1,185
Views
54
CrossRef citations to date
0
Altmetric
Review

Non-viral nucleic acid delivery methods

, , , &
Pages 105-118 | Received 20 May 2016, Accepted 12 Oct 2016, Published online: 09 Nov 2016

References

  • Kaufmann KB, Büning H, Galy A, et al. Gene therapy on the move. EMBO Mol Med. 2013;5:1642–1661. DOI:10.1002/emmm.201202287.
  • Yla-Herttuala S. Endgame: glybera finally recommended for approval as the first gene therapy drug in the European union. Mol Ther. 2012;20:1831–1832. DOI:10.1038/mt.2012.194.
  • ClinicalTrials.gov A service of the U.S. national institutes of health. Available from: https://clinicaltrials.gov/ [ cited 15 May 2016].
  • Gonzalez-Gonzalez E, Speaker TJ, Hickerson RP, et al. Silencing of reporter gene expression in skin using siRNAs and expression of plasmid DNA delivered by a soluble protrusion array device (PAD). Mol Ther. 2010;18:1667–1674. DOI:10.1038/mt.2010.126.
  • McCaffrey J, Donnelly RF, McCarthy HO. Microneedles: an innovative platform for gene delivery. Drug Deliv Transl Res. 2015;5:424–437. DOI:10.1007/s13346-015-0247-x.
  • Chen W, Li H, Shi D, et al. Microneedles as a delivery system for gene therapy. Front Pharmacol. 2016;7. DOI:10.3389/fphar.2016.00323
  • Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64:1547–1568. DOI:10.1016/j.addr.2012.04.005.
  • Walther W, Siegel R, Kobelt D, et al. Novel jet-injection technology for nonviral intratumoral gene transfer in patients with melanoma and breast cancer. Clin Cancer Res. 2008;14:7545–7553. DOI:10.1158/1078-0432.CCR-08-0412
  • Uchida M, Natsume H, Kobayashi D, et al. Effects of particle size, helium gas pressure and microparticle dose on the plasma concentration of indomethacin after bombardment of indomethacin-loaded poly-L-lactic acid microspheres using a Helios gun system. Biol Pharm Bull. 2002;25:690–693. DOI:10.1248/bpb.25.690.
  • Zhang D, Das DB, Rielly CD. Potential of microneedle-assisted micro-particle delivery by gene guns: a review. Drug Deliv. 2013;7544:571–587.
  • Al-Dosari MS, Gao X. Nonviral gene delivery: principle, limitations, and recent progress. Aaps J. 2009;11:671–681. DOI:10.1208/s12248-009-9143-y.
  • Yoshizawa J, Li XK, Fujino M, et al. Successful in utero gene transfer using a gene gun in midgestational mouse fetuses. J Pediatr Surg. 2004;39:81–84. DOI:10.1016/j.jpedsurg.2003.09.001.
  • Davtyan H, Petrushina I, Ghochikyan A. Immunotherapy for alzheimer’s disease: DNA- and protein-based epitope vaccines. Methods Mol Biol. 2014;1143:259–281.
  • Jordan ET, Collins M, Terefe J, et al. Optimizing electroporation conditions in primary and other difficult-to-transfect cells. J Biomol Tech. 2008;19:328–334.
  • Yamamoto H, Kawai M, Shiotsu N, et al. BMP-2 gene transfer under various conditions with in vivo electroporation and bone induction. J Oral Maxillofac Surgery Med Pathol. 2012;24:49–53. DOI:10.1016/j.ajoms.2011.10.006.
  • Lambricht L, Lopes A, Kos S, et al. Clinical potential of electroporation for gene therapy and DNA vaccine delivery. Expert Opin Drug Deliv. 2015;5247:17425247.2016.1121990.
  • Ghisoli M, Barve M, Mennel R, et al. Three-year follow up of GMCSF/bi-shRNA(furin) DNA-transfected autologous tumor immunotherapy (Vigil) in metastatic advanced ewing’s sarcoma. Mol Ther. 2016;24:1478–1483. DOI:10.1038/mt.2016.86.
  • Vasan S, Hurley A, Schlesinger SJ, et al. In vivo electroporation enhances the immunogenicity of an HIV-1 DNA vaccine candidate in healthy volunteers. PLoS One. 2011;6:1–10. DOI:10.1371/journal.pone.0019252.
