144
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Suction stress effects on stress-dependent resilient modulus of subgrade soils

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1229-1248 | Received 22 Feb 2023, Accepted 22 Jun 2023, Published online: 05 Oct 2023

References

  • Al Aqtash, U., & Bandinim, P. (2015). Prediction of unsaturated shear strength of an adobe soil from the soil-water characteristic curve. Construction and Building Materials, 98(15), 892–899. https://doi.org/10.1016/j.conbuildmat.2015.07.188
  • Atkinson, J. H. (2000). Non-linear soil stiffness in routine design. Géotechnique, 50(5), 487–507. https://doi.org/10.1680/geot.2000.50.5.487
  • Azam, A. M., Cameron, D. A., & Rahman, M. M. (2013). Model for prediction of resilient modulus incorporating matric suction for recycled unbound granular materials. Canadian Geotechnical Journal, 50(11), 1143–1158. https://doi.org/10.1139/cgj-2012-0406
  • Bishop, A. W. (1959). The principle of effective stress. Teknisk Ukeblad, 106(39), 859–863.
  • Blackmore, L., Clayton, C. R., Powrie, W., Priest, J. A., & Otter, L. (2020). Saturation and its effect on the resilient modulus of a pavement formation material. Géotechnique, 70(4), 292–302. https://doi.org/10.1680/jgeot.18.P.053
  • Caicedo, B., Coronado, O., Fleureau, J. M., & Correia, A. G. (2009). Resilient behaviour of non-standard unbound granular materials. Road Materials and Pavement Design, 10(2), 287–312. https://doi.org/10.1080/14680629.2009.9690196
  • Cary, C. E., & Zapata, C. E. (2011). Resilient modulus for unsaturated unbound materials. Road Materials and Pavement Design, 12(3), 615–638. https://doi.org/10.1080/14680629.2011.9695263
  • Ceratti, J. A., Gehling, W. Y. Y., & Núñez, W. P. (2004). Seasonal variations of a subgrade soil resilient modulus in southern Brazil. Journal of the Transportation Research Board, 1874(1), 165–173. https://doi.org/10.3141/1874-18
  • Chae, J., Kim, B., Park, S. W., & Kato, S. (2010). Effect of suction on unconfined compressive strength in partly saturated soils. KSCE Journal of Civil Engineering, 14(3), 281–290. https://doi.org/10.1007/s12205-010-0281-7
  • Coronado, O., Caicedo, B., Taibi, S., Correia, A. G., Souli, H., & Fleureau, J. M. (2016). Effect of water content on the resilient behavior of non-standard unbound granular materials. Transportation Geotechnics, 7, 29–39. https://doi.org/10.1016/j.trgeo.2016.04.004
  • Edil, T. B., & Motan, S. E. (1979). Soil-water potential and resilient behavior of subgrade soils. Transportation Research Record: Transportation Research Board, 705, 54–63.
  • Ekblad, J., & Isacsson, U. (2006). Influence of water on resilient properties of coarse granular materials. Road Materials and Pavement Design, 7(3), 369–404. https://doi.org/10.1080/14680629.2006.9690043
  • Fredlund, D. G. (2016). State variables in saturated-unsaturated soil mechanics. Soils and Rocks, 39(1), 3–18. https://doi.org/10.28927/SR.391003
  • Fredlund, D. G., & Morgenstern, N. R. (1977). The stress state variables for unsaturated soils. Journal of the Geotechnical Engineering Division, 103(5), 447–466. https://doi.org/10.1061/AJGEB6.0000423
  • Fredlund, D. G., Morgenstern, N. R., & Widger, R. A. (1978). The shear strength of unsaturated soils. Canadian Geotechnical Journal, 15(3), 313–321. https://doi.org/10.1139/t78-029
  • Fredlund, D. G., & Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31(4), 521–532. https://doi.org/10.1139/t94-061
  • Gao, Y., Sun, D. A., Zhou, A., & Li, J. (2020). Predicting shear strength of unsaturated soils over wide suction range. International Journal of Geomechanics, 20(2), 04019175. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001555
  • Gupta, S., Ranaivoson, A., Edil, T., Benson, C., & Sawangsuriya, A. (2007). Pavement design using unsaturated soil technology (Report No. Mn/DOT 2007-11). Minnesota Department of Transportation.
