174
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

How does the isophthalic unsaturated polyester affect the dielectric properties, the glass transition, and the ductility of bitumen?

, ORCID Icon, , ORCID Icon, , & show all
Pages 1324-1339 | Received 19 Dec 2022, Accepted 22 Jun 2023, Published online: 10 Oct 2023

References

  • Abdul Ghafar, S., Warid, M., & Abdul Hassan, N. (2022). Effect of emulsifier on physical properties of cup lump modified emulsified bitumen residues. IOP Conference Series: Earth and Environmental Science. IOP Conference Series: Earth and Environmental Science, 1022(1), 1–7. https://doi.org/10.1088/1755-1315/1022/1/012032
  • Abdullah, O. G., Hussen, S. A., & Alani, A. (2011). Electrical characterization of polyvinyl alcohol films doped with sodium iodide. Asian Transactions on Science & Technology, 1(4), 1–4.
  • Aglan, H., Othman, A., Figueroa, L., & Rollings, R. (1993). Effect of styrene-butadiene-styrene block copolymer on fatigue crack propagation behavior of asphalt concrete mixtures. Transportation Research Record, 1417, 178–186.
  • Ahmedzade, P., & Yilmaz, M. (2008). Effect of polyester resin additive on the properties of asphalt binders and mixtures. Construction and Building Materials, 22(4), 481–486. https://doi.org/10.1016/j.conbuildmat.2006.11.015
  • Ash, B. J., Siegel, R. W., & Schadler, L. S. (2004). Glass-transition temperature behavior of alumina/PMMA nanocomposites. Journal of Polymer Science Part B: Polymer Physics, 42(23), 4371–4383. https://doi.org/10.1002/polb.20297
  • Ateeq, M., Wylie, S., Al-Shammaa, A., & Al-Nageim, H. (2012). Microwave spectroscopy: A potential technique to analyse bitumen dielectric and physical properties. Measurement Science and Technology, 23(8), https://doi.org/10.1088/0957-0233/23/8/085503
  • Bakar, M., & Djaider, F. (2007). Effect of plasticizers content on the mechanical properties of unsaturated polyester resin. Journal of Thermoplastic Composite Materials, https://doi.org/10.1177/0892705707068820
  • Binti Joohari, I., & Giustozzi, F. (2022). Oscillatory shear rheometry of hybrid polymer-modified bitumen using multiple stress creep and recovery and linear amplitude sweep tests. Construction and Building Materials, 315, 125791. https://doi.org/10.1016/j.conbuildmat.2021.125791
  • Bozoglu, D., Deligoz, H., Ulutas, K., Yakut, S., & Deger, D. (2019). Structural and dielectrical characterization of low-k polyurethane composite films with silica aerogel. Journal of Physics and Chemistry of Solids, 130(July 2018), 46–57. https://doi.org/10.1016/j.jpcs.2019.02.013
  • Chen, F., Taylor, N., Kringos, N., & Birgisson, B. (2015). A study on dielectric response of bitumen in the low-frequency range. Road Materials and Pavement Design, 16(sup1), 153–169. https://doi.org/10.1080/14680629.2015.1029682
  • Cherian, A. B., Abraham, B. T., & Thachil, E. T. (2006). Modification of unsaturated polyester resin by polyurethane prepolymers. Journal of Applied Polymer Science, 100(1), 449–456. https://doi.org/10.1002/app.23131
  • Cherian, B. A., & Thachil, E. T. (2004). Modification of isophthalic unsaturated polyester resin using elastomers bearing reactive functional groups. Progress in Rubber Plastics and Recycling Technology, 20(4), 247–266. https://doi.org/10.1177/147776060402000401
  • Chow, R. S., Tse, D. L., & Takamura, K. (2008). The conductivity and dielectric behavior of solutions of bitumen In toluene. The Canadian Journal of Chemical Engineering, 82(4), 840–845. https://doi.org/10.1002/cjce.5450820425
  • Cole, K. S., & Cole, R. H. (1942). Dispersion and absorption in dielectrics II. Direct current characteristics. The Journal of Chemical Physics, 10(2), 98–105. https://doi.org/10.1063/1.1723677
  • Cui, S., Blackman, B. R. K., Kinloch, A. J., & Taylor, A. C. (2014). Durability of asphalt mixtures: Effect of aggregate type and adhesion promoters. International Journal of Adhesion and Adhesives, 54, 100–111. https://doi.org/10.1016/j.ijadhadh.2014.05.009