  • Quenneville SP, Chapdelaine P, Rousseau J, et al. Nucleofection of muscle-derived stem cells and myoblasts with φC31 integrase: stable expression of a full-length-dystrophin fusion gene by human myoblasts. Mol Ther. 2004;10:679–687. DOI:10.1016/j.ymthe.2004.05.034
  • Jacobsen F, Mertens-Rill J, Beller J, et al. Nucleofection: a new method for cutaneous gene transfer? J Biomed Biotechnol. 2006;2006:1–8. DOI:10.1155/JBB/2006/26060
  • Browning RJ, Mulvana H, Tang M, et al. Influence of needle gauge on in vivo ultrasound and microbubble-mediated gene transfection. Ultrasound Med Biol. 2011;37:1531–1537. DOI:10.1016/j.ultrasmedbio.2011.05.019.
  • Bekeredjian R, Kroll RD, Fein E, et al. ultrasound targeted microbubble destruction increases capillary permeability in hepatomas. Ultrasound Med Biol. 2007;33:1592–1598. DOI:10.1016/j.ultrasmedbio.2007.05.003.
  • Sheyn D, Kimelman-Bleich N, Pelled G, et al. Ultrasound-based nonviral gene delivery induces bone formation in vivo. Gene Ther. 2008;15:257–266. DOI:10.1038/sj.gt.3303070.
  • Un K, Kawakami S, Suzuki R, et al. Suppression of melanoma growth and metastasis by DNA vaccination using an ultrasound-responsive and mannose-modified gene carrier. Mol Pharm. 2011;8:543–554. DOI:10.1021/mp200125j.
  • Guo R-Q. Ultrasound microbubbles combined with the NFκB binding motif increase transfection efficiency by enhancing the cytoplasmic and nuclear import of plasmid DNA. Mol Med Rep. 2013;8:1439–1445. DOI: 10.3892/mmr.2013.1672.
  • Ding Y, Jiang Z, Saha K, et al. Gold nanoparticles for nucleic acid delivery. Mol Ther. 2014;22:1075–1083. DOI:10.1038/mt.2014.30.
  • Yamashita S, Fukushima H, Akiyama Y, et al. Controlled-release system of single-stranded DNA triggered by the photothermal effect of gold nanorods and its in vivo application. Bioorganic Med Chem. 2011;19:2130–2135. DOI:10.1016/j.bmc.2011.02.042.
  • Davis ME, Zuckerman JE, Choi CHJ, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 2010;464:1067–1070. DOI:10.1038/nature08940
  • Zheng D, Giljohann DA, Chen DL, et al. Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc Natl Acad Sci. 2012;109:11975–11980. DOI:10.1073/pnas.1118425109
  • Dames P, Gleich B, Flemmer A, et al. Targeted delivery of magnetic aerosol droplets to the lung. Nat Nanotechnol. 2007;2:495–499. DOI:10.1038/nnano.2007.217
  • Plank C, Zelphati O, Mykhaylyk O. Magnetically enhanced nucleic acid delivery. Adv Drug Deliv Rev. 2011;63:1300–1331. DOI:10.1016/j.addr.2011.08.002.
  • Mintzer MA, Simanek EE. Nonviral vectors for gene delivery. Chem Rev. 2009;109:259–302. DOI:10.1021/cr800409e.
  • Yin H, Kanasty RL, Eltoukhy AA, et al. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014;15:541–555. DOI:10.1038/nrg3763
  • Midoux P, Breuzard G, Gomez JP, et al. Polymer-based gene delivery: a current review on the uptake and intracellular trafficking of polyplexes. Curr Gene Ther. 2008;8:335–352. DOI:10.2174/156652308786071014
  • Grosse S, Thévenot G, Aron Y, et al. In vivo gene delivery in the mouse lung with lactosylated polyethylenimine, questioning the relevance of in vitro experiments. J Control Release. 2008;132:105–112. DOI:10.1016/j.jconrel.2008.08.018.
  • Kunath K, Von Harpe A, Fischer D, et al. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J Control Release. 2003;89:113–125. DOI:10.1016/S0168-3659(03)00076-2.