  • Han, Z., & Vanapalli, S. K. (2016a). Relationship between resilient modulus and suction for compacted subgrade soils. Engineering Geology, 211, 85–97. https://doi.org/10.1016/j.enggeo.2016.06.020
  • Han, Z., & Vanapalli, S. K. (2016b). State-of-the-Art: Prediction of resilient modulus of unsaturated subgrade soils. International Journal of Geomechanics, 16(4), 777–780. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000631
  • Hoyos, L. R., Suescun-Florez, E. A., & Puppala, A. J. (2015). Stiffness of intermediate unsaturated soil from simultaneous suction-controlled resonant column and bender element testing. Engineering Geology, 88(7), 10–28. https://doi.org/10.1016/j.enggeo.2015.01.014
  • Jennings, J. E., & Burland, J. B. (1962). Limitations to the use of effective stresses in partly saturated soils. Géotechnique, 12(2), 125–144. https://doi.org/10.1680/geot.1962.12.2.125
  • Karube, D. (1988). New concept of effective stress in unsaturated soil and its proving test. Advanced Triaxial Testing of Soil and Rocks, ASTM-STP 977, 539–552. https://doi.org/10.1520/STP29097S
  • Karube, D., & Kato, S. (1989). Yield function of unsaturated soil. In Publications Committee of XII ICSMFE (Eds.), Proceedings of 12th international conference on soil mechanics and foundation engineering (pp. 615–618). A.A.Balkema.
  • Karube, D., & Kato, S. (1994). An ideal unsaturated soil and the Bishop’s soil. In Proceedings of 13th international conference on conference on soil mechanics and foundations engineering (pp. 43–46). IBH.
  • Karube, D., Kato, S., Hamada, K., & Honda, M. (1996). The relationship between the mechanical behavior and the state of pore-water in unsaturated soil. Doboku Gakkai Ronbunshu, 535, 83–92. https://doi.org/10.2208/jscej.1996.535_83. (In Japanese).
  • Karube, D., Kato, S., & Katsuyama, J. (1986). Effective stress and soil constants of unsaturated kaolin. Doboku Gakkai Ronbunshu, 370(5), 179–188. https://doi.org/10.2208/jscej.1986.370_179. (In Japanese).
  • Karube, D., & Kawai, K. (2001). The role of pore water in the mechanical behavior of unsaturated soils. Geotechnical and Geological Engineering, 19, 211–241. https://doi.org/10.1023/A:1013188200053
  • Kato, S., Yoshimura, Y., Kawai, K., & Sunden, W. (2001). Effects of suction on strength characteristics of unconfined compression test for a compacted silty clay. Doboku Gakkai Ronbunshu, 687, 213–218. https://doi.org/10.2208/jscej.2001.687_201. (In Japanese).
  • Kawai, K., Karube, D., & Kato, S. (2000). Triaxial compression tests on unsaturated soils under undrained condition. Proceedings of ISRM International Symposium. OnePetro.
  • Khalili, N., Romero, E., & Marinho, F. A. M. (2022). State of the art report. advances in unsaturated soil mechanics: constitutive modelling, experimental investigation, and field instrumentation. Proceedings of 20th international conference on soil mechanics and geotechnical engineering—state of the Art and invited lectures—Rahman and Jaksa, Sydney, Australia, 1–5.