  • Das, A. K., & Panda, M. (2020). Effectiveness of chitin on thermal susceptibility, rheological and ageing resistivity behaviour of sulphur modified bitumen binder. Road Materials and Pavement Design, 21(7), 2005–2023. https://doi.org/10.1080/14680629.2019.1590221
  • Dobbertin, J., Hannemann, J., Schick, C., Hannemann, J., Pö, M., & Dehne, H. (1998). Molecular dynamics of the α-relaxation during crystallization of a low-molecular-weight compound: A real-time dielectric spectroscopy study. The Journal of Chemical Physics, 108, 9062. https://doi.org/10.1063/1.476352
  • Dong, R., Zhao, M., & Tang, N. (2019). Characterization of crumb tire rubber lightly pyrolyzed in waste cooking oil and the properties of its modified bitumen. Construction and Building Materials, 195, 10–18. https://doi.org/10.1016/j.conbuildmat.2018.11.044
  • Elimat, Z. M. (2015). AC-impedance and dielectric properties of hybrid polymer composites. Journal of Composite Materials, 49(1), 3–15. https://doi.org/10.1177/0021998313514256
  • Franesqui, M. A., Yepes, J., García-González, C., & Gallego, J. (2019). Sustainable low-temperature asphalt mixtures with marginal porous volcanic aggregates and crumb rubber modified bitumen. Journal of Cleaner Production, 207, 44–56. https://doi.org/10.1016/j.jclepro.2018.09.219
  • He, C., Wang, W., Li, M., Wu, R., Li, X., Wang, X., Wang, D., & Hao, G. (2022). Electrical properties and relaxation behavior of Na-doped BaBiNb5O15 ceramics. Ceramics International, 48(2), 2632–2636. https://doi.org/10.1016/j.ceramint.2021.10.046
  • Hodge, I. M., Ngai, K. L., & Moynihan, C. T. (2005). Comments on the electric modulus function. Journal of Non-Crystalline Solids, 351(2), 104–115. https://doi.org/10.1016/j.jnoncrysol.2004.07.089
  • Huang, X.-Q., Gan, T., Lu, Y.-Z., Xu, Z.-K., Wang, Z.-X., & Liao, W.-Q. (2021). Evident dielectric relaxation in an organic-inorganic halide perovskite. European Journal of Inorganic Chemistry, https://doi.org/10.1002/ejic.202100366
  • Jebli, M., Albedah, M. A., Dhahri, J., Ben Henda, M., Lamjed Bouazizi, M., & Belmabrouk, H. (2022). Diffuse phase transition and dielectric tunability of Ba0.97La0.02TiO3 relaxor ferroelectric ceramic. Journal of Inorganic and Organometallic Polymers and Materials, 32(4), 1334–1353. https://doi.org/10.1007/s10904-021-02189-6
  • Jo, B. W., Park, S. K., & Kim, C. H. (2006). Mechanical properties of polyester polymer concrete using recycled polyethylene terephthalate. ACI Structural Journal, 103(2), 219–225. https://doi.org/10.14359/15179
  • Kara, T., Bozoglu, D., Yardım, S., Sitilbay, B. D., Yakut, S., Deger, D., & Ulutas, K. (2021). Thickness dependence of dielectric properties and glass transition temperature of bitumen. Road Materials and Pavement Design, 22(7), 1637–1653. https://doi.org/10.1080/14680629.2020.1713865
  • Khutia, M., Joshi, G. M., & Thomas, P. (2016). Dielectric relaxation of nano perovskite SrTiO3 reinforced polyester resin/styrene blend for electronic applications. Journal of Materials Science: Materials in Electronics, 27(7), 7685–7692. https://doi.org/10.1007/s10854-016-4754-4
  • Kirtay, H., Yakut, S., Deger, D., Ulutas, K., & Arsu, N. (2022). Investigation of dielectric properties of PEGMEA/PEGDA nanocomposites containing in-situ photochemically prepared ϵ-Fe2O3 nanocrystals. Materials Research Bulletin, 153, 111877. https://doi.org/10.1016/j.materresbull.2022.111877
  • Kriz, P., Stastna, J., & Zanzotto, L. (2008). Glass transition and phase stability in asphalt binders. Road Materials and Pavement Design, 9(SPECIAL ISSUE), 37–65. https://doi.org/10.1080/14680629.2008.9690158
  • Kumar, P., & Garg, R. (2011). Rheology of waste plastic fibre-modified bitumen. International Journal of Pavement Engineering, 12(5), 449–459. https://doi.org/10.1080/10298430903255296
  • Lesaint, C., Simon, S., Lesaint, C., Glomm, W. R., Berg, G., Lundgaard, L. E., & Sjöblom, J. (2013). Dielectric properties of asphaltene solutions: Solvency effect on conductivity. Energy & Fuels, 27(1), 75–81. https://doi.org/10.1021/ef3013129
