786
Views
50
CrossRef citations to date
0
Altmetric
Drug Evaluation

Denosumab: targeting the RANKL pathway to treat rheumatoid arthritis

&
Pages 119-128 | Received 23 Aug 2016, Accepted 18 Nov 2016, Published online: 30 Nov 2016

References

  • Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93(2):165–176.
  • Lacey DL, Tan HL, Lu J, et al. Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo. Am J Pathol. 2000;157(2):435–448. DOI:10.1016/S0002-9440(10)64556-7
  • Papapoulos S, Lippuner K, Roux C, et al., The effect of 8 or 5 years of denosumab treatment in postmenopausal women with osteoporosis: results from the FREEDOM Extension study. Osteoporos Int. 26(12): 2773–2783. 2015. DOI:10.1007/s00198-015-3234-7
  • Torring O. Effects of denosumab on bone density, mass and strength in women with postmenopausal osteoporosis. Ther Adv Musculoskelet Dis. 2015;7(3):88–102. DOI:10.1177/1759720X15579189.
  • Adami S, Libanati C, Boonen S, et al. Denosumab treatment in postmenopausal women with osteoporosis does not interfere with fracture-healing: results from the FREEDOM trial. J Bone Joint Surg Am. 2012;94(23):2113–2119. DOI:10.2106/JBJS.K.00774
  • Takeuchi T, Tanaka Y, Ishiguro N, et al. Response to: ‘Denosumab, cortical bone and bone erosion in rheumatoid arthritis’ by Rossini. Ann Rheum Dis. 2016;75(10):e71. DOI:10.1136/annrheumdis-2016-210027
  • Rossini M, Adami G, Viapiana O, et al. Denosumab, cortical bone and bone erosions in rheumatoid arthritis. Ann Rheum Dis. 2016;75(10):e70. DOI:10.1136/annrheumdis-2016-210022.
  • Cummings SR, San Martin J, McClung MR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361(8):756–765. DOI:10.1056/NEJMoa0809493
  • Diedhiou D, Cuny T, Sarr A, et al. Efficacy and safety of denosumab for the treatment of osteoporosis: a systematic review. Ann Endocrinol (Paris). 2015;76(6):650–657. DOI:10.1016/j.ando.2015.10.009.
  • Zebaze RM, Libanati C, McClung MR, et al. Denosumab reduces cortical porosity of the proximal femoral shaft in postmenopausal women with osteoporosis. J Bone Miner Res. 2016;31:1827–1834. DOI:10.1002/jbmr.v31.10.
  • Zhou Z, Chen C, Zhang J, et al. Safety of denosumab in postmenopausal women with osteoporosis or low bone mineral density: a meta-analysis. Int J Clin Exp Pathol. 2014;7(5):2113–2122.
  • Cleeland CS, Body JJ, Stopeck A, et al. Pain outcomes in patients with advanced breast cancer and bone metastases: results from a randomized, double-blind study of denosumab and zoledronic acid. Cancer. 2013;119(4):832–838. DOI:10.1002/cncr.27789
  • Martin M, Bell R, Bourgeois H, et al. Bone-related complications and quality of life in advanced breast cancer: results from a randomized phase III trial of denosumab versus zoledronic acid. Clin Cancer Res. 2012;18(17):4841–4849. DOI:10.1158/1078-0432.CCR-11-3310
  • Stopeck A. Denosumab findings in metastatic breast cancer. Clin Adv Hematol Oncol. 2010;8(3):159–160.
  • Stopeck AT, Fizazi K, Body JJ, et al. Safety of long-term denosumab therapy: results from the open label extension phase of two phase 3 studies in patients with metastatic breast and prostate cancer. Support Care Cancer. 2016;24(1):447–455. DOI:10.1007/s00520-015-2904-5
  • Stopeck AT, Lipton A, Body JJ, et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol. 2010;28(35):5132–5139. DOI:10.1200/JCO.2010.29.7101
  • Wang X, Yang KH, Wanyan P, et al. Comparison of the efficacy and safety of denosumab versus bisphosphonates in breast cancer and bone metastases treatment: a meta-analysis of randomized controlled trials. Oncology Letters. 2014;7(6):1997–2002. DOI:10.3892/ol.2014.1982.