  • Khoury, C. N., Khoury, N. N., & Miller, G. A. (2011). Effect of cyclic suction history (hydraulic hysteresis) on resilient modulus of unsaturated fine-grained soil. Journal of the Transportation Research Board, 2232, 68–75. https://doi.org/10.3141/2232-07
  • Khoury, N., Brooks, R., Boeni, S. Y., & Yada, D. (2013). Variation of resilient modulus, strength, and modulus of elasticity of stabilized soils with postcompaction moisture contents. Journal of Materials in Civil Engineering, 25(2), 160–166. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000574
  • Kim, B. S., Kato, S., & Park, S. W. (2019). Experimental approach to estimate strength for compacted geomaterials at low confining pressure. Geomechanics and Engineering, 18(5), 459–469. https://doi.org/10.12989/gae.2019.18.5.459
  • Kim, B. S., Park, S. W., Lohani, T. N., & Kato, S. (2022). Characterizing suction stress and shear strength for unsaturated geomaterials under various confining pressure conditions. Transportation Geotechnics, 34, 100747. https://doi.org/10.1016/j.trgeo.2022
  • Kim, B. S., Park, S. W., Takeshita, Y., & Kato, S. (2016). Effect of suction stress on the critical state of compacted silty soils under low confining pressure. International Journal of Geomechanics, 16(6), D4016010-1-11. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000665
  • Kim, B. S., Shibuya, S., Park, S. W., & Kato, S. (2010). Application of suction stress for estimating unsaturated shear strength of soils using direct shear testing under low confining pressure. Canadian Geotechnical Journal, 47(9), 955–970. https://doi.org/10.1139/T10-007
  • Kim, B. S., Shibuya, S., Park, S. W., & Kato, S. (2013). Suction stress and its application on unsaturated direct shear test under constant volume condition. Engineering Geology, 155, 10–18. https://doi.org/10.1016/j.enggeo.2012.12.020
  • Lade, P. V., & Nelson, R. D. (1987). Modelling the elastic behavior of granular materials. International Journal of Numerical and Analytical Methods in Geomechanics, 11(5), 521–542. https://doi.org/10.1002/nag.1610110507
  • Leong, E. C. (2016). Stress state variables for unsaturated soils-consensus and controversy. Indian Geotechnical Conference.
  • Li, J., & Qubain, B. S. (2003). Resilient modulus variations with water content. Proceedings of the symposium on resilient modulus testing for pavement components (pp. 59–69). ASTM International.
  • Liang, R. Y., Rabab’ah, S., & Khasawneh, M. (2008). Predicting moisture-dependent resilient modulus of cohesive soils using soil suction concept. Journal of Transportation Engineering, 134(1), 34–40. https://doi.org/10.1061/(ASCE)0733-947X(2008)134:1(34)
  • Lim, S. M., Indraratna, B., Heitor, A., Yao, K., Jin, D., Albadri, W. M., & Liu, X. (2022). Influence of matric suction on resilient modulus and CBR of compacted Ballina clay. Construction and Building Materials, 359, 129482. https://doi.org/10.1016/j.conbuildmat.2022.129482
  • Ng, C. W. W., & Shi, Q. (1998). A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage. Computers and Geotechnics, 22(1), 1–28. https://doi.org/10.1016/S0266-352X(97)00036-0
  • Ng, C. W. W., Zhou, C., Yuan, Q., & Xu, J. (2013). Resilient modulus of unsaturated subgrade soil: experimental and theoretical investigations. Canadian Geotechnical Journal, 50(2), 223–232. https://doi.org/10.1139/cgj-2012-0052
  • Oh, J. H., Fernando, E. G., Holzschuher, C., & Horhota, D. (2012). Comparison of resilient modulus values for Florida flexible mechanistic-empirical pavement design. International Journal of Pavement Engineering, 13(5), 472–484. https://doi.org/10.1080/10298436.2011.633170
  • Oh, W. T., & Vanapalli, S. K. (2013). Interpretation of the bearing capacity of unsaturated fine-grained soil using the modified effective and the modified total stress approaches. International Journal of Geomechanics, 13(6), 769–778. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000263
  • Pande, G. N., & Pietruszczak, S. (2015). On unsaturated soil mechanics-personal views on current research. Studia Geotechnica et Mechanica, 37(3), 73–84. https://doi.org/10.1515/sgem-2015-0035
  • Park, S. W., & Lytton, R. L. (2004). The effect of stress-dependent modulus and Poisson’s ratio on structural responses in thin asphalt pavements. Journal of Transportation Engineering, 130(3), 387–394. https://doi.org/10.1061/(ASCE)0733-947X(2004)130:3(387)
  • Parreira, A. B., & Goncalves, R. F. (2000). The influence of moisture content and soil suction on the resilient modulus of a lateritic subgrade soil. Proceedings of ISRM International Symposium. OnePetro.
