196
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Extrinsic healing of asphalt mixtures: a review

ORCID Icon, &
Pages 1145-1173 | Received 05 Dec 2022, Accepted 21 Aug 2023, Published online: 08 Oct 2023

References

  • ACS (American Cancer Society). (2019). Known and probable carcinogens. American Cancer Society, 1–18. cancer.org %7C 1.800.227.2345.
  • Ajam, H., Gómez-Meijide, B., Artamendi, I., & Garcia, A. (2018). Mechanical and healing properties of asphalt mixes reinforced with different types of waste and commercial metal particles. Journal of Cleaner Production, 192, 138–150. https://doi.org/10.1016/j.jclepro.2018.04.262
  • Ajam, H. K. K. (2019). “Effect of heating energy, steel fibres, bitumen types and ageing on the self-healing phenomena in hot mix asphalt,” no. January.
  • Akbari, A., & Modarres, A. (2020). Fatigue response of HMA containing modified bitumen with nano-clay and nano-alumina and its relationship with surface free energy parameters. Road Materials and Pavement Design, 21(6), 1490–1513. https://doi.org/10.1080/14680629.2018.1553733
  • Alakhrass, M. S. (2018). The effect of adding iron powder on self-healing properties of asphalt mixture. The Islamic University–Gaza Deanship, 24–67.
  • Al-Mansoori, T., Micaelo, R., Artamendi, I., Norambuena-Contreras, J., & Garcia, A. (2017). Microcapsules for self-healing of asphalt mixture without compromising mechanical performance. Construction and Building Materials, 155, 1091–1100. https://doi.org/10.1016/j.conbuildmat.2017.08.137
  • Al-Mansoori, T., Norambuena-Contreras, J., Micaelo, R., & Garcia, A. (2018). Self-healing of asphalt mastic by the action of polymeric capsules containing rejuvenators. Construction and Building Materials, 161, 330–339. https://doi.org/10.1016/j.conbuildmat.2017.11.125
  • Bazin, P., & Saunier, J. (1967). Deformability, fatigue, and healing properties of asphalt mixes. Second International Conference on the Structural Design of Asphalt Pavements (pp. 2–3).
  • Bueno, M., Arraigada, M., & Partl, M. N. (2016). Damage detection and artificial healing of asphalt concrete after trafficking with a load simulator. Mechanics of Time-Dependent Materials, 20(3), 265–279. https://doi.org/10.1007/s11043-016-9306-z
  • Chen, Y., Xu, S., Tebaldi, G., & Romeo, E. (2022). Role of mineral filler in asphalt mixture. Road Materials and Pavement Design, 23(2), 247–286. https://doi.org/10.1080/14680629.2020.1826351
  • Dai, Q., Wang, Z., Mohd Hasan, M. R. (2013). Investigation of induction healing effects on electrically conductive asphalt mastic and asphalt concrete beams through fracture-healing tests. Construction and Building Materials, 49, 729–737. https://doi.org/10.1016/j.conbuildmat.2013.08.089
  • Das, P. K., Baaj, H., Tighe, S., & Kringos, N. (2016). Atomic force microscopy to investigate asphalt binders: A state-of-the-Art review. Road Materials and Pavement Design, 17(3), 693–718. https://doi.org/10.1080/14680629.2015.1114012
  • Fang, C., Yu, R., Liu, S., & Li, Y. (2013). Nanomaterials applied in asphalt modification: A review. Journal of Materials Science & Technology, 29(7), 589–594. https://doi.org/10.1016/j.jmst.2013.04.008
  • Gallego, J., del Val, M. A., Contreras, V., & Páez, A. (2013). Heating asphalt mixtures with microwaves to promote self-healing. Construction and Building Materials, 42, 1–4. https://doi.org/10.1016/j.conbuildmat.2012.12.007
  • García, A., Bueno, M., Norambuena-Contreras, J., & Partl, M. N. (2013). Induction healing of dense asphalt concrete. Construction and Building Materials, 49, 1–7. https://doi.org/10.1016/j.conbuildmat.2013.07.105
