93
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Influence of crosslinking effect on chemical and rheological properties of aged liquid bio-rubber composite SBS modified asphalt

, , , &
Pages 1298-1323 | Received 27 Feb 2023, Accepted 21 Sep 2023, Published online: 08 Oct 2023

References

  • Ahmed, R. B., & Hossain, K. (2020). Waste cooking oil as an asphalt rejuvenator: A state-of-the-art review. Construction and Building Materials, 230, 116985. https://doi.org/10.1016/j.conbuildmat.2019.116985
  • Airey, G. D. (2003). Rheological properties of styrene butadiene styrene polymer modified road bitumens. Fuel, 82(14), 1709–1719. https://doi.org/10.1016/S0016-2361(03)00146-7
  • Asli, H., Ahmadinia, E., Zargar, M., & Karim, M. R. (2012). Investigation on physical properties of waste cooking oil – rejuvenated bitumen binder. Construction and Building Materials, 37, 398–405. https://doi.org/10.1016/j.conbuildmat.2012.07.042
  • Begam Rasheda, S., Debnath, B., & Sarkar, D. (2022). Application of nano-silica in rubber modified asphalt mix made with marginal aggregates. Materials Today: Proceedings, 65, 669–675. https://doi.org/10.1016/j.matpr.2022.03.261
  • Camargo, F. F., & Bernucci, L. (2019). Case history study: Field monitoring and performance prediction of a field-blended rubber asphalt mixture in Brazil. International Journal of Pavement Engineering, 20(2), 172–182. https://doi.org/10.1080/10298436.2017.1279484
  • Cao, X., Wang, H., Cao, X., Sun, W., Zhu, H., & Tang, B. (2018). Investigation of rheological and chemical properties asphalt binder rejuvenated with waste vegetable oil. Construction and Building Materials, 180, 455–463. https://doi.org/10.1016/j.conbuildmat.2018.06.001
  • Coelho, J. G. M., Amarante Mesquita, A. L., & Dias, C. G. B. T. (2020). Investigation of hardwood/rubber modified asphalt: Experimental track implementation in Macapá-AP. Case Studies in Construction Materials, 13, e382.
  • Cortés, C., Pérez-Lepe, A., Fermoso, J., Costa, A., Guisado, F., Esquena, J., & Potti, J. J. (2010). Envejecimiento foto-oxidativo de betunes asfálticos. Comunicación 21, V Jornada Nacional ASEFMA, 227–238.
  • Daly, W. H., Negulescu, I., & Balamurugan, S. S. (2013). Implementation of GPC characterization of asphalt binders at Louisiana materials laboratory. Department of Chemistry, Louisiana State University.
  • Dong, R., & Zhao, M. (2018). Research on the pyrolysis process of crumb tire rubber in waste cooking oil. Renewable Energy, 125, 557–567. https://doi.org/10.1016/j.renene.2018.02.133
  • Dong, R., Zhao, M., & Tang, N. (2019). Characterization of crumb tire rubber lightly pyrolyzed in waste cooking oil and the properties of its modified bitumen. Construction and Building Materials, 195, 10–18. https://doi.org/10.1016/j.conbuildmat.2018.11.044
  • Farrokhzade, F., Sabouri, M., & Tabatabaee, N. (2022). Aging characteristics of neat and modified asphalt binders based on rheological evaluations at intermediate temperatures. Construction and Building Materials, 322, 126387. https://doi.org/10.1016/j.conbuildmat.2022.126387
  • Fethiza Ali, B., Soudani, K., & Haddadi, S. (2022). Effect of waste plastic and crumb rubber on the thermal oxidative aging of modified bitumen. Road Materials and Pavement Design, 23(1), 222–233. https://doi.org/10.1080/14680629.2020.1820893
  • Hofer, K., Mirwald, J., Maschauer, D., Grothe, H., & Hofko, B. (2022). Influence of selected reactive oxygen species on the long-term aging of bitumen. Materials and Structures, 55(5), 133.
  • Hunter, R. N., Self, A., & Read, J. (2015). The shell bitumen handbook (Sixth edition ed.). Shell Bitumen UK.
