164
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluating anisotropic minimum dissipation, sigma and modulated gradient subgrid-scale models in large-eddy simulation of compressible mixing layers

&
Pages 654-685 | Received 23 Jul 2023, Accepted 16 Dec 2023, Published online: 25 Dec 2023

References

  • Jiang GS, Shu CW. Efficient implementation of weighted ENO schemes. J Comput Phys. 1996;126:202–228. doi: 10.1006/jcph.1996.0130
  • Pirozzoli S. Conservative hybrid Compact-WENO schemes for Shock-Turbulence interaction. J Comput Phys. 2002;178:81–117. doi: 10.1006/jcph.2002.7021
  • Johnsen E, Larsson J, Bhagatwala AV, et al. Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves. J Comput Phys. 2010;229(4):1213–1237. doi: 10.1016/j.jcp.2009.10.028
  • Tritschler V, Olson B, Lele S, et al. On the Richtmyer–Meshkov instability evolving from a deterministic multimode planar interface. J Fluid Mech. 2014 Sep;755:429–462. doi: 10.1017/jfm.2014.436
  • Cook A, Cabot W. A high-wavenumber viscosity for high-resolution numerical methods. J Comput Phys. 2004 Apr;195:594–601. doi: 10.1016/j.jcp.2003.10.012
  • Cook A, Cabot W. Hyperviscosity for shock-turbulence interactions. J Comput Phys. 2005 Jan;203:379–385. doi: 10.1016/j.jcp.2004.09.011
  • Fiorina B, Lele S. An artificial nonlinear diffusivity method for supersonic reacting flows with shocks. J Comput Phys. 2007 Mar;222:246–264. doi: 10.1016/j.jcp.2006.07.020
  • Kawai S, Lele S. Localized artificial diffusivity scheme for discontinuity capturing on curvilinear meshes. J Comput Phys. 2008 Nov;227:9498–9526. doi: 10.1016/j.jcp.2008.06.034
  • Adams N. Direct simulation of the turbulent boundary layer along a compression ramp at m=3 and reθ=1685. J Fluid Mech. 2000;420:47–83. doi: 10.1017/S0022112000001257
  • Yee H, Sandham N, Djomehri M. Low-dissipative high-order shock-capturing methods using characteristic-based filters. J Comput Phys. 1999;150(1):199–238. doi: 10.1006/jcph.1998.6177
  • Larsson J, Lele SK. Direct numerical simulation of canonical shock/turbulence interaction. Phys Fluids. 2009 Dec;21(12):126101. doi: 10.1063/1.3275856
  • Cook A. Artificial fluid properties for large-eddy simulation of compressible turbulent mixing. Phys Fluids. 2007;19:055103. doi: 10.1063/1.2728937
  • Cook A. Enthalpy diffusion in multi-component flows. Phys Fluids. 2009;21:055109. doi: 10.1063/1.3139305
  • Kawai S, Shankar S, Lele S. Assessment of localized artificial diffusivity scheme for large-eddy simulation of compressible turbulent flows. J Comput Phys. 2010 Mar;229:1739–1762. doi: 10.1016/j.jcp.2009.11.005
  • Mani A, Larsson J, Moin P. Suitability of artificial bulk viscosity for large-eddy simulation of turbulent flows with shocks. J Comput Phys. 2009 Aug;228:7368–7374. doi: 10.1016/j.jcp.2009.06.040
  • Smagorinsky J. General circulation experiments with the primitive equations. Monthly Weather Rev. 1963 Jan;91(3):99. doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  • Rozema W, Bae HJ, Moin P, et al. Minimum-dissipation models for large-eddy simulation. Phys Fluids. 2015;27:085107. doi: 10.1063/1.4928700
  • Abkar M, Moin P. Large-Eddy simulation of thermally stratified atmospheric boundary-layer flow using a minimum dissipation model. Boundary Layer Meteorol. 2017;165:405–419. doi: 10.1007/s10546-017-0288-4
  • Nicoud F, Toda HB, Cabrit O, et al. Using singular values to build a subgrid-scale model for large eddy simulations. Phys Fluids. 2011 Aug;23(8):085106. doi: 10.1063/1.3623274
  • Lu H, Porté-Agel F. A modulated gradient model for large-eddy simulation: application to a neutral atmospheric boundary layer. Phys Fluids. 2010 Jan;22(1):015109. doi: 10.1063/1.3291073
  • Ghaisas NS, Frankel SH. Dynamic gradient models for the sub-grid scale stress tensor and scalar flux vector in large eddy simulation. J Turbulence. 2016;17(1):30–50. doi: 10.1080/14685248.2015.1083106
  • Abkar M, Bae HJ, Moin P. Minimum-dissipation scalar transport model for large-eddy simulation of turbulent flows. Phys. Rev. Fluids. 2016 Aug;1:041701. doi: 10.1103/PhysRevFluids.1.041701
  • Ghaisas NS, Ghate A, Lele SK. Effect of tip spacing, thrust coefficient and turbine spacing in multi-rotor wind turbines and farms. Wind Energy Sci. 2020;5:51–72. doi: 10.5194/wes-5-51-2020
  • Kethavath NN, Mondal K, Ghaisas NS. Large-eddy simulation and analytical modeling study of the wake of a wind turbine behind an abrupt rough-to-smooth surface roughness transition. Phys Fluids. 2022;34:125117. doi: 10.1063/5.0129022
  • Mondal K, Kethavath NN, Ghaisas NS. Large eddy simulation study of atmospheric boundary layer flow over an abrupt rough-to-Smooth surface roughness transition. Boundary Layer Meteorol. 2023;188:229–257.