  • Li, R., Xiao, F., Amirkhanian, S., You, Z., & Huang, J. (2017). Developments of nano materials and technologies on asphalt materials – a review. Construction and Building Materials, 143, 633–648. https://doi.org/10.1016/j.conbuildmat.2017.03.158
  • Li, X., Tao, C., Nie, S., Ren, X., Xu, H., Luo, H., Lam, K. H., Jiang, X., & Guo, Z. (2022). Investigation of the dielectric relaxation mechanisms for Pb(Fe1/2Nb1/2)O3 single crystal based on the universal relaxation law. Physica B: Condensed Matter: Condensed Matter, 624), https://doi.org/10.1016/j.physb.2021.413394
  • Lin, J. D., Chen, S. H., Liu, P., & Wang, J. N. (2004). Modified toughness used to evaluate the effect of polymer modified asphalt on SMA. Journal of the Chinese Institute of Engineers, 27(7), 1013–1020. https://doi.org/10.1080/02533839.2004.9670956
  • Lyne, ÅL, Taylor, N., Jaeverberg, N., Edin, H., & Birgisson, B. (2016). Low frequency dielectric spectroscopy of bitumen binders as an indicator of adhesion potential to quartz aggregates using Portland cement. Materials and Structures, 49(4), 1327–1336. https://doi.org/10.1617/s11527-015-0579-5
  • Madbouly, S. A., & Otaigbe, J. U. (2007). Broadband dielectric spectroscopy of nanostructured maleated polypropylene/polycarbonate blends prepared by in situ polymerization and compatibilization. Polymer, 48(14), 4097–4107. https://doi.org/10.1016/j.polymer.2007.05.020
  • Mandal, T., Sylla, R., Bahia, H. U., & Barmand, S. (2015). Effect of cross-linking agents on the rheological properties of polymer-modified bitumen. Road Materials and Pavement Design, 16(sup1), 349–361. https://doi.org/10.1080/14680629.2015.1029683
  • Martinho, F. C. G., & Farinha, J. P. S. (2019). An overview of the use of nanoclay modified bitumen in asphalt mixtures for enhanced flexible pavement performances. Road Materials and Pavement Design, 20(3), 671–701. https://doi.org/10.1080/14680629.2017.1408482
  • Navarro, F. J., Partal, P., Martínez-Boza, F., Valencia, C., & Gallegos, C. (2002). Rheological characteristics of ground tire rubber-modified bitumens. Chemical Engineering Journal, 89(1-3), 53–61. https://doi.org/10.1016/S1385-8947(02)00023-2
  • Nivitha, M. R., & Murali Krishnan, J. (2020). Rheological characterisation of unmodified and modified bitumen in the 90–200°C temperature regime. Road Materials and Pavement Design, 21(5), 1341–1358. https://doi.org/10.1080/14680629.2018.1552890
  • Oliviero Rossi, C., Spadafora, A., Teltayev, B., Izmailova, G., Amerbayev, Y., & Bortolotti, V. (2015). Polymer modified bitumen: Rheological properties and structural characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 480, 390–397. https://doi.org/10.1016/j.colsurfa.2015.02.048
  • Polacco, G., Berlincioni, S., Biondi, D., Stastna, J., & Zanzotto, L. (2005). Asphalt modification with different polyethylene-based polymers. European Polymer Journal, 41(12), 2831–2844. https://doi.org/10.1016/j.eurpolymj.2005.05.034
  • Porto, M., Caputo, P., Loise, V., Eskandarsefat, S., Teltayev, B., & Rossi, C. O. (2019). Bitumen and bitumen modification: A review on latest advances. Applied Sciences, 9(4), https://doi.org/10.3390/app9040742
  • Raskutti, S., Ostriker, E. C., Skinner, M. A., Hogstrom, K. R., & Almond, P. R. (2006). Review of electron beam therapy physics. Physics in Medicine and Biology, 51, R455–R489. https://doi.org/10.1088/0031-9155/51/13/R25
  • Rødland, E. S., Samanipour, S., Rauert, C., Okoffo, E. D., Reid, M. J., Heier, L. S., Lind, O. C., Thomas, K. V., & Meland, S. (2022). A novel method for the quantification of tire and polymer-modified bitumen particles in environmental samples by pyrolysis gas chromatography mass spectroscopy. Journal of Hazardous Materials, 423, 127092. https://doi.org/10.1016/j.jhazmat.2021.127092
  • Sadek, E. M., El-Nashar, D. E., Ward, A. A., & Ahmed, S. M. (2018). Study on the properties of multi-walled carbon nanotubes reinforced poly (vinyl alcohol) composites. Journal of Polymer Research, 25(12), https://doi.org/10.1007/s10965-018-1641-0