  • Lee YS, Kim SW. Bioreducible polymers for therapeutic gene delivery. J Control Release. 2014;190:424–439. DOI:10.1016/j.jconrel.2014.04.012.
  • Parhiz H, Shier WT, Ramezani M. From rationally designed polymeric and peptidic systems to sophisticated gene delivery nano-vectors. Int J Pharm. 2013;457:237–259. DOI:10.1016/j.ijpharm.2013.09.014.
  • Merdan T, Kopeček J, Kissel T. Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv Drug Deliv Rev. 2002;54:715–758. DOI:10.1016/S0169-409X(02)00046-7.
  • Palma P, Gudmundsdotter L, Finocchi A, et al. Immunotherapy with an HIV-DNA vaccine in children and adults. Vaccines. 2014;2:563–580. DOI:10.3390/vaccines2030563.
  • Tugues S, Burkhard SH, Ohs I, et al. New insights into IL-12-mediated tumor suppression. Cell Death Differ. 2015;22:237–246. DOI:10.1038/cdd.2014.134.
  • Günther M, Lipka J, Malek A, et al. Polyethylenimines for RNAi-mediated gene targeting in vivo and siRNA delivery to the lung. Eur J Pharm Biopharm. 2011;77:438–449. DOI:10.1016/j.ejpb.2010.11.007.
  • Höbel S, Koburger I, John M, et al. Polyethylenimine/small interfering RNA-mediated knockdown of vascular endothelial growth factor in vivo exerts anti-tumor effects synergistically with bevacizumab. J Gene Med. 2010;12:287–300. DOI:10.1002/jgm.1495.
  • Buschmann MD, Merzouki A, Lavertu M, et al. Chitosans for delivery of nucleic acids. Adv Drug Deliv Rev. 2013;65:1234–1270. DOI:10.1016/j.addr.2013.07.005.
  • Ragelle H, Vandermeulen G, Préat V. Chitosan-based siRNA delivery systems. J Control Release. 2013;172:207–218. DOI:10.1016/j.jconrel.2013.08.005.
  • Malmo J, Sandvig A, Vårum KM, Nanoparticle mediated p-glycoprotein silencing for improved drug delivery across the blood-brain barrier: a siRNA-chitosan approach. PLoS One. 2013;8:e54182. DOI:10.1371/journal.pone.0054182
  • Dufès C, Uchegbu IF, Schätzlein AG. Dendrimers in gene delivery. Adv Drug Deliv Rev. 2005;57:2177–2202. DOI:10.1016/j.addr.2005.09.017.
  • Wu J, Huang W, He Z. Dendrimers as carriers for siRNA delivery and gene silencing: a review. Sci World J. 2013;2013.DOI:10.1155/2013/630654.
  • Serramía MJ, Álvarez S, Fuentes-Paniagua E, et al. In vivo delivery of siRNA to the brain by carbosilane dendrimer. J Control Release. 2015;200:60–70. DOI:10.1016/j.jconrel.2014.12.042.
  • Malloggi C, Pezzoli D, Magagnin L, et al. Comparative evaluation and optimization of off-the-shelf cationic polymers for gene delivery purposes. Polym Chem. 2015;6:6325–6339. DOI:10.1039/C5PY00915D.
  • Shim MS, Kwon YJ. Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Adv Drug Deliv Rev. 2012;64:1046–1059. DOI:10.1016/j.addr.2012.01.018.
  • Kim J, Lee YM, Kim H, et al. Phenylboronic acid-sugar grafted polymer architecture as a dual stimuli-responsive gene carrier for targeted anti-angiogenic tumor therapy. Biomaterials. 2016;75:102–111. DOI:10.1016/j.biomaterials.2015.10.022.
  • Jhaveri A, Deshpande P, Torchilin V. Stimuli-sensitive nanopreparations for combination cancer therapy. J Control Release. 2014;190:352–370. DOI:10.1016/j.jconrel.2014.05.002.
  • Harvie P, Wong FMP, Bally MB. Use of poly(ethylene glycol)-lipid conjugates to regulate the surface attributes and transfection activity of lipid-DNA particles. J Pharm Sci. 2000;89:652–663. DOI:10.1002/(SICI)1520-6017(200005)89:5<652::AID-JPS11>3.0.CO;2-H.