  • Ping, W. V., Yang, Z., & Ho, R. K. H. (2003). Full-scale laboratory evaluation of moisture effect on resilient moduli of granular pavement subgrade layers. Road Materials and Pavement Design, 4(3), 309–330. https://doi.org/10.1080/14680629.2003.9689951
  • Rahardjo, H., Kim, Y., & Satyanaga, A. (2019). Role of unsaturated soil mechanics in geotechnical engineering. International Journal of Geo-Engineering, 10(1), 1–23. https://doi.org/10.1186/s40703-019-0104-8
  • Sahin, H., Gu, F., Tong, Y., & Lytton, R. L. (2013). Unsaturated soil mechanics in the design and performance of pavements. In H. Sahin, F. Gu, Y. Tong, & R. Luo (Eds.), Advances in unsaturated soils. CRC Press.
  • Salour, F., & Erlingsson, S. (2015). Resilient modulus modelling of unsaturated subgrade soils: laboratory investigation of silty sand subgrade. Road Materials and Pavement Design, 16(3), 553–568. https://doi.org/10.1080/14680629.2015.1021107
  • Salour, F., Erlingsson, S., & Zapata, C. E. (2014). Modelling resilient modulus seasonal variation of silty sand subgrade soils with matric suction control. Canadian Geotechnical Journal, 51(12), 1413–1422. https://doi.org/10.1139/cgj-2013-0484
  • Sawangsuriya, A., Edil, T. B., & Bosscher, P. J. (2009). Modulus-suction-moisture relationship for compacted soils in postcompaction state. Journal of Geotechnical and Geoenvironmental Engineering, 135(10), 1390–1403. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000108
  • Smith, W. S., & Nair, K. (1973). Development of procedures for characterization of untreated granular base coarse and asphalt-treated base course materials, FHWA.
  • Su, Y., Cui, Y. J., Dupla, J. C., & Canou, J. (2022). Modeling the suction- and deviator stress-dependent resilient modulus of unsaturated fine/coarse soil mixture by considering soil-water retention curve. Acta Geotechnica, 17, 3747–3763. https://doi.org/10.1007/s11440-022-01452-5
  • Uzan, J. (1992). Resilient characterization of pavement materials. International Journal of Numerical and Analytical Methods in Geomechanics, 16(6), 435–459. https://doi.org/10.1002/nag.1610160605
  • Witczak, M. W., Andrei, D., & Houston, W. N. (2000). Resilient modulus as function of soil moisture–summary of predictive models, NCHRP.
  • Yau, A., & Von Quintus, H. L. (2002). Study of LTPP laboratory resilient modulus test data and response characteristics (Report No. FHWA-RD-02-051). FHWA.
  • Zhai, Q., & Rahardjo, H. (2012). Determination of soil-water characteristic curve variables. Computers and Geotechnics, 42, 37–43. https://doi.org/10.1016/j.compgeo.2011.11.010
  • Zhang, J., Pen, J., Zheng, J., & Yao, Y. (2020). Characterisation of stress and moisture-dependent resilient behaviour for compacted for compacted clays in South China. Road Materials and Pavement Design, 21(1), 262–275. https://doi.org/10.1080/14680629.2018.1481138
  • Zhang, Y. Z., Wang, T. L., Kou, X. K., Feng, Z. X., & Liu, W. L. (2021). Liquid water-vapour migration tracing and characteristics of unsaturated coarse-grained soil in high-speed railway subjected to freezing and different load types. Construction and Building Materials, 283, 122747. https://doi.org/10.1016/j.conbuildmat.2021.122747

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.