  • García, A., Jelfs, J., & Austin, C. (2015). Internal asphalt mixture rejuvenation using capsules. Construction and Building Materials, 101, 309–316. https://doi.org/10.1016/j.conbuildmat.2015.10.062
  • García, A., Schlangen, E., & van de Ven, M. (2009). Two ways of closing cracks on asphalt concrete pavements: Microcapsules and induction heating. Key Engineering Materials, 573–576. https://doi.org/10.4028/www.scientific.net/KEM.417-418.573
  • García, Á, Schlangen, E., & Van de Ven, M. (2011). Properties of capsules containing rejuvenators for their use in asphalt concrete. Fuel, 90(2), 583–591. https://doi.org/10.1016/j.fuel.2010.09.033
  • Garcia, A., Austin, C., & Jelfs, J. (2016). Mechanical properties of asphalt mixture containing sunflower oil capsules. Journal of Cleaner Production, 118, 124–132. https://doi.org/10.1016/j.jclepro.2016.01.072
  • Gong, X., Dong, Z., Wang, H., Ma, X., Yu, H., & Hu, K. (2019). Rheological characterization of asphalt fine aggregate matrix using dynamic shear rheometer. Polymers, 11(8), https://doi.org/10.3390/polym11081273
  • González, A., Norambuena-Contreras, J., Storey, L., & Schlangen, E. (2018). Self-healing properties of recycled asphalt mixtures containing metal waste: An approach through microwave radiation heating. Journal of Environmental Management, 214, 242–251. https://doi.org/10.1016/j.jenvman.2018.03.001
  • González, A., Valderrama, J., & Norambuena-Contreras, J. (2019). Microwave crack healing on conventional and modified asphalt mixtures with different additives: An experimental approach. Road Materials and Pavement Design, 20(sup1), S149–S162. https://doi.org/10.1080/14680629.2019.1587493
  • Gupta, S., Zhang, Q., Emrick, T., Balazs, A. C., & Russell, T. P. (2006). Entropy-driven segregation of nanoparticles to cracks in multilayered composite polymer structures. Nature Materials, 5(3), 229–233. https://doi.org/10.1038/nmat1582
  • Hamedi, G. H., & Nejad, F. M. (2016). Use of aggregate nanocoating to decrease moisture damage of hot mix asphalt. Road Materials and Pavement Design, 17(1), 32–51. https://doi.org/10.1080/14680629.2015.1056215
  • Hamedi, G. H., Nejad, F. M., & Oveisi, K. (2015). Investigating the effects of using nanomaterials on moisture damage of HMA. Road Materials and Pavement Design, 16(3), 536–552. https://doi.org/10.1080/14680629.2015.1020850
  • Jeoffroy, E., Demirörs, A. F., Schwendimann, P., Santos, S. D., Danzi, S., Hauser, A., Partl, M. N., & Studart, A. R. (2017). One-step bulk fabrication of polymer-based microcapsules with hard-soft bilayer thick shells. ACS Applied Materials & Interfaces, 9(42), 37364–37373. https://doi.org/10.1021/acsami.7b09371
  • Jeoffroy, E., Koulialias, D., Yoon, S., Partl, M. N., & Studart, A. R. (2016). Iron oxide nanoparticles for magnetically-triggered healing of bituminous materials. Construction and Building Materials, 112, 497–505. https://doi.org/10.1016/j.conbuildmat.2016.02.159
  • Kargari, A., Arabani, M., & Mirabdolazimi, S. M. (2022). Effect of palm oil capsules on the self-healing properties of aged and unaged asphalt mixtures gained by resting period and microwave heating. Construction and Building Materials, 316(December 2021), 125901. https://doi.org/10.1016/j.conbuildmat.2021.125901
  • Karimi, M. M., Jahanbakhsh, H., Jahangiri, B., & Moghadas Nejad, F. (2018). Induced heating-healing characterization of activated carbon modified asphalt concrete under microwave radiation. Construction and Building Materials, 178, 254–271. https://doi.org/10.1016/j.conbuildmat.2018.05.012
  • Lee, J. Y., Buxton, G. A., & Balazs, A. C. (2004). Using nanoparticles to create self-healing composites. Journal of Chemical Physics, 121(11), 5531–5540. https://doi.org/10.1063/1.1784432
