728
Views
24
CrossRef citations to date
0
Altmetric
Review

Injectable biomaterials for stem cell delivery and tissue regeneration

Pages 49-62 | Received 15 Jul 2016, Accepted 31 Oct 2016, Published online: 09 Nov 2016

References

  • Mead B, Berry M, Logan A, et al. Stem cell treatment of degenerative eye disease. Stem Cell Res. 2015;14(3):243–257. DOI:10.1016/j.scr.2015.02.003
  • Jeevanantham V, Butler M, Saad A, et al. Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: a systematic review and meta-analysis. Circulation. 2012;126(5):551–568. DOI:10.1161/CIRCULATIONAHA.111.086074
  • Aguado BA, Mulyasasmita W, Su J, et al. Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng Part A. 2012;18(7–8):806–815. DOI:10.1089/ten.TEA.2011.0391
  • Peppas NA. Hydrogels and drug delivery. Curr Opin Colloid Interface Sci. 1997;2(5):531–537. DOI:10.1016/S1359-0294(97)80103-3
  • Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer (Guildf). 2008;49(8):1993–2007. DOI:10.1016/j.polymer.2008.01.027
  • Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2012;64(SUPPL):18–23. DOI:10.1016/j.addr.2012.09.010
  • Ahadian S, Sadeghian RB, Salehi S, et al. Bioconjugated hydrogels for tissue engineering and regenerative medicine. Bioconjug Chem. 2015;26(10):1984–2001. DOI:10.1021/acs.bioconjchem.5b00360
  • Alvarado-Velez M, Pai SB, Bellamkonda RV. Hydrogels as carriers for stem cell transplantation. IEEE Trans Biomed Eng. 2014;61(5):1474–1481. DOI:10.1109/TBME.2014.2305753
  • Kwon JS, Yoon SM, Kwon DY, et al. Injectable in situ-forming hydrogel for cartilage tissue engineering. J Mater Chem B. 2013;1(26):3314–3321. DOI:10.1039/c3tb20105h
  • Nguyen MM, Gianneschi NC, Christman KL. Developing injectable nanomaterials to repair the heart. Curr Opin Biotechnol. 2015;34:225–231. DOI:10.1016/j.copbio.2015.03.016
  • Pakulska MM, Ballios BG, Shoichet MS. Injectable hydrogels for central nervous system therapy. Biomed Mater. 2012;7(2):24101. DOI:10.1088/1748-6041/7/2/024101
  • Radhakrishnan J, Krishnan UM, Sethuraman S. Hydrogel based injectable scaffolds for cardiac tissue regeneration. Biotechnol Adv. 2014;32(2):449–461. DOI:10.1016/j.biotechadv.2013.12.010
  • Tan H, Marra KG. Injectable, biodegradable hydrogels for tissue engineering applications. Materials (Basel). 2010;3(3):1746–1767. DOI:10.3390/ma3031746
  • Vo TN, Shah SR, Lu S, et al. Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering. Biomaterials. 2016;83:1–11. DOI:10.1016/j.biomaterials.2015.12.026 .
  • Yang JA, Yeom J, Hwang BW, et al. In situ-forming injectable hydrogels for regenerative medicine. Prog Polym Sci. 2014;39(12):1973–1986. DOI:10.1016/j.progpolymsci.2014.07.006
  • Kant A, Reddy S, Shankraiah MM, et al. In situ gelling system - an overview. Pharmacologyonline. 2011;2(1):28–44.
  • Liow SS, Dou Q, Kai D, et al. Thermogels: in situ gelling biomaterial. ACS Biomater Sci Eng. 2016;2:295–316. DOI:10.1021/acsbiomaterials.5b00515
  • Gan T, Zhang Y, Guan Y. In situ gelation of P(NIPAM-HEMA) microgel dispersion and its applications as injectable 3D cell scaffold. Biomacromolecules. 2009;10(6):1410–1415. DOI:10.1021/bm900022m
  • Appel EA, del Barrio J, Loh XJ, et al., Supramolecular polymeric hydrogels. Chem Soc Rev. 2012;41(18):6195. DOI:10.1039/c2cs35264h .
