation Research Record, 1492(1), 53–60.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.