  • Jacobs, G., Pipintakos, G., Van den Buijs, X., Kalama, D. M., & Van den Bergh, W. (2023). Mechanical performance of asphalt base layers with high RAP content and recycling agents. Road Materials and Pavement Design, 1–11. https://doi.org/10.1080/14680629.2023.2191732
  • Lamontagne, J., Dumas, P., Mouillet, V., & Kister, J. (2001). Comparison by Fourier transform infrared (FTIR) spectroscopy of different ageing techniques: Application to road bitumens. Fuel, 80(4), 483–488. https://doi.org/10.1016/S0016-2361(00)00121-6
  • Li, B., Huang, W., Tang, N., Hu, J., & Lin, P. (2017). Evolution of components distribution and its effect on low temperature properties of terminal blend rubberized asphalt binder. Construction and Building Materials, 136, 598–608.
  • Li, D., Leng, Z., Zou, F., & Yu, H. (2021). Effects of rubber absorption on the aging resistance of hot and warm asphalt rubber binders prepared with waste tire rubber. Journal of Cleaner Production, 303, 127082. https://doi.org/10.1016/j.jclepro.2021.127082
  • Lo Presti, D. (2013). Recycled tyre rubber modified bitumens for road asphalt mixtures: A literature review. Construction and Building Materials, 49, 863–881. https://doi.org/10.1016/j.conbuildmat.2013.09.007
  • Ma, L., Varveri, A., Jing, R., & Erkens, S. (2021). Comprehensive review on the transport and reaction of oxygen and moisture towards coupled oxidative ageing and moisture damage of bitumen. Construction and Building Materials, 283, 122632. https://doi.org/10.1016/j.conbuildmat.2021.122632
  • Mirwald, J., Hofko, B., & Grothe, H. (2021). Utilising fluorescence spectroscopy and optical microscopy to investigate bitumen long-term ageing. Road Materials and Pavement Design, 22(S1), S23–S36. https://doi.org/10.1080/14680629.2020.1856170
  • Mirwald, J., Nura, D., Eberhardsteiner, L., & Hofko, B. (2022). Impact of UV-Vis light on the oxidation of bitumen in correlation to solar spectral irradiance data. Construction and Building Materials, 316, 125816. https://doi.org/10.1016/j.conbuildmat.2021.125816
  • Mirwald, J., Nura, D., & Hofko, B. (2022). Recommendations for handling bitumen prior to FTIR spectroscopy. Materials and Structures, 55(2), https://doi.org/10.1617/s11527-022-01884-1
  • Pais, J., Santos, C. R., Cabette, M., Hilliou, L., Ribeiro, J., Wang, H., & Mohd Hasan, M. R. (2023). Feasibility of using bio-oil from biodiesel production for bio-bitumen creation. Road Materials and Pavement Design, 24(S1), 209–228. https://doi.org/10.1080/14680629.2023.2180305
  • Petersen, J. C. (1975). Quantitative method using differential infrared spectrometry for the determination of compound types absorbing in the carbonyl region in asphalts. Analytical Chemistry, 47(1), 112–117. https://doi.org/10.1021/ac60351a037
  • Petersen, J. C. (2009). A review of the fundamentals of asphalt oxidation: Chemical, physicochemical, physical property, and durability relationships explores the current physicochemical understanding of the chemistry, kinetics, and mechanisms of asphalt oxidation and its influence on asphalt durability. Transportation Research E Circular, 78.
  • Poovaneshvaran, S., Mohd Hasan, M. R., & Putra Jaya, R. (2020). Impacts of recycled crumb rubber powder and natural rubber latex on the modified asphalt rheological behaviour, bonding, and resistance to shear. Construction and Building Materials, 234, 117357. https://doi.org/10.1016/j.conbuildmat.2019.117357
  • Prosperi, E., & Bocci, E. (2021). A review on bitumen aging and rejuvenation chemistry: Processes, materials and analyses. Sustainability, 13(12), 6523. https://doi.org/10.3390/su13126523
  • Ruan, Y., Davison, R. R., & Glover, C. J. (2003). The effect of long-term oxidation on the rheological properties of polymer modified asphalts. Fuel, 82(14), 1763–1773. https://doi.org/10.1016/S0016-2361(03)00144-3
  • Šernas, O., Vaitkus, A., & Škulteckė, J. (2023). Performance of crumb rubber bitumen and asphalt modified in the wet process alone and in combination with SBS polymer. Road Materials and Pavement Design, 24(S1), 107–123.
