127
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Variational calculus in hybrid turbulence transport models with passive scalar

ORCID Icon & ORCID Icon
Pages 16-61 | Received 17 Aug 2023, Accepted 03 Jan 2024, Published online: 25 Jan 2024

References

  • Schiestel R, Chaouat B. Turbulence modeling and simulation advances in CFD during the past 50 years. C R Acad Sci Paris. 2022;350:1–29.
  • Schiestel R. Modeling and simulation of turbulent flows. London: ISTE Ltd; 2008, p. 183–212.
  • Hanjalić K, Launder B. Modelling turbulence in engineering and the environment: second-moment routes to closure. Cambridge: Cambridge University Press; 2011.
  • Argyropoulos CD, Markatos NC. Recent advances on the numerical modelling of turbulent flows. Appl Math Modell. 2015;39(2):693–732. doi: 10.1016/j.apm.2014.07.001
  • Durbin P. Some recent developments in turbulence modeling. Annu Rev Fluid Mech. 2017;50:77–103. doi: 10.1146/fluid.2018.50.issue-1
  • Pereira FS, Eca L, Vaz G, et al. Toward predictive RANS and SRS computations of turbulent external flows of practical interest. Arch Comput Methods Eng. 2021;28-5:3953–4029. doi: 10.1007/s11831-021-09563-0
  • Israël DM. The myth of URANS. J Turbul. 2023;24(8):367–392. doi: 10.1080/14685248.2023.2225140
  • Lesieur M, Métais O, Comte P. Large-Eddy simulations of turbulence. Cambridge: Cambridge University Press; 2005.
  • Germano M, Piomelli U, Moin P, et al. A dynamic subgrid-scale eddy viscosity model. Phys Fluids A. 1991;3(7):1760–1765. doi: 10.1063/1.857955
  • Scotti A, Meneveau C, Lilly DK. Generalized Smagorinsky model for anisotropic grids. Phys Fluids. 1993;5(9):2306–2308. doi: 10.1063/1.858537
  • Piomelli U. Large-eddy simulation: achievements and challenges. Prog Aerosp Sci. 1999;35(4):335–362. doi: 10.1016/S0376-0421(98)00014-1
  • Meneveau C, Katz J. Scale-invariance and turbulence models for large-Eddy simulation. Annu Rev Fluid Mech. 2000;32:1–32. doi: 10.1146/fluid.2000.32.issue-1
  • Fröhlich J, Terzi DV. Hybrid LES/RANS methods for the simulation of turbulent flows. Prog Aerosp Sci. 2008;44(5):349–377. doi: 10.1016/j.paerosci.2008.05.001
  • Chaouat B. The state of the art of hybrid RANS/LES modeling for the simulation of turbulent flows. Flow Turbul Combust. 2017;99(2):279–327. doi: 10.1007/s10494-017-9828-8
  • Spalart PR. Strategies for turbulence modelling and simulations. Int J Heat Fluid Flow. 2000;21(3):252–263. doi: 10.1016/S0142-727X(00)00007-2
  • Spalart PR. Detached-Eddy simulation. Annu Rev Fluid Mech. 2009;41:181–202. doi: 10.1146/fluid.2009.41.issue-1
  • Speziale CG. Turbulence modeling for time-dependent RANS and VLES: a review. AIAA J. 1998;36(2):173–184. doi: 10.2514/2.7499
  • Fasel HF, Seidel J, Wernz S. A methodology for simulation of complex flows. ASME J Fluids Eng. 2002;124:933–842. doi: 10.1115/1.1517569
  • Menter FR, Egorov Y. The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: theory and model description. Flow, Turbul Combust. 2010;85(1):113–138. doi: 10.1007/s10494-010-9264-5
  • Girimaji SS, Abdol-Hamid KS. Partially-averaged Navier Stokes model for turbulence: Implementation and validation. In 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno-Nevada: AIAA; 2005. p. 05–0502.