  • Gomes-Da-Silva LC, Fonseca NA, Moura V, et al. Lipid-based nanoparticles for siRNA delivery in cancer therapy: paradigms and challenges. Acc Chem Res. 2012;45:1163–1171. DOI:10.1021/ar300048p
  • Sato Y, Hatakeyama H, Sakurai Y, et al. A pH-sensitive cationic lipid facilitates the delivery of liposomal siRNA and gene silencing activity in vitro and in vivo. J Control Release. 2012;163:267–276. DOI:10.1016/j.jconrel.2012.07.028.
  • Grunwald T, Ulbert S. Improvement of DNA vaccination by adjuvants and sophisticated delivery devices: vaccine-platforms for the battle against infectious diseases. Clin Exp Vaccine Res. 2015;4:1–10. DOI:10.7774/cevr.2015.4.2.177.
  • Tros De Ilarduya C, Düzgüneş N. Delivery of therapeutic nucleic acids via transferrin and transferrin receptors: lipoplexes and other carriers. Expert Opin Drug Deliv. 2013;10:1583–1591. DOI:10.1517/17425247.2013.837447.
  • Pardridge WM. Re-engineering biopharmaceuticals for delivery to brain with molecular trojan horses. Bioconjug Chem. 2008;19:1327–1338. DOI:10.1021/bc800148t.
  • Duarte S, Faneca H, Lima MC. Folate-associated lipoplexes mediate efficient gene delivery and potent antitumoral activity in vitro and in vivo. Int J Pharm. 2012;423:365–377. DOI:10.1016/j.ijpharm.2011.12.035.
  • Senzer N, Nemunaitis J, Nemunaitis D, et al. Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol Ther. 2013;21:1096–1103. DOI:10.1038/mt.2013.32.
  • Derossi D, Joliot AH, Chassaing G, et al. The third helix of the antennapedia homeodomain translocates through biological membranes. J Biol Chem. 1994;269:10444–10450.
  • Vivès E, Brodin P, Lebleu B. A truncated HIV-1 tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem. 1997;272:16010–16017. DOI:10.1074/jbc.272.25.16010.
  • Liu BR, Liou JS, Huang YW, et al. Intracellular delivery of nanoparticles and dnas by ir9 cell-penetrating peptides. PLoS One. 2013; 8(5):e64205. DOI:10.1371/journal.pone.0064205.
  • Yamano S, Dai J, Yuvienco C, et al. Modified tat peptide with cationic lipids enhances gene transfection efficiency via temperature-dependent and caveolae-mediated endocytosis. J Control Release. 2011;152:278–285. DOI:10.1016/j.jconrel.2011.02.004.
  • Yamano S, Dai J, Hanatani S, et al. Long-term efficient gene delivery using polyethylenimine with modified tat peptide. Biomaterials. 2014;35:1705–1715. DOI:10.1016/j.biomaterials.2014.01.026.
  • Eguchi A, Akuta T, Okuyama H, et al. Protein transduction domain of HIV-1 tat protein promotes efficient delivery of DNA into mammalian cells. J Biol Chem. 2001;276:26204–26210. DOI:10.1074/jbc.M010625200
  • Barnett EM, Elangovan B, Bullok KE, et al. Selective cell uptake of modified tat peptide-fluorophore conjugates in rat retina in ex vivo and in vivo models. Investig Ophthalmol Vis Sci. 2006;47:2589–2595. DOI:10.1167/iovs.05-1470.
  • Futaki S, Ohashi W, Suzuki T, et al. Stearylated arginine-rich peptides: a new class of transfection systems. Bioconjug Chem. 2001;12:1005–1011. DOI:10.1021/bc015508l.
  • Zhang F, Xing J, Liou AKF, et al. Enhanced delivery of erythropoietin across the blood-brain barrier for neuroprotection against ischemic neuronal injury. Transl Stroke Res. 2010;1:113–121. DOI:10.1007/s12975-010-0019-3.
  • Lv H, Zhang S, Wang B, et al. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release. 2006;114:100–109. DOI:10.1016/j.jconrel.2006.06.001.
  • Järver P, Mäger I, Langel Ü. In vivo biodistribution and efficacy of peptide mediated delivery. Trends Pharmacol Sci. 2010;31:528–535. DOI:10.1016/j.tips.2010.07.006.
