626
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Circulation in turbulent flow through a contraction

&
Pages 577-612 | Received 26 Jun 2023, Accepted 13 Nov 2023, Published online: 20 Dec 2023

References

  • Davidson PA. Turbulence: An Introduction for Scientists and Engineers. Oxford University Press; 2004.
  • Migdal AA. Loop equation and area law in turbulence. Int J Mod Phys A. 1994;9(8):1197–1238. doi:10.1142/S0217751X94000558
  • Sreenivasan KR, Juneja A, Suri AK. Scaling properties of circulation in moderate-Reynolds-number turbulent wakes. Phys Rev Lett. 1995;75(3):433–436. doi:10.1103/PhysRevLett.75.433
  • Cao N, Chen S, Sreenivasan KR. Properties of velocity circulation in three-dimensional turbulence. Phys Rev Lett. 1996;76(4):616–619. doi:10.1103/PhysRevLett.76.616
  • Uberoi MS. Effect of wind-tunnel contraction on free-stream turbulence. J Aeronautical Sci. 1956;23(8):754–764. doi:10.2514/8.3651
  • Hussain AKMF, Ramjee V. Effects of the axisymmetric contraction shape on incompressible turbulent flow. J Fluids Eng. 1976;98(1):58–68. doi:10.1115/1.3448210
  • Tan-atichat J, Nagib HM, Drubka RE. Effects of axisymmetric contractions on turbulence of various scales. NASA Tech. Rep. 1980.
  • Ayyalasomayajula S, Warhaft Z. Nonlinear interactions in strained axisymmetric high-Reynolds-number turbulence. J Fluid Mech. 2006;566:273–307. doi:10.1017/S0022112006002199
  • Ertunç Ö, Durst F. On the high contraction ratio anomaly of axisymmetric contraction of grid-generated turbulence. Phys Fluids. 2008;20(2):025103. doi:10.1063/1.2837173
  • Brown ML, Parsheh M, Aidun CK. Turbulent flow in a converging channel: effect of contraction and return to isotropy. J Fluid Mech. 2006;560:437–448. doi:10.1017/S0022112006000449
  • Thoroddsen ST, Van Atta CW. The effects of a vertical contraction on turbulence dynamics in a stably stratified fluid. J Fluid Mech. 1995;285:371–406. doi:10.1017/S0022112095000589
  • Thoroddsen ST, Van Atta CW. Stably stratified turbulence subjected to a constant area vertical expansion. Phys Fluids. 1995;7(5):1165–1167. doi:10.1063/1.868559
  • Kolmogorov AN. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl Akad Nauk SSSR. 1942;30:301–304.
  • Zhou Q, Sun C, Zia K-Q. Experimental investigation of homogeneity, isotropy, and circulation of the velocity field in buoyancy-driven turbulence. J Fluid Mech. 2008;598:361–372. doi:10.1017/S0022112008000189
  • Thoroddsen S. Conditional sampling of dissipation in moderate Reynolds number grid turbulence. Phys Fluids. 1996;8(5):1333–1335. doi:10.1063/1.868903
  • Umeki M. Probability distribution of velocity circulation in three-dimensional turbulence. J Phys Soc Jpn. 1993;62(11):3788–3791. doi:10.1143/JPSJ.62.3788
  • Benzi R, Biferale L, Struglia MV, Tripiccione R. Self-scaling properties of velocity circulation in shear flows. Phys Rev E. 1997;55(3):3739–3742. doi:10.1103/PhysRevE.55.3739
  • Yoshida K, Hatakeyama N. Statistical laws of velocity circulation in homogeneous turbulence. J Phys Soc Jpn. 2000;69(6):1661–1671. doi:10.1143/JPSJ.69.1661
  • Iyer KP, Sreenivasan KR, Yeung PK. Circulation in high Reynolds number isotropic turbulence is a bifractal. Phys Rev X. 2019;9:041006. doi:10.1007/s00348-016-2157-1
  • Iyer KP, Bharadwaj SS, Sreenivasan KR. The area rule for circulation in three-dimensional turbulence. PNAS. 2021;118(43):e2114679118. doi:10.1073/pnas.2114679118
  • Moriconi L, Takakura FI. Circulation statistics in three-dimensional turbulent flows. Phys Rev E. 1998;58(3):3187–3201. doi:10.1103/PhysRevE.58.3187
  • Mugundhan V, Pugazenthi RS, Speirs NB, Samtaney R, Thoroddsen ST. The alignment of vortical structures in turbulent flow through a contraction. J Fluid Mech. 2020;884:A5. doi:10.1017/jfm.2019.887
  • Schanz D, Gesemann S, Schröder A. Shake–The–Box: Lagrangian particle tracking at high particle image densities. Exp Fluids. 2016;57–70. doi:10.1007/s00348-016-2157-1
  • Schanz D, Schröder A, Gesemann S, Michaelis D, Wieneke W. ‘Shake The Box’: A highly efficient and accurate tomographic particle tracking velocimetry (TOMO-PTV) method using prediction of particle positions. In: 10th International Symposium on Particle Image Velocimetry, PIV-13; The Netherlands: Delft; 2013.
  • Pope SB. Turbulent Flows. Cambridge University Press; 2000.
  • Comte-Bellot G, Corrsin S. The use of a contraction to improve the isotropy of grid-generated turbulence. J Fluid Mech. 1966;25(4):657–682. doi:10.1017/S0022112066000338
  • Favre A. Review on space–time correlations in turbulent fluids. J Appl Mech. 1965;32(2):241–257. doi:10.1115/1.3625792
  • Libby PA. Introduction to Turbulence. Taylor & Francis; 1996.
  • Larssen JV, Devenport WJ. On the generation of large-scale homogeneous turbulence. Exp Fluids. 2011;50(5):1207–1223. doi:10.1007/s00348-010-0974-1
  • Thormann A, Meneveau C. Decay of homogeneous, nearly isotropic turbulence behind active fractal grids. Phys Fluids. 2014;26(2):025112. doi:10.1063/1.4865232
  • Janke T, Michaelis D. Uncertainty quantification for PTV/LPT data and adaptive track filtering. In: 14th International Symposium on Particle Image Velocimetry – ISPIV; 2021. Virtual conference.
  • Sciacchitano A, Leclaire B, Schröder A. Main results of the first Lagrangian particle tracking challenge. In: 14th International Symposium on Particle Image Velocimetry – ISPIV; 2021. Virtual conference.
  • Rowin WA, Ghaemi S. Streamwise and spanwise slip over a superhydrophobic surface. J Fluid Mech. 2019;870:1127–1157. doi:10.1017/jfm.2019.225
  • Schröder A, Schanz D. 3D Lagrangian particle tracking in fluid mechanics. Annu Rev Fluid Mech. 2023;55(1):511–540. doi:10.1146/annurev-fluid-031822-041721
  • Sciacchitano A, Wieneke D. PIV uncertainty propagation. Meas Sci Technol. 2016;27(8):084006. doi:10.1088/0957-0233/27/8/084006