  • Hensvold AH, Joshua V, Li W, et al. Serum RANKL levels associate with anti- citrullinated protein antibodies in early untreated rheumatoid arthritis and are modulated following methotrexate. Arthritis Res Ther. 2015;17:239. DOI:10.1186/s13075-015-0760-9.
  • Li CH, Xu LL, Zhao JX, et al. CXCL16 upregulates RANKL expression in rheumatoid arthritis synovial fibroblasts through the JAK2/STAT3 and p38/MAPK signaling pathway. Inflamm Res. 2016;65(3):193–202. DOI:10.1007/s00011-015-0905-y
  • Hoyer-Kuhn H, Franklin J, Allo G, et al. Safety and efficacy of denosumab in children with osteogenesis imperfecta - a first prospective trial. J Musculoskelet Neuronal Interact. 2016;16(1):24–32.
  • Langdahl BL, Teglbjaerg CS, Ho PR, et al. A 24-month study evaluating the efficacy and safety of denosumab for the treatment of men with low bone mineral density: results from the ADAMO trial. J Clin Endocrinol Metab. 2015;100(4):1335–1342. DOI:10.1210/jc.2014-4079
  • Sharp T, Tsuji W, Ory P, et al. Denosumab prevents metacarpal shaft cortical bone loss in patients with erosive rheumatoid arthritis. Arthritis Care Res. 2010;62(4): 537–544. DOI:10.1002/acr.20172
  • Gatti D, Viapiana O, Fracassi E, et al. Sclerostin and DKK1 in postmenopausal osteoporosis treated with denosumab. J Bone Miner Res. 2012;27(11):2259–2263. DOI:10.1002/jbmr.1681
  • Brown JE, Coleman RE. Denosumab in patients with cancer-a surgical strike against the osteoclast. Nat Rev Clin Oncol. 2012;9(2):110–118. DOI:10.1038/nrclinonc.2011.197.
  • Brown-Glaberman U, Stopeck AT. Impact of denosumab on bone mass in cancer patients. Clin Pharmacol. 2013;5:117–129. DOI:10.2147/CPAA.S30330.
  • Cohen SB, Dore RK, Lane NE, et al., Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum. 58(5): 1299–1309. 2008. DOI:10.1002/art.23417
  • Hasegawa T, Kaneko Y, Izumi K, et al. Efficacy of denosumab combined with bDMARDs on radiographic progression in rheumatoid arthritis. Joint Bone Spine. 2016. DOI:10.1016/j.jbspin.2016.05.010.
  • Castellano D, Sepulveda JM, Garcia-Escobar I, et al. The role of RANK-ligand inhibition in cancer: the story of denosumab. Oncologist. 2011;16(2):136–145. DOI:10.1634/theoncologist.2010-0154.
  • Laskowski LK, Goldfarb DS, Howland MA, et al. A RANKL wrinkle: denosumab-induced hypocalcemia. J Med Toxicol. 2016;12:305–308. DOI:10.1007/s13181-016-0543-y
  • Yerram P, Kansagra S, Abdelghany O. Incidence of hypocalcemia in patients receiving denosumab for prevention of skeletal-related events in bone metastasis. J Oncol Pharm Pract. 2016. DOI:10.1177/1078155216628325.
  • Okada N, Kawazoe K, Teraoka K, et al. Identification of the risk factors associated with hypocalcemia induced by denosumab. Biol Pharm Bull. 2013;36(10):1622–1626.
  • Body JJ, Bone HG, De Boer RH, et al. Hypocalcaemia in patients with metastatic bone disease treated with denosumab. Eur J Cancer. 2015;51(13):1812–1821. DOI:10.1016/j.ejca.2015.05.016
  • Prolia. (FDA) FaDA. 2010. Available from: http://www.fda.gov/safety/medwatch/safetyinformation/safety-relateddruglabelingchanges/ucm307218.htm
  • XGEVA, (FDA) FaDA. 2013. Available from: http://www.fda.gov/safety/medwatch/safetyinformation/ucm303740.htm, http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm356528.htm
  • De souza povoa RC, Marliere DA, Da silveira HM, et al. Denosumab-related osteonecrosis of the jaws: successful management with a conservative surgical approach. Spec Care Dentist. 2016;36(4):231–236. DOI:10.1111/scd.12168.