  • Sirin, O., Paul, D. K., & Kassem, E. (2018). State of the art study on aging of asphalt mixtures and use of antioxidant additives. Advances in Civil Engineering, 1–18. https://doi.org/10.1155/2018/3428961
  • Sun, D., Sun, G., Du, Y., Zhu, X., Lu, T., Pang, Q., Shi, S., & Dai, Z. (2017). Evaluation of optimized bio-asphalt containing high content waste cooking oil residues. Fuel, 202, 529–540. https://doi.org/10.1016/j.fuel.2017.04.069
  • Tang, N., & Dong, R. (2020). Anti-Aging potential of sulphur in terminal blend rubberized asphalt binder. Construction and Building Materials, 250, 118858. https://doi.org/10.1016/j.conbuildmat.2020.118858
  • Tauste, R., Moreno-Navarro, F., Sol-Sánchez, M., & Rubio-Gámez, M. C. (2018). Understanding the bitumen ageing phenomenon: A review. Construction and Building Materials, 192, 593–609. https://doi.org/10.1016/j.conbuildmat.2018.10.169
  • Traxler, R. N. (1963). Durability of asphalt cements. Association of asphalt paving technologists, 32, 44–58.
  • Walubita, L. F., Alvarez, A. E., & Simate, G. S. (2011). Evaluating and comparing different methods and models for generating relaxation modulus master-curves for asphalt mixes. Construction and Building Materials, 25(5), 2619–2626. https://doi.org/10.1016/j.conbuildmat.2010.12.010
  • Wang, H., Liu, X., Apostolidis, P., van de Ven, M., Erkens, S., & Skarpas, A. (2020). Effect of laboratory aging on chemistry and rheology of crumb rubber modified bitumen. Materials and Structures, 53(2), https://doi.org/10.1617/s11527-020-1451-9
  • Yan, C., Huang, W., Lin, P., Zhang, Y., & Lv, Q. (2019). Chemical and rheological evaluation of aging properties of high content SBS polymer modified asphalt. Fuel, 252, 417–426. https://doi.org/10.1016/j.fuel.2019.04.022
  • Yan, C., Huang, W., Xiao, F., Wang, L., & Li, Y. (2018). Proposing a new infrared index quantifying the aging extent of SBS-modified asphalt. Road Materials and Pavement Design, 19(6), 1406–1421. https://doi.org/10.1080/14680629.2017.1318082
  • Yi, X., Dong, R., Shi, C., Yang, J., & Leng, Z. (2023). The influence of the mass ratio of crumb rubber and waste cooking oil on the properties of rubberised bio-rejuvenator and rejuvenated asphalt. Road Materials and Pavement Design, 24(2), 578–591. https://doi.org/10.1080/14680629.2022.2041070
  • Yut, I., & Zofka, A. (2014). Correlation between rheology and chemical composition of aged polymer-modified asphalts. Construction and Building Materials, 62, 109–117. https://doi.org/10.1016/j.conbuildmat.2014.03.043
  • Zaidullin, I. M., Petrova, L. M., Yakubov, M. R., & Borisov, D. N. (2013). Variation of the composition of asphaltenes in the course of bitumen aging in the presence of antioxidants. Russian Journal of Applied Chemistry, 86(7), 1070–1075. https://doi.org/10.1134/S1070427213070203
  • Zhang, D., Chen, M., Wu, S., Liu, J., & Amirkhanian, S. (2017). Analysis of the relationships between waste cooking oil qualities and rejuvenated asphalt properties. Materials (Basel), 10(5), 508.
  • Zhao, M., & Dong, R. (2021). Reaction mechanism and rheological properties of waste cooking oil pre-desulfurized crumb tire rubber/SBS composite modified asphalt. Construction and Building Materials, 274, 122083. https://doi.org/10.1016/j.conbuildmat.2020.122083
  • Zhou, Y., Ji, P., Zhang, K., & Guo, H. (2016). Infrared spectrum analysis of asphalt thermal aging. Journal of Tianjin Chengjian University, 2(22), 109–112. in Chinese.
  • Zhou, Z., Gu, X., Dong, Q., Ni, F., & Jiang, Y. (2019). Rutting and fatigue cracking performance of SBS-RAP blended binders with a rejuvenator. Construction and Building Materials, 203, 294–303. https://doi.org/10.1016/j.conbuildmat.2019.01.119

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.