  • Vreugdenhil CA, Taylor JR. Large-eddy simulations of stratified plane couette flow using the anisotropic minimum-dissipation model. Phys Fluids. 2018 Aug;30(8):085104. doi: 10.1063/1.5037039
  • Dupuy D, Toutant A, Bataille F. A posteriori tests of subgrid-scale models in an isothermal turbulent channel flow. Phys Fluids. 2019 Apr;31:045105. doi: 10.1063/1.5091829
  • Rieth M, Proch F, Stein O, et al. Comparison of the sigma and smagorinsky les models for grid generated turbulence and a channel flow. Comput Fluids. 2014 Jul;99:172–181. doi: 10.1016/j.compfluid.2014.04.018
  • Jiang Z, Xia Z, Shi Y, et al. Large eddy simulation of spanwise rotating turbulent channel flow with dynamic variants of eddy viscosity model. Phys Fluids. 2018 Apr;30:040909. doi: 10.1063/1.5011236
  • Ghate A, Lele S. Subfilter-scale enrichment of planetary boundary layer large eddy simulation using discrete fourier–gabor modes. J Fluid Mech. 2017 May;819:494–539. doi: 10.1017/jfm.2017.187
  • Howland MF, Ghate A, Lele SK. Influence of the geostrophic wind direction on the atmospheric boundary layer flow. J Fluid Mech. 2020;883:A39. doi: 10.1017/jfm.2019.889
  • Ghaisas N, Shetty D, Frankel S. Large eddy simulation of turbulent horizontal buoyant jets. J Turbulence. 2015 Apr;16:772–808. doi: 10.1080/14685248.2015.1008007
  • Ghaisas N, Shetty D, Frankel S. Large eddy simulation of thermal driven cavity: evaluation of sub-grid scale models and flow physics. Int J Heat Mass Transf. 2013 Jan;56:606–624. doi: 10.1016/j.ijheatmasstransfer.2012.09.055
  • Engelmann L, Hasslberger J, Inanc E, et al. A-posteriori assessment of large-eddy simulation subgrid-closures for momentum and scalar fluxes in a turbulent premixed burner experiment. Comput Fluids. 2022;240:105441. doi: 10.1016/j.compfluid.2022.105441
  • Agostinelli PW, Laera D, Chterev I, et al. Large eddy simulations of mean pressure and H2 addition effects on the stabilization and dynamics of a partially-premixed swirled-stabilized methane flame. Combust Flame. 2023;249:112592. doi: 10.1016/j.combustflame.2022.112592
  • Clark RA, Ferziger JH, Reynolds WC. Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J Fluid Mech. 1979;91(1):1–16. doi: 10.1017/S002211207900001X
  • Lu H, Porté-Agel F. A modulated gradient model for scalar transport in large-eddy simulation of the atmospheric boundary layer. Physics of Fluids. 2013 Jan;25(1):015110. doi: 10.1063/1.4774342
  • Lu H, Porté-Agel F. On the development of a dynamic non-linear closure for large-eddy simulation of the atmospheric boundary layer. Boundary Layer Meteorol. 2014 Jun;151:429–451. doi: 10.1007/s10546-013-9906-y
  • Kermani EL, Roohi E, Porté-Agel F. Evaluating the modulated gradient model in large eddy simulation of channel flow with openfoam. J Turbulence. 2019;19:600–620.
