392
Views
0
CrossRef citations to date
0
Altmetric
State of the Art

A review on pavement data acquisition and analytics tools using autonomous vehicles

, , ORCID Icon, &
Pages 914-940 | Received 25 Jan 2023, Accepted 11 Jul 2023, Published online: 22 Jul 2023

References

  • Aparna, Bhatia, Y., Rai, R., Gupta, V., Aggarwal, N., & Akula, A. (2022). Convolutional neural networks based potholes detection using thermal imaging. Journal of King Saud University - Computer and Information Sciences, 34(3), 578–588. https://doi.org/10.1016/j.jksuci.2019.02.004
  • Addison, P. S. (2005). Wavelet transforms and the ECG: A review. Physiological Measurement, 26, R155–R199. https://doi.org/10.1088/0967-3334/26/5/R01
  • Alqudah, Y. A., Sababha, B. H., & Youssef, T. (2019, 11-14 April 2019). Audition ability to enhance reliability of autonomous vehicles: Allowing cars to hear. 2019 SoutheastCon.
  • Ang, Y. H., Ong, S. H., & Li, Z. (1996). Retrieval of artifact images using multidimensional multiresolution features. Computers & Graphics, 20(1), 51–59. https://doi.org/10.1016/0097-8493(95)00092-5
  • Appiah, N., & Bandaru, N. (2011). Obstacle detection using stereo vision for self-driving cars. IEEE intelligent vehicles symposium (IV).
  • ASTM, D. (2011). 6433-11,: Standard practices for roads and parking lots Pavement Condition Index Surveys. American Society for Testing and Materials. Pennsylvania, USA.
  • Bacha, A., Bauman, C., Faruque, R., Fleming, M., Terwelp, C., Reinholtz, C., Hong, D., Wicks, A., Alberi, T., & Anderson, D. (2008). Odin: Team victortango's entry in the darpa urban challenge. Journal of Field Robotics, 25(8), 467–492. https://doi.org/10.1002/rob.20248
  • Bastola, N. R., & Souliman, M. (2020). Rutting performance of pavement under autonomous vehicle consideration. Traffic, 25(50), 75.
  • Bello-Salau, H., Aibinu, A. M., Onumanyi, A. J., Onwuka, E. N., Dukiya, J. J., & Ohize, H. (2018). New road anomaly detection and characterization algorithm for autonomous vehicles. Applied Computing and Informatics, 16(1/2), 223–239. https://doi.org/10.1016/j.aci.2018.05.002
  • Bhat, S., Naik, S., Gaonkar, M., Sawant, P., Aswale, S., & Shetgaonkar, P. (2020, 24-25 Feb. 2020). A survey On road crack detection techniques. 2020 international conference on emerging trends in information technology and engineering (ic-ETITE).
  • Bibi, R., Saeed, Y., Zeb, A., Ghazal, T. M., Rahman, T., Said, R. A., Abbas, S., Ahmad, M., & Khan, M. A. (2021). Edge AI-based automated detection and classification of road anomalies in VANET using deep learning. Computational Intelligence and Neuroscience, 2021, 6262194. https://doi.org/10.1155/2021/6262194
  • Bosi, I., Ferrera, E., Brevi, D., & Pastrone, C. (2019). In-vehicle IoT platform enabling the virtual sensor concept: A pothole detection use-case for cooperative safety. IoTBDS.
  • Burningham, S., & Stankevich, N. (2005). Why road maintenance is important and how to get it done.
  • Chandan, G., Jain, A., & Jain, H. (2018). Real time object detection and tracking using deep learning and OpenCV. 2018 international conference on inventive research in computing applications (ICIRCA).
  • Chen, K., Lu, M., Fan, X., Wei, M., & Wu, J. (2011). Road condition monitoring using on-board three-axis accelerometer and GPS sensor. 2011 6th international ICST conference on communications and networking in China (CHINACOM), 1032-1037.