  • Kyrgidis A, Toulis KA. Denosumab-related osteonecrosis of the jaws. Osteoporos Int. 2011;22(1):369–370. DOI:10.1007/s00198-010-1177-6.
  • Malan J, Ettinger K, Naumann E, et al. The relationship of denosumab pharmacology and osteonecrosis of the jaws. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;114(6):671–676. DOI:10.1016/j.oooo.2012.08.439.
  • O’Halloran M, Boyd NM, Smith A. Denosumab and osteonecrosis of the jaws - the pharmacology, pathogenesis and a report of two cases. Aust Dent J. 2014;59(4):516–519. DOI:10.1111/adj.12217.
  • Pichardo SE, Van merkesteyn JP. Evaluation of a surgical treatment of denosumab-related osteonecrosis of the jaws. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016. DOI:10.1016/j.oooo.2016.03.008.
  • Sivolella S, Lumachi F, Stellini E, et al. Denosumab and anti-angiogenetic drug-related osteonecrosis of the jaw: an uncommon but potentially severe disease. Anticancer Res. 2013;33(5):1793–1797.
  • Matsushita Y, Hayashida S, Morishita K, et al. Denosumab-associated osteonecrosis of the jaw affects osteoclast formation and differentiation: pathological features of two cases. Mol Clin Oncol. 2016;4(2):191–194. DOI:10.3892/mco.2015.696
  • Di Nisio C, Zizzari VL, Zara S, et al. RANK/RANKL/OPG signaling pathways in necrotic jaw bone from bisphosphonate-treated subjects. Eur J Histochem. 2015;59(1):2455. DOI:10.4081/ejh.2015.2455
  • Selga J, Nunez JH, Minguell J, et al. Simultaneous bilateral atypical femoral fracture in a patient receiving denosumab: case report and literature review. Osteoporos Int. 2016;27(2):827–832. DOI:10.1007/s00198-015-3355-z.
  • Edwards BJ, Sun M, West DP, et al. Incidence of atypical femur fractures in cancer patients: the MD Anderson cancer center experience. J Bone Miner Res. 2016;31(8):1569–1576. DOI:10.1002/jbmr.2818
  • Edwards BJ, Gradishar WJ, Smith ME, et al. Elevated incidence of fractures in women with invasive breast cancer. Osteoporos Int. 2016;27(2):499–507. DOI:10.1007/s00198-015-3246-3
  • Villiers J, Clark DW, Jeswani T, et al. An atraumatic femoral fracture in a patient with rheumatoid arthritis and osteoporosis treated with denosumab. Case Rep Rheumatol. 2013;2013:249872.
  • Teixeira MZ. Antiresorptive drugs (bisphosphonates), atypical fractures and rebound effect: new evidence of similitude. Homeopathy. 2012;101(4):231–242. DOI:10.1016/j.homp.2012.07.001.
  • Popp AW, Zysset PK, Lippuner K. Rebound-associated vertebral fractures after discontinuation of denosumab-from clinic and biomechanics. Osteoporos Int. 2016;27(5):1917–1921. DOI:10.1007/s00198-015-3458-6.
  • Baron R, Ferrari S, Russell RG. Denosumab and bisphosphonates: different mechanisms of action and effects. Bone. 2011;48(4):677–692. DOI:10.1016/j.bone.2010.11.020.
  • Rodan G, Reszka A, Golub E, et al. Bone safety of long-term bisphosphonate treatment. Curr Med Res Opin. 2004;20(8):1291–1300. DOI:10.1185/030079904125004475.