  • Leegwater, G., Taboković, A., Baglieri, O., Hammoum, F., & Baaj, H. (2022). Terms and definitions on crack-healing and restoration of mechanical properties in bituminous materials. RILEM Bookseries, 27, 47–53. https://doi.org/10.1007/978-3-030-46455-4_6
  • Li, C., Wu, S., Chen, Z., Tao, G., & Xiao, Y. (2018). Enhanced heat release and self-healing properties of steel slag filler based asphalt materials under microwave irradiation. Construction and Building Materials, 193, 32–41. https://doi.org/10.1016/j.conbuildmat.2018.10.193
  • Liu, Q., Chen, C., Li, B., Sun, Y., & Li, H. (2018). Heating characteristics and induced healing efficiencies of asphalt mixture via induction and microwave heating. Materials, 11(6), https://doi.org/10.3390/ma11060913
  • Liu, Q., García, Á, Schlangen, E., & Van De Ven, M. (2011). Induction healing of asphalt mastic and porous asphalt concrete. Construction and Building Materials, 25(9), 3746–3752. https://doi.org/10.1016/j.conbuildmat.2011.04.016
  • Liu, Q., Schlangen, E., García, Á, & Van De Ven, M. (2010). Healing of porous asphalt concrete via induction heating. Road Materials and Pavement Design, 11(sup1), 527–542. https://doi.org/10.1080/14680629.2010.9690345
  • Liu, W., Wang, S., & Gu, X. (2020). Improving microwave heating efficiency of asphalt concrete by increasing surface magnetic loss of aggregates. Road Materials and Pavement Design, 21(4), 950–964. https://doi.org/10.1080/14680629.2018.1531778
  • Lou, B., Sha, A., Barbieri, D. M., Zhang, X., Chen, H., & Hoff, I. (2023). Evaluation of microwave aging impact on asphalt mixtures. Road Materials and Pavement Design, 730–743. https://doi.org/10.1080/14680629.2022.2041071
  • Mazzoni, G., Virgili, A., & Canestrari, F. (2019). Influence of different fillers and SBS modified bituminous blends on fatigue, self-healing and thixotropic performance of mastics. Road Materials and Pavement Design, 20(3), 656–670. https://doi.org/10.1080/14680629.2017.1417150
  • Menozzi, A., Garcia, A., Partl, M. N., Tebaldi, G., & Schuetz, P. (2015). Induction healing of fatigue damage in asphalt test samples. Construction and Building Materials, 74, 162–168. https://doi.org/10.1016/j.conbuildmat.2014.10.034
  • Micaelo, R., Al-Mansoori, T., & Garcia, A. (2016). Study of the mechanical properties and self-healing ability of asphalt mixture containing calcium-alginate capsules. Construction and Building Materials, 123, 734–744. https://doi.org/10.1016/j.conbuildmat.2016.07.095
  • Nalbandian, K. M., & Carpio, M. (2021). Analysis of the scientific evolution of self-healing asphalt pavements: Toward sustainable road materials. Journal of Cleaner Production, 126107. https://doi.org/10.1016/j.jclepro.2021.126107
  • Norambuena-Contreras, J., Arteaga-Pérez, L. E., Concha, J. L., & Gonzalez-Torre, I. (2021). Pyrolytic Oil from waste tyres as a promising encapsulated rejuvenator for the extrinsic self-healing of bituminous materials. Road Materials and Pavement Design, 22(S1), S117–S133. https://doi.org/10.1080/14680629.2021.1907216
  • Norambuena-Contreras, J., & Garcia, A. (2016). Self-healing of asphalt mixture by microwave and induction heating. Materials & Design, 106, 404–414. https://doi.org/10.1016/j.matdes.2016.05.095
  • Norambuena-Contreras, J., & Gonzalez-Torre, I. (2017). Influence of the microwave heating time on the self-healing properties of asphalt mixtures. Applied Sciences (Switzerland), 7(10), https://doi.org/10.3390/app7101076
  • NTP (National Toxicology Program). (2021). Report on carcinogens, fifteenth edition. U.S. Department of Health and Human Services, Public Health Service.