  • Chin, M. J., Babashamsi, P., & Yusoff, N. I. M. (2019). A comparative study of monitoring methods in sustainable pavement management system. IOP Conference Series: Materials Science and Engineering, 512, 012039. https://doi.org/10.1088/1757-899x/512/1/012039
  • Chu, C., Wang, L., & Xiong, H. (2022). A review on pavement distress and structural defects detection and quantification technologies using imaging approaches. Journal of Traffic and Transportation Engineering (English Edition), 9(2), 135–150. https://doi.org/10.1016/j.jtte.2021.04.007
  • Coppola, R., & Morisio, M. (2016). Connected car: Technologies,: issues, future trends. ACM Computing Surveys (CSUR), 49(3), 1–36. https://doi.org/10.1145/2971482
  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. https://doi.org/10.1007/BF00994018
  • Das, S., & Kale, A. (2021). P3De-A novel pothole detection algorithm using 3D depth estimation. 2021 2nd international conference for emerging technology (INCET).
  • Dennis, E. P., Hong, Q., Wallace, R., Tansil, W., & Smith, M. (2014). Pavement condition monitoring with crowdsourced connected vehicle data. Transportation Research Record, 2460(1), 31–38. https://doi.org/10.3141/2460-04
  • Dewangan, D. K., & Sahu, S. P. (2021). Potnet: Pothole detection for autonomous vehicle system using convolutional neural network. Electronics Letters, 57(2), 53–56. https://doi.org/10.1049/ell2.12062
  • Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., & Koltun, V. (2017). CARLA: An open urban driving simulator. Conference on robot learning.
  • Eriksson, J., Girod, L., Hull, B., Newton, R., Madden, S., & Balakrishnan, H. (2008). The pothole patrol: Using a mobile sensor network for road surface monitoring. Proceedings of the 6th international conference on mobile systems, applications, and services, breckenridge, CO, USA.
  • Fei, Y., Wang, K. C. P., Zhang, A., Chen, C., Li, J. Q., Liu, Y., Yang, G., & Li, B. (2020). Pixel-Level cracking detection on 3D asphalt pavement images through deep-learning- based CrackNet-V. IEEE Transactions on Intelligent Transportation Systems, 21(1), 273–284. https://doi.org/10.1109/TITS.2019.2891167
  • Flah, M., Nunez, I., Ben Chaabene, W., & Nehdi, M. L. (2021). Machine learning algorithms in civil structural health monitoring: A systematic review. Archives of Computational Methods in Engineering, 28(4), 2621–2643. https://doi.org/10.1007/s11831-020-09471-9
  • Franke, U., & Joos, A. (2000, 5-5 Oct. 2000). Real-time stereo vision for urban traffic scene understanding. Proceedings of the IEEE intelligent vehicles symposium 2000 (Cat. No.00TH8511).
  • Ganji, M. R., Ghelmani, A., Golroo, A., & Sheikhzadeh, H. (2021). A brief review on the application of sound in pavement monitoring and comparison of tire/road noise processing methods for pavement macrotexture assessment. Archives of Computational Methods in Engineering, 28(4), 2977–3000. https://doi.org/10.1007/s11831-020-09484-4
  • Gera, A. (2020). Pothole Classification Using CNNs.
  • Girshick, R. (2015). Fast r-cnn. Proceedings of the IEEE international conference on computer vision.
  • Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition.
  • Golroo, T. B. J. C. A. A. (2017). A review on automated pavement distress detection methods. Cogent Engineering, 4(1), 1374822. https://doi.org/10.1080/23311916.2017.1374822
  • Gouda, M., Chowdhury, I., Weiß, J., Epp, A., & El-Basyouny, K. (2021). Automated assessment of infrastructure preparedness for autonomous vehicles. Automation in Construction, 129, 103820. https://doi.org/10.1016/j.autcon.2021.103820
  • Guan, J., Yang, X., Ding, L., Cheng, X., Lee, V. C. S., & Jin, C. (2021). Automated pixel-level pavement distress detection based on stereo vision and deep learning. Automation in Construction, 129, 103788. https://doi.org/10.1016/j.autcon.2021.103788
  • He, K., Zhang, X., Ren, S., & Sun, J. (2016, 27-30 June 2016). Deep residual learning for image recognition. 2016 IEEE conference on computer vision and pattern recognition (CVPR).