  • Tonino RP, Meunier PJ, Emkey R, et al. Skeletal benefits of alendronate: 7-year treatment of postmenopausal osteoporotic women. Phase III Osteoporosis Treatment Study Group. J Clin Endocrinol Metab. 2000;85(9):3109–3115. DOI:10.1210/jcem.85.9.6777
  • Bone HG, Hosking D, Devogelaer JP, et al. Ten years’ experience with alendronate for osteoporosis in postmenopausal women. N Engl J Med. 2004;350(12):1189–1199. DOI:10.1056/NEJMoa030897
  • Dore RK, Cohen SB, Lane NE, et al., Effects of denosumab on bone mineral density and bone turnover in patients with rheumatoid arthritis receiving concurrent glucocorticoids or bisphosphonates. Ann Rheum Dis. 69(5): 872–875. 2010. DOI:10.1136/ard.2009.112920
  • Kinoshita H, Miyakoshi N, Kashiwagura T, et al. Comparison of the efficacy of denosumab and bisphosphonates for treating secondary osteoporosis in patients with rheumatoid arthritis. Mod Rheumatol. 2016;1–5. DOI:10.1080/14397595.2016.1232776.
  • Adami G, Orsolini G, Adami S, et al. Effects of TNF inhibitors on parathyroid hormone and Wnt signaling antagonists in rheumatoid arthritis. Calcif Tissue Int. 2016;99:360–364. DOI:10.1007/s00223-016-0161-3.
  • Rossini M, Gatti D, Adami S. Involvement of WNT/beta-catenin signaling in the treatment of osteoporosis. Calcif Tissue Int. 2013;93(2):121–132. DOI:10.1007/s00223-013-9749-z.
  • Street_Journal_Market_Report AW. [ Available from: http://www.fool.com/investing/general/2014/02/03/xgeva-and-prolia-setting-the-pace-for-amgen-inc.aspxhttp://investors.amgen.com/phoenix.zhtml?c=61656&p=irol-newsArticle&ID=1653300http://marketrealist.com/2016/07/xgeva-nplate-sensipar-key-growth-drivers-amgens-revenues-2q16/
  • Takeuchi T, Tanaka Y, Ishiguro N, et al., Effect of denosumab on Japanese patients with rheumatoid arthritis: a dose-response study of AMG 162 (denosumab) in patients with Rheumatoid arthritis on methotrexate to Validate inhibitory effect on bone Erosion (DRIVE)-a 12-month, multicentre, randomised, double-blind, placebo-controlled, phase II clinical trial. Ann Rheum Dis. 75(6): 983–990. 2016. DOI:10.1136/annrheumdis-2015-208052
  • Hazlewood GS, Barnabe C, Tomlinson G, et al. Methotrexate monotherapy and methotrexate combination therapy with traditional and biologic disease modifying antirheumatic drugs for rheumatoid arthritis: abridged Cochrane systematic review and network meta-analysis. Bmj. 2016;353:i1777.
  • Kostenuik PJ, Smith SY, Samadfam R, et al. Effects of denosumab, alendronate, or denosumab following alendronate on bone turnover, calcium homeostasis, bone mass and bone strength in ovariectomized cynomolgus monkeys. J Bone Miner Res. 2015;30(4):657–669. DOI:10.1002/jbmr.2401
  • Xue Y, Cohen JM, Wright NA, et al. Skin signs of rheumatoid arthritis and its therapy-induced cutaneous side effects. Am J Clin Dermatol. 2016;17(2):147–162. DOI:10.1007/s40257-015-0167-z.
  • Baum R, Gravallese EM. Bone as a target organ in rheumatic disease: impact on osteoclasts and osteoblasts. Clin Rev Allergy Immunol. 2016;51(1):1–15.
  • Rossini M, Viapiana O, Adami S, et al. In patients with rheumatoid arthritis, Dickkopf-1 serum levels are correlated with parathyroid hormone, bone erosions and bone mineral density. Clin Exp Rheumatol. 2015;33(1):77–83.
  • Schett G, Gravallese E. Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat Rev Rheumatol. 2012;8(11):656–664. DOI:10.1038/nrrheum.2012.153.
  • Edrees AF, Misra SN, Abdou NI. Anti-tumor necrosis factor (TNF) therapy in rheumatoid arthritis: correlation of TNF-alpha serum level with clinical response and benefit from changing dose or frequency of infliximab infusions. Clin Exp Rheumatol. 2005;23(4):469–474.
  • Manicourt DH, Triki R, Fukuda K, et al. Levels of circulating tumor necrosis factor alpha and interleukin-6 in patients with rheumatoid arthritis. Relationship to serum levels of hyaluronan and antigenic keratan sulfate. Arthritis Rheum. 1993;36(4):490–499.