  • Hadjizadeh A, Doillon CJ, Tate MC, et al. Laminin and fibronectin scaffolds enhance neural stem cell transplantation into the injured brain. J Tissue Eng Regen Med. 2009;3(3):208–217. DOI:10.1002/term.154
  • Chenite A, Chaput C, Wang D, et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials. 2000;21(21):2155–2161.
  • Cho J, Heuzey MC, Bégin A, et al. Physical gelation of chitosan in the presence of β-glycerophosphate: the effect of temperature. Biomacromolecules. 2005;6(6):3267–3275. DOI:10.1021/bm050313s
  • Kim KS, Lee JH, Ahn HH, et al. The osteogenic differentiation of rat muscle-derived stem cells in vivo within in situ-forming chitosan scaffolds. Biomaterials. 2008;29(33):4420–4428. DOI:10.1016/j.biomaterials.2008.08.005
  • Lu S, Yang Y, Yao J, et al. Exploration of the nature of a unique natural polymer-based thermosensitive hydrogel. Soft Matter. 2015;12:1–8.
  • Kloxin AM, Kasko AM, Salinas CN, et al., Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science. 2009;324(5923):59–63. DOI:10.1126/science.1169494 .
  • Stowers RS, Allen SC, Suggs LJ. Dynamic phototuning of 3D hydrogel stiffness. Proc Natl Acad Sci U S A. 2015;112(7):1953–1958. DOI:10.1073/pnas.1421897112
  • Burdick JA, Anseth KS. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials. 2002;23(22):4315–4323.
  • Li J, Li X, Ni X, et al. Synthesis and characterization of new biodegradable amphiphilic poly (ethylene oxide)-b-poly [(R)-3-hydroxy butyrate]-b-poly (ethylene oxide) triblock copolymers. Macromolecules. 2003;36(8):2661–2667. DOI:10.1021/ma025725x
  • Chen L, Ci T, Li T, et al. Effects of molecular weight distribution of amphiphilic block copolymers on their solubility, micellization, and temperature- induced Sol-Gel transition in water. Macromolecules. 2014;47(17):5895–5903. DOI:10.1021/ma501110p
  • Jeong B, Bae YH, Kim SW. Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions. Macromolecules. 1999;32:7064–7069. DOI:10.1021/ma9908999
  • Dupont S, Morsut L, Aragona M, et al., Role of YAP/TAZ in mechanotransduction. Nature. 2011;474(7350):179–183. DOI:10.1038/nature10137 .
  • Aragona M, Panciera T, Manfrin A, et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell. 2013;154(5):1047–1059. DOI:10.1016/j.cell.2013.07.042
  • Engler AJ, Sen S, Sweeney HL, et al., Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–689. DOI:10.1016/j.cell.2006.06.044 .
  • Wang T, Wu DQ, Jiang XJ, et al. Novel thermosensitive hydrogel injection inhibits post-infarct ventricle remodelling. Eur J Heart Fail. 2009;11(1):14–19. DOI:10.1093/eurjhf/hfn009
  • Fujimoto KL, Ma Z, Nelson DM, et al. Synthesis, characterization and therapeutic efficacy of a biodegradable, thermoresponsive hydrogel designed for application in chronic infarcted myocardium. Biomaterials. 2009;30(26):4357–4368. DOI:10.1016/j.biomaterials.2009.04.055
  • Li Z, Guo X, Palmer AF, et al. High-efficiency matrix modulus-induced cardiac differentiation of human mesenchymal stem cells inside a thermosensitive hydrogel. Acta Biomater. 2012;8(10):3586–3595. DOI:10.1016/j.actbio.2012.06.024
  • Li Z, Guo X, Matsushita S, et al. Differentiation of cardiosphere-derived cells into a mature cardiac lineage using biodegradable poly(N-isopropylacrylamide) hydrogels. Biomaterials. 2011;32(12):3220–3232. DOI:10.1016/j.biomaterials.2011.01.050
  • Park MH, Yu Y, Moon HJ, et al. 3D culture of tonsil-derived mesenchymal stem cells in poly (ethylene glycol)-Poly (L-alanine-co-L-phenyl alanine) Thermogel. Adv Healthc Mater. 2014;3:1782–1791. DOI:10.1002/adhm.201400140.