  • Hegde, S., Mekali, H. V., & Varaprasad, G. (2014). Pothole detection and inter vehicular communication. 2014 IEEE international conference on vehicular electronics and safety.
  • Hernández-Aceituno, J., Arnay, R., Toledo, J., & Acosta, L. (2016). Using kinect on an autonomous vehicle for outdoors obstacle detection. IEEE Sensors Journal, 16(10), 3603–3610. https://doi.org/10.1109/JSEN.2016.2531122
  • Hoang, N.-D. (2018). An artificial intelligence method for asphalt pavement pothole detection using least squares support vector machine and neural network with steerable filter-based feature extraction. Advances in Civil Engineering, 2018. https://doi.org/10.1155/2018/7419058
  • Hou, Y., Li, Q., Zhang, C., Lu, G., Ye, Z., Chen, Y., Wang, L., & Cao, D. (2021). The state-of-the-Art review on applications of intrusive sensing,: image processing techniques, and machine learning methods in pavement monitoring and analysis. Engineering, 7(6), 845–856. https://doi.org/10.1016/j.eng.2020.07.030
  • Huang, G., Liu, Z., Maaten, L. V. D., & Weinberger, K. Q. (2017, 21-26 July 2017). Densely connected convolutional networks. 2017 IEEE conference on computer vision and pattern recognition (CVPR).
  • Kavitha, R., & Nivetha, S. (2021). Pothole and object detection for an autonomous vehicle using YOLO. 2021 5th international conference on intelligent computing and control systems (ICICCS).
  • Kit, C. W., Ling, P. J., & Chowdhury, A. K. (2016, 14-16 Nov. 2016). Detection mechanism of an autonomous vehicle: Self recognising obstructions. 2016 International Conference on Advances in Electrical,: Electronic and Systems Engineering (ICAEES).
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep convolutional neural networks. Communications of the Acm, 60(6), 84–90. https://doi.org/10.1145/3065386
  • Kuan, C.-W., Chen, W.-H., & Lin, Y.-C. (2020). Pothole detection and avoidance via deep learning on edge devices. 2020 international automatic control conference (CACS).
  • Lee, S.-H. (2022). A study on road damage detection for safe driving of autonomous vehicles based on OpenCV and CNN. International Journal of Internet: Broadcasting and Communication, 14(2), 47–54. https://doi.org/10.7236/IJIBC.2022.14.2.47
  • Lei, T., Luo, C., Sellers, T., & Rahimi, S. (2021). A bat-pigeon algorithm to crack detection-enabled autonomous vehicle navigation and mapping. Intelligent Systems with Applications, 12, 200053. https://doi.org/10.1016/j.iswa.2021.200053
  • Li, P., Wang, X., & Wang, J.-F. (2015). The study of stereo vision technique for the autonomous vehicle. International symposium on photonics and optoelectronics 2015.
  • Liu, X., & Ma, W. (2022). Chapter 21 - ubiquitous sensing for smart cities with autonomous vehicles. In A. H. Alavi, M. Q. Feng, P. Jiao, & Z. Sharif-Khodaei (Eds.), The rise of smart cities (pp. 523–549). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-817784-6.00006-0.
  • Lydon, D., Taylor, S., Lydon, M., & Early, J. (2020). A review of vision based methods for pothole detection and road profile analysis.
  • Ma, D., Fang, H., Wang, N., Xue, B., Dong, J., & Wang, F. (2022). A real-time crack detection algorithm for pavement based on CNN with multiple feature layers. Road Materials and Pavement Design, 23(9), 2115–2131. https://doi.org/10.1080/14680629.2021.1925578
  • Mahmoudzadeh, A., Yeganeh, S. F., & Golroo, A. (2015). Kinect, a novel cutting edge tool in pavement data collection. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(1), 425. https://doi.org/10.7236/IJIBC.2022.14.2.47
  • Miller, J. S., & Bellinger, W. Y. (2003). Distress identification manual for the long-term pavement performance program.