  • Sakito S, Ueki Y, Eguchi K, et al. Serum cytokines in patients with rheumatoid arthritis. Correlation of interferon gamma and tumor necrosis factor alpha with the characteristics of peripheral blood mononuclear cells. Rheumatol Int. 1995;15(1):31–37.
  • Yen JH, Chen JR, Tsai WJ, et al. Correlation of tumor necrosis factor alpha levels with disease activity of rheumatoid arthritis. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi. 1992;25(4):232–243.
  • Yeo L, Lom H, Juarez M, et al. Expression of FcRL4 defines a pro-inflammatory, RANKL-producing B cell subset in rheumatoid arthritis. Ann Rheum Dis. 2015;74(5):928–935. DOI:10.1136/annrheumdis-2013-204116
  • Meednu N, Zhang H, Owen T, et al. Production of RANKL by memory b cells: a link between b cells and bone erosion in rheumatoid arthritis. Arthritis & Rheumatology. 2016;68(4):805–816. DOI:10.1002/art.39489
  • Huang JC, Sakata T, Pfleger LL, et al. PTH differentially regulates expression of RANKL and OPG. J Bone Miner Res. 2004;19(2):235–244. DOI:10.1359/JBMR.0301226
  • Moller Dohn U, Boonen A, Hetland ML, et al. Erosive progression is minimal, but erosion healing rare, in patients with rheumatoid arthritis treated with adalimumab. A 1 year investigator-initiated follow-up study using high-resolution computed tomography as the primary outcome measure. Ann Rheum Dis. 2009;68(10):1585–1590. DOI:10.1136/ard.2008.097048
  • Humphrey MB, Lanier LL, Nakamura MC. Role of ITAM-containing adapter proteins and their receptors in the immune system and bone. Immunol Rev. 2005;208:50–65. DOI:10.1111/j.0105-2896.2005.00325.x.
  • Negishi-Koga T, Takayanagi H. Ca2+-NFATc1 signaling is an essential axis of osteoclast differentiation. Immunol Rev. 2009;231(1):241–256. DOI:10.1111/j.1600-065X.2009.00821.x.
  • Nakashima T, Takayanagi H. Osteoimmunology: crosstalk between the immune and bone systems. J Clin Immunol. 2009;29(5):555–567. DOI:10.1007/s10875-009-9316-6.
  • Takayanagi H, Kim S, Koga T, et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell. 2002;3(6):889–901.
  • Chiu YH1, Mensah KA, Schwarz EM, et al. Regulation of human osteoclast development by dendritic cell-specific transmembrane protein (DC-STAMP). J Bone Miner Res. 2012 Jan;27(1):79–92. DOI:10.1002/jbmr.531
  • Kanzaki H, Shinohara F, Kanako I, et al. Molecular regulatory mechanisms of osteoclastogenesis through cytoprotective enzymes. Redox Biol. 2016;8:186–191. DOI:10.1016/j.redox.2016.01.006.
  • Humphrey MB, Daws MR, Spusta SC, et al. TREM2, a DAP12-associated receptor, regulates osteoclast differentiation and function. J Bone Miner Res. 2006;21(2):237–245. DOI:10.1359/JBMR.051016
  • Nimmerjahn F, Ravetch JV. Fc-receptors as regulators of immunity. Adv Immunol. 2007;96:179–204. DOI:10.1016/S0065-2776(07)96005-8.
  • Luo J, Yang Z, Ma Y, et al., LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption. Nat Med. 22(5): 539–546. 2016. DOI:10.1038/nm.4076
  • Zaidi M, Iqbal J. Closing the loop on the bone-resorbing osteoclast. Nat Med. 2016;22(5):460–461. DOI:10.1038/nm.4104.
  • Bengtsson AK, Ryan EJ. Immune function of the decoy receptor osteoprotegerin. Crit Rev Immunol. 2002;22(3):201–215.
  • Kelesidis T, Currier JS, Yang OO, et al. Role of RANKL-RANK/osteoprotegerin pathway in cardiovascular and bone disease associated with HIV infection. AIDS Rev. 2014;16(3):123–133.