  • Ormel, T. J. (2011). “Modelling asphalt with discrete and continuum methods,” 2.
  • Partl, M., Porot, L., Di Benedetto, H., Canestrari, F., Marsac, P., & Tebaldi, G. (2018). Testing and characterisation of sustainable innovative bituminous materials and systems. RILEM Stat. Springer.
  • Phan, T. M., Le, T. H. M., & Park, D. W. (2022). Evaluation of cracking resistance of healed warm mix asphalt based on air-void and binder content. Road Materials and Pavement Design, 23(1), 47–61. https://doi.org/10.1080/14680629.2020.1829010
  • Phan, T. M., Park, D. W., & Le, T. H. M. (2018). Crack healing performance of Hot Mix asphalt containing steel slag by microwaves heating. Construction and Building Materials, 180, 503–511. https://doi.org/10.1016/j.conbuildmat.2018.05.278
  • Phillips, M. C. (1998). Multi-step models for fatigue and healing, and binder properties involved in healing. In Eurobitume workshop on performance related properties for bituminous binders. Luxembourg.
  • Qiu, J. (2012). Self healing of asphalt mixtures. Delft University of Technology.
  • Qiu, J., Van De Ven, M. F. C., Wu, S., Yu, J., & Molenaar, A. A. A. (2009). Investigating the self healing capability of bituminous binders. Road Materials and Pavement Design, 10(sup1), 81–94. https://doi.org/10.1080/14680629.2009.9690237
  • Ribeiro, T., Freire, A. C., Sá-da-Costa, M., Canejo, J., Cordeiro, V., & Micaelo, R. (2023). Investigating asphalt self-healing with colorless binder and pigmented rejuvenator. Sustainability (Switzerland), 15(5), https://doi.org/10.3390/su15054556
  • Shu, B., Wu, S., Dong, L., Norambuena-Contreras, J., Yang, X., Li, C., Liu, Q., & Wang, Q. (2019). Microfluidic synthesis of polymeric fibers containing rejuvenating agent for asphalt self-healing. Construction and Building Materials, 219, 176–183. https://doi.org/10.1016/j.conbuildmat.2019.05.178
  • Smith, K. A., Tyagi, S., & Balazs, A. C. (2005). Healing surface defects with nanoparticle-filled polymer coatings:  effect of particle geometry. Macromolecules, 38(24), 10138–10147. https://doi.org/10.1021/ma0515127
  • Su, J. F., Qiu, J., & Schlangen, E. (2013). Stability investigation of self-healing microcapsules containing rejuvenator for bitumen. Polymer Degradation and Stability, 98(6), 1205–1215. https://doi.org/10.1016/j.polymdegradstab.2013.03.008
  • Su, J. F., Qiu, J., Schlangen, E., & Wang, Y. Y. (2015). Investigation the possibility of a new approach of using microcapsules containing waste cooking oil: In situ rejuvenation for aged bitumen. Construction and Building Materials, 74, 83–92. https://doi.org/10.1016/j.conbuildmat.2014.10.018
  • Su, J. F., & Schlangen, E. (2012). Synthesis and physicochemical properties of high compact microcapsules containing rejuvenator applied in asphalt. Chemical Engineering Journal, 198–199, 289–300. https://doi.org/10.1016/j.cej.2012.05.094
  • Sun, D., Sun, G., Zhu, X., Guarin, A., Li, B., Dai, Z., & Ling, J. (2018). A comprehensive review on self-healing of asphalt materials: Mechanism, model, characterization and enhancement. Advances in Colloid and Interface Science, 256, 65–93. https://doi.org/10.1016/j.cis.2018.05.003
  • Sun, Y., Wu, S., Liu, Q., Zeng, W., Chen, Z., Ye, Q., & Pan, P. (2017). Self-healing performance of asphalt mixtures through heating fibers or aggregate. Construction and Building Materials, 150, 673–680. https://doi.org/10.1016/j.conbuildmat.2017.06.007