  • Girimaji SS. Partially-averaged Navier–Stokes model for turbulence: a Reynolds-averaged Navier–Stokes to direct numerical simulation bridging method. ASME J Appl Mech. 2006;73:413–421. doi: 10.1115/1.2151207
  • Girimaji SS, Jeong E, Srinivasan R. Partially averaged Navier–Stokes method for turbulence: fixed point analysis and comparisons with unsteady partially averaged Navier–Stokes. ASME J Appl Mech. 2006;73:422–429. doi: 10.1115/1.2173677
  • Schiestel R, Dejoan A. Towards a new partially integrated transport model for coarse grid and unsteady turbulent flow simulations. Theoret Comput Fluid Dyn. 2005;18(6):443–468. doi: 10.1007/s00162-004-0155-z
  • Chaouat B, Schiestel R. A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows. Phys Fluids. 2005;17(6):065106. doi: 10.1063/1.1928607
  • Chaouat B, Schiestel R. Analytical insights into the partially integrated transport modeling method for hybrid Reynolds averaged Navier–Stokes equations-large Eddy simulations of turbulent flows. Phys Fluids. 2012;24(8):085106. doi: 10.1063/1.4745003
  • Davidson L, Friess C. A new formulation of fk for the PANS model. J Turbul. 2019;20:332–326. doi: 10.1080/14685248.2019.1641605
  • Friess C, Davidson L. A formulation of PANS capable of mimicking IDDES. Int J Heat Fluid Flow. 2020;86:108666. doi: 10.1016/j.ijheatfluidflow.2020.108666
  • Heinz S, Mokhtarpoor R, Stoellinger M. Theory-based Reynolds-averaged Navier–Stokes equations with large eddy simulation capability for separated turbulent flow simulations. Phys Fluids. 2020;32(6):066102. doi: 10.1063/5.0006660
  • Heinz S. The continuous Eddy simulation capability of velocity and scalar probability density function equations for turbulent flows. Phys Fluids. 2021;33(2):025107. doi: 10.1063/5.0039163
  • Heinz S. Remarks on energy partitioning control in the PITM hybrid RANS/LES method for the simulation of turbulent flows. Flow Turbul Combust. 2022;108(4):927–933. doi: 10.1007/s10494-021-00302-w
  • Chaouat B, Schiestel R. Energy partitioning control in the PITM hybrid RANS/LES method for the simulation of turbulent flows. Flow Turbul Combust. 2021;107(1):1–42. doi: 10.1007/s10494-020-00224-z
  • Germano M. Turbulence: the filtering approach. J Fluid Mech. 1992;238:325–336. doi: 10.1017/S0022112092001733
  • Germano M. The simplest decomposition of a turbulent field. Phys D. 2012;241:284–287. doi: 10.1016/j.physd.2011.07.006
  • Hamba F. Log-layer mismatch and commutation error in hybrid RANS/LES simulation of channel flow. Int J Heat Fluid Flow. 2009;30(1):20–31. doi: 10.1016/j.ijheatfluidflow.2008.10.002
  • Hamba F. Analysis of filtered Navier-Stokes equation for hybrid RANS/LES simulation. Phys Fluids. 2011;23(1):015108. doi: 10.1063/1.3549933
  • Chaouat B, Schiestel R. Partially integrated transport modeling method for turbulence simulation with variable filters. Phys Fluids. 2013;25(12):125102. doi: 10.1063/1.4833235
  • Chaouat B. Commutation errors in PITM simulations. Int J Heat Fluid Flow. 2017;67:138–154. doi: 10.1016/j.ijheatfluidflow.2017.08.003
  • Gatski TB. Second-moment and scalar flux representations in engineering and geophysical flows. Fluid Dyn Res. 2009;41:012202. doi: 10.1088/0169-5983/41/1/012202
  • Chaouat B, Schiestel R. Reynolds stress transport modeling for steady and unsteady channel flows with wall injection. J Turbul. 2002;3(21):1–15.
  • Chaouat B, Schiestel R. Extension of the partially integrated transport modeling method to the simulation of passive scalar turbulent fluctuations at various Prandtl numbers. Int J Heat Fluid Flow. 2021;89:1–19. doi: 10.1016/j.ijheatfluidflow.2021.108813
  • Gelfand IM, Formin SV. Calculus of variations. Mineola, New-York: Dover Ed.; 1963.
  • Blancard P. Variational methods in mathematical physics. Berlin, Heidelberg: Springer Verlag; 1992.
  • Cartan H. Calcul différentiel. Paris: Hermann Ed.; 1979.