  • Sakib, N., Bhasin, A., Islam, M. K., Khan, K., & Khan, M. I. (2021). A review of the evolution of technologies to use sulphur as a pavement construction material. International Journal of Pavement Engineering, 22(3), 392–403. https://doi.org/10.1080/10298436.2019.1612064
  • Selvavathi, V., Sekar, V. A., Sriram, V., & Sairam, B. (2002). Modifications of bitumen by elastomer and reactive polymer – a comparative study. Petroleum Science and Technology, 20(5-6), 535–547. https://doi.org/10.1081/LFT-120003577
  • Sowa, J. M., Sheng, P., Zhou, M. Y., Chen, T., Serres, A. J., & Sieben, M. C. (1995). Electrical properties of bitumen emulsions. Fuel, 74(8), 1176–1179. https://doi.org/10.1016/0016-2361(95)00066-E
  • Stuck, M., Krenz, I., Schulze Kökelsum, B., Boye, S., Voit, B., & Lorenz, R. (2021). Improving glass transition temperature of unsaturated polyester thermosets: Conventional unsaturated polyester resins. Journal of Applied Polymer Science, https://doi.org/10.1002/app.49825
  • Triki, A., Guicha, M., Ben Hassen, M., Arous, M., & Fakhfakh, Z. (2011). Studies of dielectric relaxation in natural fibres reinforced unsaturated polyester. Journal of Materials Science, https://doi.org/10.1007/s10853-010-5136-6
  • Ulutas, K., Yakut, S., Bozoglu, D., Deger, D., Arslan, M., & Erol, A. (2019). Influence of Bi on dielectric properties of GaAs1−xBixalloys. Materials Science-Poland, 37(2), 244–248. https://doi.org/10.2478/msp-2019-0025
  • Valette, L., & Hsu, C. P. (1999). Polyurethane and unsaturated polyester hybrid networks: 2.: Influence of hard domains on mechanical properties. Polymer, 40(8), 2059–2070. https://doi.org/10.1016/S0032-3861(98)00428-5
  • Woodward, A. M., Jones, A., Zhang, X. Z., Rowland, J., & Kell, D. B. (1996). Rapid and non-invasive quantification of metabolic substrates in biological cell suspensions using non-linear dielectric spectroscopy with multivariate calibration and artificial neural networks. Principles and applications. Bioelectrochemistry and Bioenergetics, 40(2), 99–132. https://doi.org/10.1016/0302-4598(96)05065-9
  • Yakut, S., Ulutas, H. K., Melnichuk, I., Choukourov, A., Biederman, H., & Deger, D. (2016). Dielectric properties of plasma polymerized poly(ethylene oxide) thin films. Thin Solid Films, 616, 279–286. https://doi.org/10.1016/j.tsf.2016.08.034
  • Zhang, H., Su, C., Bu, X., Zhang, Y., Gao, Y., & Huang, M. (2020). Laboratory investigation on the properties of polyurethane/unsaturated polyester resin modified bituminous mixture. Construction and Building Materials, 260, 119865. https://doi.org/10.1016/j.conbuildmat.2020.119865
  • Zhang, H., Zhang, G., Han, F., Zhang, Z., & Lv, W. (2018). A lab study to develop a bridge deck pavement using bisphenol A unsaturated polyester resin modified asphalt mixture. Construction and Building Materials, 159, 83–98. https://doi.org/10.1016/j.conbuildmat.2017.10.126
  • Zhang, J., Apeagyei, A. K., Airey, G. D., & Grenfell, J. R. A. (2015). Influence of aggregate mineralogical composition on water resistance of aggregate–bitumen adhesion. International Journal of Adhesion and Adhesives, 62, 45–54. https://doi.org/10.1016/j.ijadhadh.2015.06.012
  • Zhao, X., Shen, A., & Ma, B. (2018). Temperature adaptability of asphalt pavement to high temperatures and significant temperature differences. Advances in Materials Science and Engineering, https://doi.org/10.1155/2018/9436321
  • Zhong, K., Yang, X., & Wei, X. (2017). Investigation on surface characteristics of epoxy asphalt concrete pavement. International Journal of Pavement Research and Technology, 10(6), 545–552. https://doi.org/10.1016/j.ijprt.2017.07.009
  • Zhu, J., Balieu, R., & Wang, H. (2021). The use of solubility parameters and free energy theory for phase behaviour of polymer-modified bitumen: A review. Road Materials and Pavement Design, 22(4), 757–778. https://doi.org/10.1080/14680629.2019.1645725
  • Zhu, J., & Kringos, N. (2015). Towards the development of a viscoelastic model for phase separation in polymer-modified bitumen. Road Materials and Pavement Design, 16(sup1), 39–49. https://doi.org/10.1080/14680629.2015.1030834

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.