  • Tabaković, A., Braak, D., Van Gerwen, M., Copuroglu, O., Post, W., Garcia, S. J., & Schlangen, E. (2017). The compartmented alginate fibres optimisation for bitumen rejuvenator encapsulation. Journal of Traffic and Transportation Engineering (English Edition), 4(4), 347–359. https://doi.org/10.1016/j.jtte.2017.01.004
  • Tabaković, A., Faloon, C., & O’prey, D. (2022). The effect of conductive alginate capsules encapsulating rejuvenator (HealRoad capsules) on the healing properties of 10 mm stone mastic asphalt mix. Applied Sciences, 12(7), 3648–3615. https://doi.org/10.3390/app12073648
  • Tabaković, A., Mohan, J., & Karač, A. (2021). Conductive compartmented capsules encapsulating a bitumen rejuvenator. Processes, 9(8), https://doi.org/10.3390/pr9081361
  • Tabaković, A., O’Prey, D., McKenna, D., & Woodward, D. (2019). Microwave self-healing technology as airfield porous asphalt friction course repair and maintenance system. Case Studies in Construction Materials, 10, https://doi.org/10.1016/j.cscm.2019.e00233
  • Tabaković, A., Post, W., Cantero, D., Copuroglu, O., Garcia, S. J., & Schlangen, E. (2016). The reinforcement and healing of asphalt mastic mixtures by rejuvenator encapsulation in alginate compartmented fibres. Smart Materials and Structures, 25(8), https://doi.org/10.1088/0964-1726/25/8/084003
  • Tabakovic, A., & Schlangen, E. (2016). Advances in polymer science. Biological Research, 285–306. https://doi.org/10.1007/12_2015_335
  • Van Dijk, W., Moreaud, H., Quedeville, A., & Uge, P. (1972). Fatigue of bitumen and bituminous mixes. 3rd International Conference on the Structure Design of Pavement, 354–366.
  • Varma, R., Balieu, R., & Kringos, N. (2021). A state-of-the-art review on self-healing in asphalt materials: Mechanical testing and analysis approaches. Construction and Building Materials, 310, 125197. https://doi.org/10.1016/j.conbuildmat.2021.125197
  • Wan, P., Wu, S., Liu, Q., Xu, H., Wang, H., Peng, Z., Rao, W., Zou, Y., Zhao, Z., & Chen, S. (2021). Self-healing properties of asphalt concrete containing responsive calcium alginate/nano-Fe3O4 composite capsules via microwave irradiation. Construction and Building Materials, 310(October), 125258. https://doi.org/10.1016/j.conbuildmat.2021.125258
  • Wang, H., Yang, J., Liao, H., & Chen, X. (2016). Electrical and mechanical properties of asphalt concrete containing conductive fibers and fillers. Construction and Building Materials, 122, 184–190. https://doi.org/10.1016/j.conbuildmat.2016.06.063
  • Wang, Z., Wang, H., An, D., Ai, T., & Zhao, P. (2016). Laboratory investigation on deicing characteristics of asphalt mixtures using magnetite aggregate as microwave-absorbing materials. Construction and Building Materials, 124, 589–597. https://doi.org/10.1016/j.conbuildmat.2016.07.137
  • White, S. R., Sottos, N. R., Geubelle, P. H., Moore, J. S., Kessler, M. R., Sriram, S. R., Brown, E. N., & Viswanathan, S. (2001). Autonomic healing of polymer composites. Nature, 409(6822), 794–797. https://doi.org/10.1038/35057232
  • Wool, R. P., & Connor, K. M. O. (1981). A theory crack healing in polymers. Journal of Applied Physics, 52, https://doi.org/10.1063/1.328526
  • Wu, D. Y., Meure, S., & Solomon, D. (2008). Self-healing polymeric materials: A review of recent developments. Progress in Polymer Science, 33(5), 479–522. https://doi.org/10.1016/j.progpolymsci.2008.02.001
