109
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Multi-spatial scale and multi-frequency resolution Proper Orthogonal Decomposition for patterns of wall-streamwise pressure gradient fluctuation of impinging jets

&
Pages 83-104 | Received 03 Sep 2023, Accepted 10 Mar 2024, Published online: 20 Mar 2024

References

  • Gosset A, Buchlin J-M. Jet wiping in hot-dip galvanization. J Fluids Eng. 2006;129(4):466–475. doi:10.1115/1.2436585
  • Myrillas K, Gosset A, Rambaud P, et al. Technique for delaying splashing in jet wiping process. Chem Eng Process. 2011;50(5–6):466–470. doi:10.1016/j.cep.2010.09.011
  • Yoon HG, Chung MK. Development of novel air-knife system to prevent check-mark stain on Galvanized strip surface. ISIJ Int. 2010;50(5):752–759. doi:10.2355/isijinternational.50.752
  • Gosset A, Mendez MA, Buchlin J-M. An experimental analysis of the stability of the jet wiping process: Part I – Characterization of the coating uniformity. Exp Therm Fluid Sci. 2019;103:51–65. doi:10.1016/j.expthermflusci.2018.12.029
  • Phan LQ, Johnstone AD, Kosasih B, et al. Patterns and reduced-order reconstruction of impinging wiping jet pressure profile fluctuation using proper orthogonal decomposition. J Fluids Eng. 2022;144(2):021502. doi:10.1115/1.4051811
  • Mendez MA, Gosset A, Scheid B, et al. Dynamics of the jet wiping process via integral models. J Fluid Mech. 2020;911:A47. doi:10.1017/jfm.2020.1075
  • Barreiro-Villaverde D, Gosset A, Mendez MA. On the dynamics of jet wiping: Numerical simulations and modal analysis. Phys Fluids. 2021;33(6):062114. doi:10.1063/5.0051451
  • Taira K, Brunton SL, Dawson STM, et al. Modal analysis of fluid flows: an overview. AIAA J. 2017;55(12):4013–4041. doi:10.2514/1.J056060
  • Mendez MA, Balabane M, Buchlin J-M. Multi-scale Proper Orthogonal Decomposition of complex fluid flows. J Fluid Mech. 2019;870:988–1036. doi:10.1017/jfm.2019.212
  • Towne A, Schmidt OT, Colonius T. Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J Fluid Mech. 2018;847:821–867. doi:10.1017/jfm.2018.283
  • Kolmogorov AN. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc R Soc Lond A. 1991;434:9–13. doi:10.1098/rspa.1991.0075
  • Kolmogorov AN. Dissipation of energy in the locally isotropic turbulence. Proc R Soc Lond A. 1991;434:15–17. doi:10.1098/rspa.1991.0076
  • Batchelor GK. The theory of homogeneous turbulence. Cambridge: Cambridge University Press; 1953.
  • Percival DB, Walden AT. Wavelet methods for time series analysis. Cambridge: Cambridge University Press; 2000.
  • Mallat SG. A theory of multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell. 1989;11(7):674–693. doi:10.1109/34.192463
  • Daubechies I. Ten lectures on wavelets. Philadelphia: Soc Ind Appl Math. 1992.
  • Tennekes H, Lumley JL. A first course in turbulence. Cambridge: MIT Press; 1972.
  • Farge M, Goirand E, Meyer Y, et al. Improved predictability of two-dimensional turbulent flows using wavelet packet compression. Fluid Dyn Res. 1992;10(4–6):229–250. doi:10.1016/0169-5983(92)90024-Q
  • Farge M, Schneider K, Pellegrino G, et al. Coherent vortex extraction in three-dimensional homogeneous turbulence Comparison between CVS-wavelet and POD-Fourier decompositions. Phys Fluids. 2003;15(10):2886–2896. doi:10.1063/1.1599857
  • Ruppert-Felsot J, Farge M, Petitjeans P. Wavelet tools to study intermittency: application to vortex bursting. J Fluid Mech. 2009;636:427–453. doi:10.1017/S0022112009008003
  • Ninni D, Mendez MA. MODULO: a software for multiscale proper orthogonal decomposition of data. SoftwareX. 2020;12:100622. doi:10.1016/j.softx.2020.100622
  • Nekkanti A, Schmidt OT. Frequency–time analysis, low-rank reconstruction and denoising of turbulent flows using SPOD. J Fluid Mech. 2021;926:A26. doi:10.1017/jfm.2021.681
  • Bieder U, Uitslag-Doolaard H, Mikuž B. Investigation of pressure loss and velocity distribution in fuel assemblies with wire-wrapped rods by using RANS and LES with wall functions. Ann Nucl Energy. 2021;152:108025. doi:10.1016/j.anucene.2020.108025
  • Haussmann M, Barreto AC, Kouyi GL, et al. Large-eddy simulation coupled with wall models for turbulent channel flows at high Reynolds numbers with a lattice Boltzmann method — application to Coriolis mass flowmeter. Comput Math Appl. 2019;78(10):3285–3302. doi:10.1016/j.camwa.2019.04.033
  • Phan LQ, Johnstone AD, Kosasih B, et al. Vortex dynamics and fluctuations of impinging planar jet. ISIJ Int. 2020;60(5):1030–1039. doi:10.2355/isijinternational.ISIJINT-2019-566
  • Welch P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoustics. 1967;15(2):70–73. doi:10.1109/TAU.1967.1161901
  • Beltaos S, Rajaratnam N. Plane turbulent impinging jets. J Hydraul Res. 1972;11(1):29–59. doi:10.1080/00221687309499789
  • Zhou J, Zhang Q, Li J. Probability distribution function of near-wall turbulent velocity fluctuations. Appl Math Mech. 2005;26(10):1245–1254. doi:10.1007/BF03246229
  • Qian N, Wan Z. Mechanics of sediment transport. Beijing: Science Press; 2003.
  • Aringazin AK, Mazhitov MI. The PDF of fluid particle acceleration in turbulent flow with underlying normal distribution of velocity fluctuations. Phys Lett A. 2003;313(4):284–290. doi:10.1016/S0375-9601(03)00766-7
  • Taddesse TM, Mathew J. Development and scaling of turbulent, twin round jets. J Fluid Mech. 2022;939. doi:10.1017/jfm.2022.193
  • Diop SN, Dieng B, Senaha I. A study on heat transfer characteristics by impinging jet with several velocities distribution. Case Stud Therm Eng. 2021;26:101111. doi:10.1016/j.csite.2021.101111
  • Eßl W, Pfeiler C, Reiss G, et al. LES-VOF Simulation and POD Analysis of the Gas-Jet Wiping Process in Continuous Galvanizing Lines. Steel Res Int. 2018;89(2):1700362. doi:10.1002/srin.201700362
  • Iida T, Guthrie RIL. The thermophysical properties of metallic liquids: volume 2: predictive models. Oxford: Oxford University Press; 2015.
  • Mendez MA, Gosset A, Buchlin JM. Experimental analysis of the stability of the jet wiping process, part II: Multiscale modal analysis of the gas jet-liquid film interaction. Exp Therm Fluid Sci. 2019;106:48–67. doi:10.1016/j.expthermflusci.2019.03.004
  • Oppenheim AV, Schafer RW. Discrete-time signal processing. 3rd ed. Upper Saddle River: Prentice Hall Press; 2009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.