  • Murthy, S., & Varaprasad, G. (2014). Detection of potholes in autonomous vehicle. Intelligent Transport Systems, IET, 8, 543–549. https://doi.org/10.1049/iet-its.2013.0138
  • Nedevschi, S., Schmidt, R., Graf, T., Danescu, R., Frentiu, D., Marita, T., Oniga, F., & Pocol, C. (2004, 3-6 Oct. 2004). 3D lane detection system based on stereovision. Proceedings the 7th international IEEE conference on intelligent transportation systems (IEEE Cat. No.04TH8749).
  • Nienaber, S., Booysen, M. J., & Kroon, R. (2015a). Detecting potholes using simple image processing techniques and real-world footage.
  • Nienaber, S., Kroon, R., & Booysen, M. J. (2015b). A comparison of low-cost monocular vision techniques for pothole distance estimation. 2015 IEEE symposium series on computational Intelligence.
  • Okada, D. R., & Blankstein, R. (2009). Digital image processing for medical applications. Perspectives in Biology and Medicine, 52(4), 617–623. https://doi.org/10.1353/PBM.0.0123
  • Okutomi, M., & Noguchi, S. (1998, 20-20 Aug. 1998). Extraction of road region using stereo images. Proceedings fourteenth international conference on pattern recognition (Cat. No.98EX170).
  • Olsen, M. J. (2013). Guidelines for the use of mobile LIDAR in transportation applications (Vol. 748). Transportation Research Board.
  • Omar, M., & Kumar, P. (2020, 4-6 Nov. 2020). Detection of roads potholes using YOLOv4. 2020 international conference on information science and communications technologies (ICISCT).
  • Organization, W. H. (2018). Global status report on road safety 2018: summary.
  • Ouyang, W., & Xu, B. (2013). Pavement cracking measurements using 3D laser-scan images. Measurement Science and Technology, 24(10), 105204. https://doi.org/10.1088/0957-0233/24/10/105204
  • Pan, Y., Zhang, X., Cervone, G., & Yang, L. (2018). Detection of asphalt pavement potholes and cracks based on the unmanned aerial vehicle multispectral imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(10), 3701–3712. https://doi.org/10.1109/JSTARS.2018.2865528
  • Peraka, N. S. P., & Biligiri, K. P. (2020). Pavement asset management systems and technologies: A review. Automation in Construction, 119, 103336. https://doi.org/10.1016/j.autcon.2020.103336
  • Ragnoli, A., De Blasiis, M. R., & Di Benedetto, A. (2018). Pavement distress detection methods: A review. Infrastructures, 3(4), 58. https://doi.org/10.3390/infrastructures3040058
  • Rahman, M. A. (2021). Uses and Challenges of Collecting LiDAR Data from a Growing Autonomous Vehicle Fleet: Implications for Infrastructure Planning and Inspection Practices, Utah State University].
  • Rasshofer, R., & G, K. (2005). Automotive radar and lidar systems for next generation driver assistance functions. Advances in Radio Science - Kleinheubacher Berichte, 3), https://doi.org/10.5194/ars-3-205-2005
  • Rastogi, R., Kumar, U., Kashyap, A., Jindal, S., & Pahwa, S. (2020). A comparative evaluation of the deep learning algorithms for pothole detection. 2020 IEEE 17th India council international conference (INDICON).
  • Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767.
  • Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems, 28. https://doi.org/10.5555/2969239.2969250
  • Repair Priorities. (2019). Transportation for America and Taxpayers for Common Sense.
  • Ryu, S.-K., Kim, T., & Kim, Y.-R. (2015). Image-based pothole detection system for ITS service and road management system. Mathematical Problems in Engineering, 2015. https://doi.org/10.1155/2015/968361
  • Anand, S., Gupta, S., Darbari, V., & Kohli, A. S. (2018). Crack-pot: Autonomous road crack and pothole detection. 2018 digital image computing: Techniques and applications (DICTA), 1-6. https://doi.org/10.1109/DICTA.2018.8615819.
  • Venkatesh, S., Abhiram, E., Rajarajeswari, S., Kumar, K. M. S., Balakuntala, S., & Jagadish, A. N. (2014). An intelligent system to detect, avoid and maintain potholes: A graph theoretic approach. 2014 seventh international conference on mobile computing and ubiquitous networking (ICMU), 80-80. https://doi.org/10.1109/ICMU.2014.6799066.