  • Choi BG, Park MH, Cho SH, et al. In situ thermal gelling polypeptide for chondrocytes 3D culture. Biomaterials. 2010;31(35):9266–9272. DOI:10.1016/j.biomaterials.2010.08.067
  • Hacker MC, Klouda L, Ma BB, et al. Synthesis and characterization of injectable, thermally and chemically gelable, amphiphilic poly(N-isopropylacrylamide)-based macromers. Biomacromolecules. 2008;9(6):1558–1570. DOI:10.1021/bm8000414
  • Davies NM, Fair SJ, Hadgraft J, et al. Evaluation of mucoadhesive polymers in ocular drug delivery. I. Viscous solutions. Pharm Res. 1991;8(8):1039–1043.
  • Dai Z, Shu Y, Wan C, et al. Effects of pH and thermally sensitive hybrid gels on osteogenic differentiation of mesenchymal stem cells. J Biomater Appl. 2015;29(9):1272–1283. DOI:10.1177/0885328214557904
  • Hoemann CD, Sun J, Légaré A, et al. Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle. Osteoarthr Cartil. 2005;13(4):318–329. DOI:10.1016/j.joca.2004.12.001
  • Hou S, Wang X, Park S, et al. Rapid self-integrating, injectable hydrogel for tissue complex regeneration. Adv Healthc Mater. 2015;4(10):1491–1495. DOI:10.1002/adhm.201500093
  • Gupta D, Tator CH, Shoichet MS. Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials. 2006;27(11):2370–2379. DOI:10.1016/j.biomaterials.2005.11.015
  • Guvendiren M, Lu HD, Burdick JA. Shear-thinning hydrogels for biomedical applications. Soft Matter. 2012;8:260–272. DOI:10.1039/C1SM06513K
  • Kloxin AM, Kasko AM, Salinas CN, et al. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science. 2016;324(5923):59–63.
  • Behravesh E, Jo S, Zygourakis K, et al. Synthesis of in situ cross-linkable macroporous biodegradable poly (propylene fumarate-co-ethylene glycol) hydrogels. Biomacromolecules. 2002;3:374–381.
  • Zhang Z, Eyster T, Ma PX. Nanostructured injectable cell microcarriers for tissue regeneration. Nanomedicine (London, England). 2016;11(12):1611–1628. DOI:10.2217/nnm-2016-0083
  • Lau TT, Wang C, Wang DA. Cell delivery with genipin crosslinked gelatin microspheres in hydrogel/microcarrier composite. Compos Sci Technol. 2010;70(13):1909–1914. DOI:10.1016/j.compscitech.2010.05.015
  • Feyen DAM, Gaetani R, Deddens J, et al. Gelatin microspheres as vehicle for cardiac progenitor cells delivery to the myocardium. Adv Healthc Mater. 2016;5:1071–1079. DOI:10.1002/adhm.201500861
  • Malda J, Kreijveld E, Temenoff JS, et al. Expansion of human nasal chondrocytes on macroporous microcarriers enhances redifferentiation. Biomaterials. 2003;24(28):5153–5161.