  • Lönn P, Dowdy SF. Cationic PTD/CPP-mediated macromolecular delivery: charging into the cell. Expert Opin Drug Deliv. 2015;5247:1–10.
  • Sugita T, Yoshikawa T, Mukai Y, et al. Comparative study on transduction and toxicity of protein transduction domains. Br J Pharmacol. 2008;153:1143–1152. DOI:10.1038/bjp.2008.22.
  • Huang YW, Lee HJ, Tolliver LM, et al. Delivery of nucleic acids and nanomaterials by cell-penetrating peptides: opportunities and challenges. Biomed Res Int. 2015;2015.DOI:10.1155/2015/834079.
  • Crombez L, Morris MC, Dufort S, et al. Targeting cyclin B1 through peptide-based delivery of siRNA prevents tumour growth. Nucleic Acids Res. 2009;37:4559–4569. DOI:10.1093/nar/gkp451.
  • Eguchi A, Dowdy SF. siRNA delivery using peptide transduction domains. Trends Pharmacol Sci. 2009;30:341–345. DOI:10.1016/j.tips.2009.04.009.
  • Kitai Y, Fukuda H, Enomoto T, et al. Cell selective targeting of a simian virus 40 virus-like particle conjugated to epidermal growth factor. J Biotechnol. 2011;155:251–256. DOI:10.1016/j.jbiotec.2011.07.013.
  • Green M, Loewenstein PM. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell. 1988;55:1179–1188. DOI:10.1016/0092-8674(88)90262-0.
  • Fawell S, Seery J, Daikh Y, et al. Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci U S A. 1994;91:664–668. DOI:10.1073/pnas.91.2.664.
  • Perez F, Joliot A, Bloch-Gallego E, et al. Antennapedia homeobox as a signal for the cellular internalization and nuclear addressing of a small exogenous peptide. J Cell Sci. 1992;102(Pt 4):717–722.
  • Elmquist A, Lindgren M, Bartfai T, et al. VE-cadherin-derived cell-penetrating peptide, pVEC, with carrier functions. Exp Cell Res. 2001;269:237–244. DOI:10.1006/excr.2001.5316
  • El-Andaloussi S, Johansson HJ, Holm T, et al. A novel cell-penetrating peptide, M918, for efficient delivery of proteins and peptide nucleic acids. Mol Ther. 2007;15:1820–1826. DOI:10.1038/sj.mt.6300179.
  • Morris MC, Depollier J, Mery J, et al. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol. 2001;19:1173–1176. DOI:10.1038/nbt1201-1173.
  • Morris MC, Chaloin L, Choob M, et al. Combination of a new generation of PNAs with a peptide-based carrier enables efficient targeting of cell cycle progression. Gene Ther. 2004;11:757–764. DOI:10.1038/sj.gt.3302235.
  • Montrose K, Yang Y, Sun X, et al. Xentry, a new class of cell-penetrating peptide uniquely equipped for delivery of drugs. Sci Rep. 2013;3:1–7. DOI:10.1038/srep01661.
  • Zhou H, Wu S, Joo JY, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell. 2009;4:381–384. DOI:10.1016/j.stem.2009.04.005.
  • Hällbrink M, Florén A, Elmquist A, et al. Cargo delivery kinetics of cell-penetrating peptides. Biochim Biophys Acta - Biomembr. 2001;1515:101–109. DOI:10.1016/S0005-2736(01)00398-4.
  • Drin G, Cottin S, Blanc E, et al. Studies on the internalization mechanism of cationic cell-penetrating peptides. J Biol Chem. 2003;278:31192–31201. DOI:10.1074/jbc.M303938200.
  • Mangeot P-E, Dollet S, Girard M, et al. protein transfer into human cells by VSV-G-induced nanovesicles. Mol Ther. 2011;19:1656–1666. DOI:10.1038/mt.2011.138
  • Roy P, Noad R. Virus-like particles as a vaccine delivery system: myths and facts. Adv Exp Med Biol. 2009;655:145–158.