  • Kohli SS, Kohli VS. Role of RANKL-RANK/osteoprotegerin molecular complex in bone remodeling and its immunopathologic implications. Indian J Endocrinol Metab. 2011;15(3):175–181. DOI:10.4103/2230-8210.83401.
  • Walsh MC, Choi Y. Biology of the RANKL-RANK-OPG system in immunity, bone, and beyond. Front Immunol. 2014;5:511. DOI:10.3389/fimmu.2014.00511.
  • Vanessa Nicolin DDI, Roberto V. Osteoimmunology represents a link between skeletal and immune system. Italian J Anat Embryol. 2016;121(1):37–42.
  • Wong BR, Josien R, Lee SY, et al. TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J Exp Med. 1997;186(12):2075–2080.
  • Kikuta J, Wada Y, Kowada T, et al. Dynamic visualization of RANKL and Th17-mediated osteoclast function. J Clin Invest. 2013;123(2):866–873. DOI:10.1172/JCI65054
  • Komatsu N, Okamoto K, Sawa S, et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med. 2014;20(1):62–68. DOI:10.1038/nm.3432
  • Onal M, Xiong J, Chen X, et al. Receptor activator of nuclear factor kappaB ligand (RANKL) protein expression by B lymphocytes contributes to ovariectomy-induced bone loss. J Biol Chem. 2012;287(35):29851–29860. DOI:10.1074/jbc.M112.377945
  • Green EA, Choi Y, Flavell RA. Pancreatic lymph node-derived CD4(+)CD25(+) Treg cells: highly potent regulators of diabetes that require TRANCE-RANK signals. Immunity. 2002;16(2):183–191.
  • Totsuka T, Kanai T, Nemoto Y, et al. RANK-RANKL signaling pathway is critically involved in the function of CD4+CD25+ regulatory T cells in chronic colitis. J Immunol. 2009;182(10):6079–6087. DOI:10.4049/jimmunol.0711823
  • Loser K, Mehling A, Loeser S, et al. Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat Med. 2006;12(12):1372–1379. DOI:10.1038/nm1518
  • Kong YY, Feige U, Sarosi I, et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature. 1999;402(6759):304–309. DOI:10.1038/46303
  • Pettit AR, Ji H, Von Stechow D, et al. TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am J Pathol. 2001;159(5):1689–1699. DOI:10.1016/S0002-9440(10)63016-7
  • Boyce BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther. 2007;9(Suppl 1):S1. DOI:10.1186/ar2172.
  • Wang XF, Zhang YK, Yu ZS, et al. The role of the serum RANKL/OPG ratio in the healing of intertrochanteric fractures in elderly patients. Mol Med Rep. 2013;7(4):1169–1172. DOI:10.3892/mmr.2013.1335.
  • Wasilewska A, Rybi-Szuminska A, Zoch-Zwierz W. Serum RANKL, osteoprotegerin (OPG), and RANKL/OPG ratio in nephrotic children. Pediatr Nephrol. 2010;25(10):2067–2075. DOI:10.1007/s00467-010-1583-1.
  • Dougall WC, Glaccum M, Charrier K, et al. RANK is essential for osteoclast and lymph node development. Genes Dev. 1999;13(18):2412–2424.
  • Bachmann MF, Wong BR, Josien R, et al. TRANCE, a tumor necrosis factor family member critical for CD40 ligand-independent T helper cell activation. J Exp Med. 1999;189(7):1025–1031.
  • Ashcroft AJ, Cruickshank SM, Croucher PI, et al. Colonic dendritic cells, intestinal inflammation, and T cell-mediated bone destruction are modulated by recombinant osteoprotegerin. Immunity. 2003;19(6):849–861.
  • Bone HG, Bolognese MA, Yuen CK, et al. Effects of denosumab on bone mineral density and bone turnover in postmenopausal women. J Clin Endocrinol Metab. 2008;93(6):2149–2157. DOI:10.1210/jc.2007-2814
  • Baud’huin M, Lamoureux F, Duplomb L, et al. RANKL, RANK, osteoprotegerin: key partners of osteoimmunology and vascular diseases. Cellular and Molecular Life Sciences: CMLS. 2007;64(18):2334–2350. DOI:10.1007/s00018-007-7104-0.