  • Vreman B, Geurts B, Kuerten H. Subgrid-Modelling in LES of compressible flow. Appl Sci Res. 1995;54:191–203. doi: 10.1007/BF00849116
  • Vreman B, Geurts B, Kuerten H. Large-eddy simulation of the turbulent mixing layer. J Fluid Mech. 1997;339:357–390. doi: 10.1017/S0022112097005429
  • Martha CS, Blaisdell GA, Lyrintzis AS. Large eddy simulations of 2-D and 3-D spatially developing mixing layers. Aerospace Sci Technol. 2013;31:59–72. doi: 10.1016/j.ast.2013.09.007
  • Foysi H, Sarkar S. The compressible mixing layer: an les study. Theoretical Comput Fluid Dyn. 2010 Dec;24:565–588. doi: 10.1007/s00162-009-0176-8
  • Matsuno K, Lele SK. Internal regulation in compressible turbulent shear layers. J Fluid Mech. 2021;907:R2. doi: 10.1017/jfm.2020.925
  • Sutherland W. LII. The viscosity of gases and molecular force. The London, Edinburgh, and Dublin Philosophical Mag J Sci. 1893;36(223):507–531. doi: 10.1080/14786449308620508
  • Ghaisas NS, Subramaniam A, Lele SK. A unified high-order Eulerian method for continuum simulations of fluid flow and of elastic–plastic deformations in solids. J Comput Phys. 2018;371:452–482. doi: 10.1016/j.jcp.2018.05.035
  • Subramaniam A, Ghate A, Ghaisas NS, et al. PadeOps GitHub repository. Available: https://githubcom/FPAL-Stanford-University/PadeOps/tree/cgrid_iith. Last Accessed 2023 Mar, 20.
  • Lele SK. Compact finite difference schemes with spectral-like resolution. J Comput Phys. 1992;103:16–42. doi: 10.1016/0021-9991(92)90324-R
  • Li N, Laizet S. 2DECOMP&FFT – a highly scalable 2d decomposition library and fft interface. In: Cray User Group 2010 Conference, Scotland, 2010, p. 1–13.
  • Kennedy CA, Carpenter MH, Lewis RM. Low-storage, explicit runge-kutta schemes for the compressible Navier-Stokes equations. Appl Numer Math. 2000;35:177–219. doi: 10.1016/S0168-9274(99)00141-5
  • Subramaniam A. Simulations of shock induced interfacial instabilities including materials with strength [dissertation]. Stanford University; 2018.
  • Matsuno K, Lele SK. Compressibility effects in high speed turbulent shear layers – revisited. In: AIAA SciTech Forum. Orlando (Florida): AIAA; 2020 Jan. p. 1–21. doi: 10.2514/6.2020-0573
  • Subramaniam A, Ghaisas N, Lele S. High-order eulerian simulations of multi-material elastic-plastic flow. J Fluids Eng. 2017 Nov;140:050904. doi: 10.1115/1.4038399
  • Yoshizawa A. Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling. Phys Fluids. 1986;29(7):2152–2164. doi: 10.1063/1.865552
  • Ghaisas NS, Frankel SH. A priori evaluation of large eddy simulation subgrid-scale scalar flux models in isotropic passive-scalar and anisotropic buoyancy-driven homogeneous turbulence. J Turbulence. 2014;15(2):88–121. doi: 10.1080/14685248.2013.875622
  • Moin P, Squires K, Cabot W, et al. A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys Fluids. 1991 Nov;3(11):2746–2757. doi: 10.1063/1.858164
  • Germano M. Turbulence: the filtering approach. J Fluid Mech. 1992;238:325–336. doi: 10.1017/S0022112092001733
  • Lilly DK. A proposed modification of the Germano subgrid-scale closure method. Phys Fluids. 1992 Mar;4(3):633–635. doi: 10.1063/1.858280
  • Pantano C, Sarkar S. A study of compressibility effects in the high-speed turbulent shear layer using direct simulation. J Fluid Mech. 2002;451:329–371. doi: 10.1017/S0022112001006978
  • Pope SB. Turbulent flows. Cambridge: Cambridge University Press; 2000. doi: 10.1017/CBO9780511840531
  • Rossmann T, Mungal MG, Hanson RK. Evolution and growth of large-scale structures in high compressibility mixing layers. J Turbulence. 2002;3:N9. doi: 10.1088/1468-5248/3/1/009
  • Day MJ, Reynolds WC, Mansour NN. The structure of the compressible reacting mixing layer: insights from linear stability analysis. Phys Fluids. 1998 Apr;10(4):993–1007. doi: 10.1063/1.869619
  • Dimotakis PE. Turbulent free shear layer mixing and combustion. Graduate Aeronautical Laboratories, California Institute of Technology; 1991.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.