  • Chaouat B, Schiestel R. Progress in subgrid-scale transport modelling for continuous hybrid non-zonal rans/les simulations. Int J Heat Fluid Flow. 2009;30(4):602–616. doi: 10.1016/j.ijheatfluidflow.2009.02.021
  • Chaouat B. Application of the PITM method using inlet synthetic turbulence generation for the simulation of the turbulent flow in a small axisymmetric contraction. Flow Turbul Combust. 2017;98(4):987–1024. doi: 10.1007/s10494-016-9794-6
  • Launder BE, Reece GJ, Rodi W. Progress in the development of a Reynolds stress turbulence closure. J Fluid Mech. 1975;68:537–566. doi: 10.1017/S0022112075001814
  • Jeandel D, Brison JF, Mathieu J. Modeling methods in physical and spectral space. Phys Fluids. 1978;21(2):169–182. doi: 10.1063/1.862211
  • Cambon C, Jeandel D, Mathieu J. Spectral modelling of homogeneous non-isotropic turbulence. J Fluid Mech. 1981;104:247–262. doi: 10.1017/S0022112081002905
  • Mons V, Cambon C, Sagaut P. A spectral model for homogeneous shear-driven anisotropic turbulence in terms of spherically averaged descriptors. J Fluid Mech. 2016;788:147–182. doi: 10.1017/jfm.2015.705
  • Daly BJ, Harlow FH. Transport equations in turbulence. Phys Fluids. 1970;13(11):2634–2649. doi: 10.1063/1.1692845
  • Chaouat B. Contribution of direct numerical simulations to the budget and modelling of the transport equations for passive scalar turbulent fields with wall scalar fluctuations. J Fluid Mech. 2023;963:1–41. doi: 10.1017/jfm.2023.324
  • Pope S. Consistent modeling of scalars in turbulent flows. Phys Fluids. 1983;26(2):404–408. doi: 10.1063/1.864151
  • Moser R, Kim D, Mansour N. Direct numerical simulation of turbulent channel flow up to Rτ=590. Phys Fluids. 1999;11(4):943–945. doi: 10.1063/1.869966
  • Chaouat B. An efficient numerical method for RANS/LES turbulent simulations using subfilter scale stress transport equations. Int J Numer Methods Fluids. 2011;67(10):1207–1233. doi: 10.1002/fld.v67.10
  • Breuer M, Peller N, Rapp C, et al. Flow over periodic hills – numerical and experimental study in a wide range of Reynolds numbers. Comput Fluids. 2009;38(2):433–457. doi: 10.1016/j.compfluid.2008.05.002
  • Krank B, Kronbichler M, Wall W. Direct numerical simulation of flow over periodic hills up to ReH=10,595. Flow Turbul Combust. 2018;101(2):521–551. doi: 10.1007/s10494-018-9941-3
  • Fröhlich J, Mellen C, Rodi W, et al. Highly resolved large-Eddy simulation of separated flow in a channel with streamwise periodic constrictions. J Fluid Mech. 2005;526:19–66. doi: 10.1017/S0022112004002812
  • Breuer M, Peller N, Rapp C, et al. Flow over periodic hills numerical and experimental study in a wide range of Reynolds numbers. Comput Fluids. 2009;38:433–457. doi: 10.1016/j.compfluid.2008.05.002
  • Saric S, Kniesner B, Mehdizadeh A, et al. Comparative assessment of hybrid LES/RANS models in turbulent flows separating from smooth surfaces. In: Advances in Hybrid RANS-LES Modelling, NNFM 97. Springer Berlin Heidelberg; 2008. p. 142–151.
  • Razi P, Tazraei P, Girimaji S. Partially-averaged Navier–Stokes (PANS) simulations of flow separation over smooth curved surfaces. Int J Heat Fluid Flow. 2017;66:157–171. doi: 10.1016/j.ijheatfluidflow.2017.05.005
  • Chaouat B. Subfilter-scale transport model for hybrid RANS/LES simulations applied to a complex bounded flow. J Turbul. 2010;11(51):1–30.
  • Manhart M, Rapp C, Peller N, et al. Assessment of eddy resolving techniques for the flow over periodically arranged hills up to Re = 37, 000. In: Quality and reliability of large Eddy simulations II; Vol. 16. Springer Verlag; 2011. p. 361–370.
  • Chaouat B, Schiestel R. Hybrid RANS-LES simulations of the turbulent flow over periodic hills at high Reynolds number. Comput Fluids. 2013;84:279–300. doi: 10.1016/j.compfluid.2013.06.012
  • Zhou Z, Wu T, Yang X. Reynolds number effect on statistics of turbulent flows over periodic hills. Phys Fluids. 2021;33(10):105124. doi: 10.1063/5.0062786
  • Rapp C, Manhart M. Flow over periodic hills – an experimental study. Exp Fluids. 2011;51(1):247–269. doi: 10.1007/s00348-011-1045-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.