  • Schlotjes, M. R., Burrow, M. P. N., Evdorides, H. T., & Henning, T. F. P. (2015). Using support vector machines to predict the probability of pavement failure. Proceedings of the Institution of Civil Engineers - Transport, 168(3), 212–222. https://doi.org/10.1680/tran.12.00084
  • Sezgin, M., & Sankur, B. (2004). Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, 13(1), https://doi.org/10.1117/1.1631315
  • Shivakumar, A., Sj, A., Nihal, K. U., & Omar, M. (2020). Detection of Potholes Using Convolutional Neural Network, CMR Institute of Technology. Bangalore.
  • Sholevar, N., Golroo, A., & Esfahani, S. R. (2022). Machine learning techniques for pavement condition evaluation. Automation in Construction, 136, 104190. https://doi.org/10.1016/j.autcon.2022.104190
  • Shon, H., Cho, C.-S., Byon, Y.-J., & Lee, J. (2022). Autonomous condition monitoring-based pavement management system. Automation in Construction, 138, 104222. https://doi.org/10.1016/j.autcon.2022.104222
  • Shtayat, A., Moridpour, S., Best, B., Shroff, A., & Raol, D. (2020). A review of monitoring systems of pavement condition in paved and unpaved roads. Journal of Traffic and Transportation Engineering (English Edition), 7(5), 629–638. https://doi.org/10.1016/j.jtte.2020.03.004
  • Silyanov, V., Sodikov, J., Kiran, R., & Sadikov, A. (2020). An overview road data collection, visualization, and analysis from the perspective of developing countries. IOP conference series: Materials science and engineering.
  • Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
  • Sivaraman, S., & Trivedi, M. M. (2013). Looking at vehicles on the road: A survey of vision-based vehicle detection: Tracking, and behavior analysis. IEEE Transactions on Intelligent Transportation Systems, 14(4), 1773–1795. https://doi.org/10.1109/TITS.2013.2266661
  • Song, L., & Wang, X. (2021). Faster region convolutional neural network for automated pavement distress detection. Road Materials and Pavement Design, 22(1), 23–41. https://doi.org/10.1080/14680629.2019.1614969
  • Sucgang, N. J., Ramos, M., & Arriola, N. A. (2017). Road surface obstacle detection using vision and LIDAR for autonomous vehicle. Proceedings of the international MultiConference of engineers and computer scientists.
  • Sun, X., Huang, J., Liu, W., & Xu, M. (2012). Pavement crack characteristic detection based on sparse representation. EURASIP Journal on Advances in Signal Processing, 2012(1), 191. https://doi.org/10.1186/1687-6180-2012-191
  • Suong, L. K., & Jangwoo, K. (2018). Detection of potholes using a deep convolutional neural network. Journal of Universal Computer Science, 24, 1244–1257. http://doi.org/10.3217/jucs-024-09-1244
  • Timm, D. H., & McQueen, J. M. (2004). A study of manual vs. Automated pavement condition surveys. Auburn University.
  • Tithi, A., Ali, F., & Azrof, S. (2021). Speed bump & pothole detection with single shot MultiBox detector algorithm & speed control for autonomous vehicle. 2021 international conference on automation, control and mechatronics for industry 4.0 (ACMI).
  • Tong, Z., Gao, J., & Zhang, H. (2017). Recognition,: location, measurement, and 3D reconstruction of concealed cracks using convolutional neural networks. Construction and Building Materials, 146, 775–787. https://doi.org/10.1016/j.conbuildmat.2017.04.097
  • Tsai, J. C., Lai, K. T., Dai, T. C., Su, J. J., Siao, C. Y., & Hsu, Y. C. (2020, 4-7 Nov. 2020). Learning pothole detection in virtual environment. 2020 international automatic control conference (CACS).
  • Tsai, Y.-C. J., & Li, F. (2012). Critical assessment of detecting asphalt pavement cracks under different lighting and low intensity contrast conditions using emerging 3D laser technology. Journal of Transportation Engineering, 138(5), 649–656. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000353
  • Tzutalin, D. (2015). tzutalin/labelImg. GitHub.