  • Teunissen EA, De Raad M, Mastrobattista E. Production and biomedical applications of virus-like particles derived from polyomaviruses. J Control Release. 2013;172:305–321. DOI:10.1016/j.jconrel.2013.08.026
  • Slilaty SN, Aposhian HV. Gene transfer by polyoma-like particles assembled in a cell-free system. Science. 1983;220:725–727. DOI:10.1126/science.220.4595.360-d.
  • Forstová J, Krauzewicz N, Sandig V, et al. Polyoma virus pseudocapsids as efficient carriers of heterologous DNA into mammalian cells. Hum Gene Ther. 1995;6:297–306. DOI:10.1089/hum.1995.6.11-1403.
  • Chang C, Wang M, Ou W, et al. Human JC virus-like particles as a gene delivery vector. 2011:11(9):1169–1175. DOI:10.1517/14712598.2011.583914.
  • Tolstov YL, Pastrana DV, Feng H, et al. Human merkel cell polyomavirus infection II. MCV is a common human infection that can be detected by conformational capsid epitope immunoassays. Int J Cancer. 2009;125:1250–1256. DOI:10.1002/ijc.24509.
  • Forstová J, Krauzewicz N, Wallace S, et al. Cooperation of structural proteins during late events in the life cycle of polyomavirus. J Virol. 1993;67:1405–1413.
  • Citkowicz A, Petry H, Harkins RN, et al. Characterization of virus-like particle assembly for DNA delivery using asymmetrical flow field-flow fractionation and light scattering. Anal Biochem. 2008;376:163–172. DOI:10.1016/j.ab.2008.02.011.
  • Pawlita M, Müller M, Oppenländer M, et al. DNA encapsidation by viruslike particles assembled in insect cells from the major capsid protein VP1 of B-lymphotropic papovavirus. J Virol. 1996;70:7517–7526.
  • Okimoto T, Friedmann T, Miyanohara A. VSV-G envelope glycoprotein forms complexes with plasmid DNA and MLV retrovirus-like particles in cell-free conditions and enhances DNA transfection. Mol Ther. 2001;4:232–238. DOI:10.1006/mthe.2001.0443
  • Johne R, Müller H. Nuclear localization of avian polyomavirus structural protein VP1 is a prerequisite for the formation of virus-like particles. J Virol. 2004;78:930–937. DOI:10.1128/JVI.78.2.930-937.2004.
  • Abe A, Miyanohara A, Friedmann T. Enhanced gene transfer with fusogenic liposomes containing vesicular stomatitis virus G glycoprotein. J Virol. 1998;72:6159–6163.
  • Chen LS, Wang M, Ou WC, et al. Efficient gene transfer using the human JC virus-like particle that inhibits human colon adenocarcinoma growth in a nude mouse model. Gene Ther. 2010;17:1033–1041. DOI:10.1038/gt.2010.50
  • Fang C-Y, Tsai Y-D, Lin M-C, et al. Inhibition of human bladder cancer growth by a suicide gene delivered by JC polyomavirus virus-like particles in a mouse model. J Urol. 2015;193:2100–2106. DOI:10.1016/j.juro.2014.12.023.
  • Finkelshtein D, Werman A, Novick D, et al. LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc Natl Acad Sci U S A. 2013;110:7306–7311. DOI:10.1073/pnas.1214441110.
  • Kimchi-Sarfaty C, Brittain S, Garfield S, et al. Efficient delivery of RNA interference effectors via in vitro-packaged SV40 pseudovirions. Hum Gene Ther. 2005;16:1110–1115. DOI:10.1089/hum.2005.16.1110.
  • Lin MC, Wang M, Fang CY, et al. Inhibition of BK virus replication in human kidney cells by BK virus large tumor antigen-specific shRNA delivered by JC virus-like particles. Antiviral Res. 2014;103:25–31. DOI:10.1016/j.antiviral.2013.12.013.
  • Azizgolshani O, Garmann RF, Cadena-Nava R, et al. Reconstituted plant viral capsids can release genes to mammalian cells. Virology. 2013;441:12–17. DOI:10.1016/j.virol.2013.03.001.
  • Keswani R, Su K, Pack DW. Efficient in vitro gene delivery by hybrid biopolymer/virus nanobiovectors. J Control Release. 2014;192:40–46. DOI:10.1016/j.jconrel.2014.06.060.