  • Jayasuriya A, Kibbe S. Rapid biomineralization of chitosan microparticles to apply in bone regeneration. J Mater Sci Mater Med. 2010;21(2):393–398. DOI:10.1007/s10856-009-3874-2
  • Yang Z, Yuan S, Liang B, et al. Chitosan microsphere scaffold tethered with RGD-conjugated poly(methacrylic acid) brushes as effective carriers for the endothelial cells. Macromol Biosci. 2014;14(9):1299–1311. DOI:10.1002/mabi.201400136
  • Custódio CA, Cerqueira MT, Marques AP, et al. Cell selective chitosan microparticles as injectable cell carriers for tissue regeneration. Biomaterials. 2015;43(1):23–31. DOI:10.1016/j.biomaterials.2014.11.047
  • Chan BP, Hui TY, Yeung CW, et al. Self-assembled collagen-human mesenchymal stem cell microspheres for regenerative medicine. Biomaterials. 2007;28(31):4652–4666. DOI:10.1016/j.biomaterials.2007.07.041
  • Wang H, Leeuwenburgh SCG, Li Y, et al. The use of micro-and nanospheres as functional components for bone tissue regeneration. Tissue Eng Part B Rev. 2012;18(1):24–39. DOI:10.1089/ten.TEB.2011.0184
  • Lee CSD, Moyer HR, Ra GI, et al. Regulating in vivo calcification of alginate microbeads. Biomaterials. 2010;31(18):4926–4934. DOI:10.1016/j.biomaterials.2010.03.001
  • Saltz A, Kandalam U. Mesenchymal stem cells and alginate microcarriers for craniofacial bone tissue engineering: a review. J Biomed Mater Res A. 2016;1276–1284. DOI:10.1002/jbm.a.35647
  • Newman KD, McBurney MW. Poly(D,L lactic-co-glycolic acid) microspheres as biodegradable microcarriers for pluripotent stem cells. Biomaterials. 2004;25(26):5763–5771. DOI:10.1016/j.biomaterials.2004.01.027
  • Bible E, Chau DYS, Alexander MR, et al., Attachment of stem cells to scaffold particles for intra-cerebral transplantation. Nat Protoc. 2009;4(10):1440–1453. DOI:10.1038/nprot.2009.156 .
  • Bible E, Chau DYS, Alexander MR, et al. The support of neural stem cells transplanted into stroke-induced brain cavities by PLGA particles. Biomaterials. 2009;30(16):2985–2994. DOI:10.1016/j.biomaterials.2009.02.012
  • Bible E, Qutachi O, Chau DYS, et al. Neo-vascularization of the stroke cavity by implantation of human neural stem cells on VEGF-releasing PLGA microparticles. Biomaterials. 2012;33(30):7435–7446. DOI:10.1016/j.biomaterials.2012.06.085
  • Qutachi O, Vetsch JR, Gill D, et al., Injectable and porous PLGA microspheres that form highly porous scaffolds at body temperature. Acta Biomater. 2014;10(12):5090–5098. DOI:10.1016/j.actbio.2014.08.015 .
  • Kang SW, Jeon O, Kim BS. Poly(lactic-co-glycolic acid) microspheres as an injectable scaffold for cartilage tissue engineering. Tissue Eng. 2005;11(3–4):438–447. DOI:10.1089/ten.2005.11.438
  • Chen R, Curran SJ, Curran JM, et al. The use of poly(l-lactide) and RGD modified microspheres as cell carriers in a flow intermittency bioreactor for tissue engineering cartilage. Biomaterials. 2006;27(25):4453–4460. DOI:10.1016/j.biomaterials.2006.04.011
  • Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 2009;61(2):158–171. DOI:10.1016/j.addr.2008.11.002
  • Yallapu MM, Gupta BK, Jaggi M, et al. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci. 2010;351(1):19–29. DOI:10.1016/j.jcis.2010.05.022
  • Lai SK, O’Hanlon DE, Harrold S, et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci USA. 2007;104(5):1482–1487. DOI:10.1073/pnas.0608611104
  • Sahoo SK, Panyam J, Prabha S, et al. Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release. 2002;82:105–114.
  • Gu Z, Aimetti AA, Wang Q, et al., Injectable nano-network for glucose-mediated insulin delivery. ACS Nano. 2013;7(5):4194–4201. DOI:10.1021/nn400630x .
  • Liu X, Won Y, Ma PX. Surface modification of interconnected porous scaffolds. J Biomed Mater Res - Part A. 2005;74(1):84–91. DOI:10.1002/jbm.a.30367
  • Bouffi C, Thomas O, Bony C, et al. The role of pharmacologically active microcarriers releasing TGF-beta3 in cartilage formation in vivo by mesenchymal stem cells. Biomaterials. 2010;31(25):6485–6493. DOI:10.1016/j.biomaterials.2010.05.013
  • Marquette S, Peerboom C, Yates A, et al. Encapsulation of immunoglobulin G by solid-in-oil-in-water: effect of process parameters on microsphere properties. Eur J Pharm Biopharm. 2014;86(3):393–403. DOI:10.1016/j.ejpb.2013.10.013
  • Han Y, Wei Y, Wang S, et al. Enhanced chondrogenesis of adipose-derived stem cells by the controlled release of transforming growth factor-β1 from hybrid microspheres. Gerontology. 2009;55(5):592–599. DOI:10.1159/000235547
  • Park JS, Yang HN, Woo DG, et al., The promotion of chondrogenesis, osteogenesis, and adipogenesis of human mesenchymal stem cells by multiple growth factors incorporated into nanosphere-coated microspheres. Biomaterials. 2011;32(1):28–38. DOI:10.1016/j.biomaterials.2010.08.088 .