  • Understanding asphalt pavement distresses – five distresses explained. (2021). The Magazine of the Asphalt Institute. http://asphaltmagazine.com/understanding-asphalt-pavement-distresses-five-distresses-explained/
  • Urano, K., Hiroi, K., Kato, S., Komagata, N., & Kawaguchi, N. (2019, 11-15 March 2019). Road surface condition inspection using a laser scanner mounted on an autonomous driving Car. 2019 IEEE international conference on pervasive computing and communications workshops (PerCom workshops).
  • Van Brummelen, J., O'Brien, M., Gruyer, D., & Najjaran, H. (2018). Autonomous vehicle perception: The technology of today and tomorrow. Transportation Research Part C: Emerging Technologies, 89, 384–406. https://doi.org/10.1016/j.trc.2018.02.012
  • Varona, B., Monteserin, A., & Teyseyre, A. (2020). A deep learning approach to automatic road surface monitoring and pothole detection. Personal and Ubiquitous Computing, 24(4), 519–534. https://doi.org/10.1007/s00779-019-01234-z
  • Vijay, S., & Arya, K. (2006). Low Cost–FPGA based system for pothole detection on Indian Roads. M-Tech Thesis, Indian Institute of Technology Bombay.
  • Wang, C., Wang, X., Hu, H., Liang, Y., & Shen, G. (2022). On the application of cameras used in autonomous vehicles. Archives of Computational Methods in Engineering, 29, 4319–4339. https://doi.org/10.1007/s11831-022-09741-8
  • Wang, X., & Hu, Z. (2017, 8-10 Aug. 2017). Grid-based pavement crack analysis using deep learning. 2017 4th international conference on transportation information and safety (ICTIS).
  • Wavelet Analysis. (n.d.). ScienceDirect. Retrieved 2/5/2022 from https://www.sciencedirect.com/topics/earth-and-planetary-sciences/wavelet-analysis
  • Yang, X., Guan, J., Ding, L., You, Z., Lee, V. C. S., Mohd Hasan, M. R., & Cheng, X. (2021). Research and applications of artificial neural network in pavement engineering: A state-of-the-art review. Journal of Traffic and Transportation Engineering (English Edition), 8(6), 1000–1021. https://doi.org/10.1016/j.jtte.2021.03.005
  • Ye, W., Jiang, W., Tong, Z., Yuan, D., & Xiao, J. (2021). Convolutional neural network for pothole detection in asphalt pavement. Road Materials and Pavement Design, 22(1), 42–58. https://doi.org/10.1080/14680629.2019.1615533
  • You, Y., Pan, X., Wang, Z., & Lu, C. (2017). Virtual to Real Reinforcement Learning for Autonomous Driving.
  • Zakeri, H., Nejad, F. M., & Fahimifar, A. (2017). Image based techniques for crack detection, classification and quantification in asphalt pavement: A review. Archives of Computational Methods in Engineering, 24(4), 935–977. https://doi.org/10.1007/s11831-016-9194-z
  • Zhang, A., Wang, K. C. P., Fei, Y., Liu, Y., Tao, S., Chen, C., Li, J. Q., & Li, B. (2018). Deep learning-based fully automated pavement crack detection on 3D asphalt surfaces with an improved CrackNet. Journal of Computing in Civil Engineering, 32(5), 04018041. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000775
  • Zhang, A., Wang, K. C. P., Li, B., Yang, E., Dai, X., Peng, Y., Fei, Y., Liu, Y., Li, J. Q., & Chen, C. (2017). Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network. Computer-Aided Civil and Infrastructure Engineering, 32(10), 805–819. https://doi.org/10.1111/mice.12297
  • Zhang, J., Yang, X., Li, W., Zhang, S., & Jia, Y. (2020). Automatic detection of moisture damages in asphalt pavements from GPR data with deep CNN and IRS method. Automation in Construction, 113, 103119. https://doi.org/10.1016/j.autcon.2020.103119
  • Zhang, Z., Ai, X., Chan, C. K., & Dahnoun, N. (2014, 4-9 May 2014). An efficient algorithm for pothole detection using stereo vision. 2014 IEEE international conference on acoustics,: speech and signal processing (ICASSP).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.