  • Keswani RK, Pozdol IM, Pack DW. Design of hybrid lipid/retroviral-like particle gene delivery vectors. Mol Pharm. 2013;10:1725–1735. DOI:10.1021/mp300561y.
  • May T, Gleiter S, Lilie H. Assessment of cell type specific gene transfer of polyoma virus like particles presenting a tumor specific antibody Fv fragment. J Virol Methods. 2002;105:147–157. DOI:10.1016/S0166-0934(02)00099-X.
  • Gleiter S, Lilie H. Cell-type specific targeting and gene expression using a variant of polyoma VP1 virus-like particles. Biol Chem. 2003;384:247–255. DOI:10.1515/BC.2003.028.
  • Hung ME, Leonard JN. A platform for actively loading cargo RNA to elucidate limiting steps in EV-mediated delivery. J Extracell Vesicles. 2016;1:1–13.
  • Colombo M, Moita C, van Niel G, et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 2013;126:5553–5565. DOI:10.1242/jcs.128876
  • Trajkovic K, Hsu C, Chiantia S, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008;319:1244–1247. DOI:10.1126/science.1153124.
  • Marcus ME, Leonard JN. FedExosomes: engineering therapeutic biological nanoparticles that truly deliver. Pharmaceuticals. 2013;6:659–680. DOI:10.3390/ph6050659
  • Peterson MF, Otoc N, Sethi JK, et al. Integrated systems for exosome investigation. Methods. 2015;87:31–45.DOI:10.1016/j.ymeth.2015.04.015.
  • Alvarez-Erviti L, Seow Y, Yin H, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29:341–345. DOI:10.1038/nbt.1867
  • Bolukbasi MF, Mizrak A, Ozdener GB, et al. miR-1289 and ‘zipcode’-like sequence enrich mRNAs in microvesicles. Mol Ther Nucleic Acids. 2012;1:e10. DOI:10.1038/mtna.2011.2.
  • Koppers-Lalic D, Hogenboom MM, Middeldorp JM, et al. Virus-modified exosomes for targeted RNA delivery; a new approach in nanomedicine. Adv Drug Deliv Rev. 2013;65:348–356. DOI:10.1016/j.addr.2012.07.006.
  • Barreto A, Rodríguez L-S, Rojas OL, et al. Membrane vesicles released by intestinal epithelial cells infected with rotavirus inhibit T-cell function. Viral Immunol. 2010;23:595–608. DOI:10.1089/vim.2009.0113.
  • Ruiss R, Jochum S, Mocikat R, EBV-gp350 confers B-cell tropism to tailored exosomes is a neo-antigen in normal and malignant B cells-a new option for the treatment of B-CLL. PLoS One. 2011;6:e25294. DOI:10.1371/journal.pone.0025294
  • Ohno S, Takanashi M, Sudo K, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther. 2013;21(1):185–191.
  • Thakur BK, Zhang H, Becker A, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 2014;24:766–769. DOI:10.1038/cr.2014.44.
  • Lamichhane TN, Raiker RS, Jay SM. Exogenous DNA loading into extracellular vesicles via electroporation is size-dependent and enables limited gene delivery. Mol Pharm. 2015;12:3650–3657. DOI:10.1021/acs.molpharmaceut.5b00364.
  • Guo X, Huang L. Recent advances in nonviral vectors for gene delivery. Acc Chem Res. 2012;45:971–979. DOI:10.1021/ar200151m.
  • Hatakeyama H, Akita H, Harashima H. A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma. Adv Drug Deliv Rev. 2011;63:152–160. DOI:10.1016/j.addr.2010.09.001.
  • Wagner E. Polymers for siRNA delivery: inspired by viruses to be targeted, dynamic, and precise. Acc Chem Res. 2012;45:1005–1013. DOI:10.1021/ar2002232.
  • Mastrobattista E, van der Aa MAEM, Hennink WE, et al. Artificial viruses: a nanotechnological approach to gene delivery. Nat Rev Drug Discov. 2006;5:115–121. DOI:10.1038/nrd1960.
  • Molino NM, Wang SW. Caged protein nanoparticles for drug delivery. Curr Opin Biotechnol. 2014;28:75–82. DOI:10.1016/j.copbio.2013.12.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.