  • Pitukmanorom P, Yong T-H, Ying JY. Tunable release of proteins with polymer–inorganic nanocomposite microspheres. Adv Mater. 2008;20(18):3504–3509. DOI:10.1002/adma.200800930
  • Valente JFA, Gaspar VM, Antunes BP, et al. Microencapsulated chitosan–dextran sulfate nanoparticles for controled delivery of bioactive molecules and cells in bone regeneration. Polymer (Guildf). 2013;54:5–15. DOI:10.1016/j.polymer.2012.10.032
  • Liao H, Walboomers XF, Habraken WJEM, et al. Injectable calcium phosphate cement with PLGA, gelatin and PTMC microspheres in a rabbit femoral defect. Acta Biomater. 2011;7(4):1752–1759. DOI:10.1016/j.actbio.2010.12.020
  • Wang H, Bongio M, Farbod K, et al. Development of injectable organic/inorganic colloidal composite gels made of self-assembling gelatin nanospheres and calcium phosphate nanocrystals. Acta Biomater. 2014;10(1):508–519. DOI:10.1016/j.actbio.2013.08.036
  • Mieszawska AJ, Fourligas N, Georgakoudi I, et al. Osteoinductive silk/silica composite biomaterials for bone regeneration. Biomaterials. 2010;31(34):8902–8910. DOI:10.1016/j.biomaterials.2010.07.109
  • Wang P, Zhao L, Liu J, et al. Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Research. 2014;2:14017.
  • Kim HW, Gu HJ, Lee HH. Microspheres of collagen-apatite nanocomposites with osteogenic potential for tissue engineering. Tissue Eng. 2007;13(5):965–973. DOI:10.1089/ten.2006.0299
  • Webster TJ, Ergun C, Doremus RH, et al. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res. 2000;51(3):475–483.
  • Kim H-W, Yoon B-H, Kim H-E. Microsphere of apatite-gelatin nanocomposite as bone regenerative filler. J Mater Sci Mater Med. 2005;16(12):1105–1109. DOI:10.1007/s10856-005-4714-7
  • Zhang Z, Hu J, Ma PX. Nanofiber-based delivery of bioactive agents and stem cells to bone sites. Adv Drug Deliv Rev. 2012;64(12):1129–1141. DOI:10.1016/j.addr.2012.04.008
  • Hu J, Feng K, Liu X, et al. Chondrogenic and osteogenic differentiations of human bone marrow-derived mesenchymal stem cells on a nanofibrous scaffold with designed pore network. Biomaterials. 2009;30(28):5061–5067. DOI:10.1016/j.biomaterials.2009.06.013
  • Yin Z, Chen X, Chen JL, et al. The regulation of tendon stem cell differentiation by the alignment of nanofibers: aligned fibers promote stem cell differentiation towards tendon-like cells. Biomaterials. 2010;31(8):2163–2175. DOI:10.1016/j.biomaterials.2009.11.083
  • Prabhakaran MP, Venugopal JR, Ramakrishna S, et al. Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials. 2009;30(28):4996–5003. DOI:10.1016/j.biomaterials.2009.05.057
  • Yang F, Murugan R, Wang S, et al. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials. 2005;26(15):2603–2610. DOI:10.1016/j.biomaterials.2004.06.051
  • Silva GA, Czeisler C, Niece KL, et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Adv Sci. 2004;303(5662):1352–1355.