  • Xiao, F., Amirkhanian, A. N., & Amirkhanian, S. N. (2011). Long-term ageing influence on rheological characteristics of asphalt binders containing carbon nanoparticles. International Journal of Pavement Engineering, 12(6), 533–541. https://doi.org/10.1080/10298436.2011.560267
  • Xu, S., Liu, X., Tabaković, A., & Schlangen, E. (2019). Investigation of the potential Use of calcium alginate capsules for self-healing in porous asphalt concrete. Materials, 12(1), 168. https://doi.org/10.3390/ma12010168
  • Xu, S., Liu, X., Tabaković, A., & Schlangen, E. (2020). A novel self-healing system: Towards a sustainable porous asphalt. Journal of Cleaner Production, 259, https://doi.org/10.1016/j.jclepro.2020.120815
  • Xu, S., Liu, X., Tabaković, A., & Schlangen, E. (2021). Experimental investigation of the performance of a hybrid self-healing system in porous asphalt under fatigue loadings. Materials, 14(12), https://doi.org/10.3390/ma14123415
  • Xu, S., Schlangen, E., Tabaković, A., Liu, X., & Palin, D. (2019). Optimization of the calcium alginate capsules for self-healing asphalt. Applied Sciences, 9(3), 468. https://doi.org/10.3390/app9030468
  • Xu, S., Tabaković, A., Liu, X., & Schlangen, E. (2018). Calcium alginate capsules encapsulating rejuvenator as healing system for asphalt mastic. Construction and Building Materials, 169, 379–387. https://doi.org/10.1016/j.conbuildmat.2018.01.046
  • Yoo, D. Y., Kim, S., Kim, M. J., Kim, D., & Shin, H. O. (2019). Self-healing capability of asphalt concrete with carbon-based materials. Journal of Materials Research and Technology, 8(1), 827–839. https://doi.org/10.1016/j.jmrt.2018.07.001
  • Zargar, M., Ahmadinia, E., Asli, H., & Karim, M. R. (2012). Investigation of the possibility of using waste cooking oil as a rejuvenating agent for aged bitumen. Journal of Hazardous Materials, 233–234, 254–258. https://doi.org/10.1016/j.jhazmat.2012.06.021
  • Zhai, R., Ge, L., & Li, Y. (2020). The effect of nano-CaCO3/styrene–butadiene rubber (SBR) on fundamental characteristic of hot mix asphalt. Road Materials and Pavement Design, 21(4), 1006–1026. https://doi.org/10.1080/14680629.2018.1532924
  • Zhang, L., Liu, Q., Li, H., Norambuena-Contreras, J., Wu, S., Bao, S., & Shu, B. (2019). Synthesis and characterization of multi-cavity Ca-alginate capsules used for self-healing in asphalt mixtures. Construction and Building Materials, 211, 298–307. https://doi.org/10.1016/j.conbuildmat.2019.03.224
  • Zhang, Z., Cheng, P., & Li, Y. (2021). Effect of nano montmorillonite on the multiple self-healing of microcracks in asphalt mixture. Road Materials and Pavement Design, 22(12), 2689–2703. https://doi.org/10.1080/14680629.2020.1793805
  • Zhao, H., Zhong, S., Zhu, X., & Chen, H. (2017). High-Efficiency heating characteristics of ferrite-filled asphalt-based composites under microwave irradiation. Journal of Materials in Civil Engineering, 29(6), 04017007. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001845
  • Zhu, X., Cai, Y., Zhong, S., Zhu, J., & Zhao, H. (2017). Self-Healing efficiency of ferrite-filled asphalt mixture after microwave irradiation. Construction and Building Materials, 141, 12–22. https://doi.org/10.1016/j.conbuildmat.2017.02.145
  • Zhu, X., Ye, F., Cai, Y., Birgisson, B., & Lee, K. (2019). Self-healing properties of ferrite-filled open-graded friction course (OGFC) asphalt mixture after moisture damage. Journal of Cleaner Production, 232, 518–530. https://doi.org/10.1016/j.jclepro.2019.05.353

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.