  • Li WJ, Tuli R, Huang X, et al. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials. 2005;26(25):5158–5166. DOI:10.1016/j.biomaterials.2005.01.002
  • Holzwarth JM, Ma PX. Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials. 2011;32(36):9622–9629. DOI:10.1016/j.biomaterials.2011.09.009
  • Gupte MJ, Ma PX. Nanofibrous scaffolds for dental and craniofacial applications. J Dent Res. 2012;91(3):227–234. DOI:10.1177/0022034511417441
  • Wingate K, Bonani W, Tan Y, et al. Compressive elasticity of three-dimensional nanofiber matrix directs mesenchymal stem cell differentiation to vascular cells with endothelial or smooth muscle cell markers. Acta Biomater. 2012;8(4):1440–1449. DOI:10.1016/j.actbio.2011.12.032
  • Liu X, Jin X, Ma PX. Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair. Nat Mater. 2011;10(5):398–406. DOI:10.1038/nmat2999
  • Zhang Z, Ma PX. From nanofibrous hollow microspheres to nanofibrous hollow discs and nanofibrous shells. Macromol Rapid Commun. 2015;36(19):1735–1741. DOI:10.1002/marc.201500342
  • Ma C, Jing Y, Sun H, et al. Hierarchical nanofibrous microspheres with controlled growth factor delivery for bone regeneration. Adv Healthc Mater. 2015;4(17):2699–2708. DOI:10.1002/adhm.201500531
  • Zhang Z, Marson RL, Ge Z, et al., Simultaneous nano- and microscale control of nanofibrous microspheres self-assembled from star-shaped polymers. Adv Mater. 2015;27(26):3947–3952. DOI:10.1002/adma.201501329
  • Choi S-W, Zhang Y, Yeh Y-C, et al. Biodegradable porous beads and their potential applications in regenerative medicine. J Mater Chem. 2012;22(23):11442. DOI:10.1039/c2jm16019f
  • Ryu TK, Oh MJ, Moon SK, et al. Uniform tricalcium phosphate beads with an open porous structure for tissue engineering. Colloids Surfaces B Biointerfaces. 2013;112:368–373. DOI:10.1016/j.colsurfb.2013.08.023
  • Yang Y, Bajaj N, Xu P, et al. Development of highly porous large PLGA microparticles for pulmonary drug delivery. Biomaterials. 2009;30(10):1947–1953. DOI:10.1016/j.biomaterials.2008.12.044
  • Lim SM, Lee HJ, Oh SH, et al. Novel fabrication of PCL porous beads for use as an injectable cell carrier system. J Biomed Mater Res B Appl Biomater. 2009;90(2):521–530. DOI:10.1002/jbm.b.31313
  • Maeng YJ, Choi SW, Kim HO, et al. Culture of human mesenchymal stem cells using electrosprayed porous chitosan microbeads. J Biomed Mater Res A. 2010;92(3):869–876. DOI:10.1002/jbm.a.32417
  • Kang S, La WG, Kim B. Open macroporous poly(lactic-co-glycolic Acid) microspheres as an injectable scaffold for cartilage tissue engineering. J Biomater Sci Polym Ed. 2009;20(3):399–409. DOI:10.1163/156856209X412236
  • Chung HJ, Park TG. Injectable cellular aggregates prepared from biodegradable porous microspheres for adipose tissue engineering. Tissue Eng Part A. 2009;15(0):1391–1400. DOI:10.1089/ten.tea.2008.0344
  • Kuang R, Zhang Z, Jin X, et al. Nanofibrous spongy microspheres enhance odontogenic differentiation of human dental pulp stem cells. Adv Healthc Mater. 2015;4(13):1993–2000. DOI:10.1002/adhm.201500308
  • Kuang R, Zhang Z, Jin X, et al. Nanofibrous spongy microspheres for the delivery of hypoxia-primed human dental pulp stem cells to regenerate vascularized dental pulp. Acta Biomater. 2016;33:225–234. DOI:10.1016/j.actbio.2016.01.032
  • Wang W, Dang M, Zhang Z, et al. Dentin regeneration by stem cells of apical papilla on injectable nanofibrous microspheres and stimulated by controlled BMP-2 release. Acta Biomater. 2016;36:63–72. DOI:10.1016/j.actbio.2016.03.015
  • Zhang Z, Gupte MJ, Jin X, et al., Injectable peptide decorated functional nanofibrous hollow microspheres to direct stem cell differentiation and tissue regeneration. Adv Funct Mater. 2015;25(3):350–360. DOI:10.1002/adfm.201402618

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.