  • Kiechl S, Werner P, Knoflach M, et al. The osteoprotegerin/RANK/RANKL system: a bone key to vascular disease. Expert Rev Cardiovasc Ther. 2006;4(6):801–811. DOI:10.1586/14779072.4.6.801.
  • Rossini M, Viapiana O, Adami S, et al. Effects of denosumab on peripheral lymphocyte subpopulations. Endocrine. 2015;53(3):857–859. DOI:10.1007/s12020-015-0723-6.
  • Panizo S, Cardus A, Encinas M, et al. RANKL increases vascular smooth muscle cell calcification through a RANK-BMP4-dependent pathway. Circulation Research. 2009;104(9):1041–1048. DOI:10.1161/CIRCRESAHA.108.189001
  • Helas S, Goettsch C, Schoppet M, et al. Inhibition of receptor activator of NF-kappaB ligand by denosumab attenuates vascular calcium deposition in mice. Am J Pathol. 2009;175(2):473–478. DOI:10.2353/ajpath.2009.080957
  • Iolascon G, Napolano R, Gioia M, et al. The contribution of cortical and trabecular tissues to bone strength: insights from denosumab studies. Clin Cases Miner Bone Metab. 2013;10(1):47–51. DOI:10.11138/ccmbm/2013.10.1.047.
  • Ostertag A, Cohen-Solal M, Audran M, et al. Vertebral fractures are associated with increased cortical porosity in iliac crest bone biopsy of men with idiopathic osteoporosis. Bone. 2009;44(3):413–417. DOI:10.1016/j.bone.2008.11.004
  • Kleyer A, Finzel S, Rech J, et al. Bone loss before the clinical onset of rheumatoid arthritis in subjects with anticitrullinated protein antibodies. Ann Rheum Dis. 2014;73(5):854–860. DOI:10.1136/annrheumdis-2012-202958
  • Yue J, Griffith JF, Xiao F, et al. Repair of bone erosion in rheumatoid arthritis by denosumab: a high-resolution peripheral quantitative computed tomography study. Arthritis Care Res (Hoboken). 2016. DOI:10.1002/acr.23133
  • Deodhar A, Dore RK, Mandel D, et al., Denosumab-mediated increase in hand bone mineral density associated with decreased progression of bone erosion in rheumatoid arthritis patients. Arthritis Care Res (Hoboken). 62(4): 569–574. 2010. DOI:10.1002/acr.20004
  • Dore RK. The RANKL pathway and denosumab. Rheum Dis Clin North Am. 2011;37(3):433-52, vi-vii. DOI:10.1016/j.rdc.2011.07.004.
  • Takeuchi T, Tanaka Y, Ishiguro N, et al. Effect of denosumab on Japanese patients with rheumatoid arthritis: a dose-response study of AMG 162 (Denosumab) in patients with RheumatoId arthritis on methotrexate to Validate inhibitory effect on bone Erosion (DRIVE)-a 12-month, multicentre, randomised, double-blind, placebo-controlled, phase II clinical trial. Ann Rheum Dis. 2016;75(6):983–990. DOI:10.1136/annrheumdis-2015-208052.
  • Curtis JR, Xie F, Yun H, et al. Risk of hospitalized infection among rheumatoid arthritis patients concurrently treated with a biologic agent and denosumab. Arthritis Rheumatol. 2015;67(6):1456–1464. DOI:10.1002/art.39075
  • Boers M, Ac V, van der Linden S. Combination therapy in early rheumatoid arthritis: the COBRA study. Ned Tijdschr Geneeskd. 1997;141(50):2428–2432.
  • Bathon JM, Martin RW, Fleischmann RM, et al. A comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N Engl J Med. 2000;343(22):1586–1593. DOI:10.1056/NEJM200011303432201
  • Anandarajah A, Thiele R, Giampoli E, et al. Patients with rheumatoid arthritis in clinical remission manifest persistent joint inflammation on histology and imaging studies. J Rheumatol. 2014;41(11):2153–2160. DOI:10.3899/jrheum.140411
  • Brown AK, Quinn MA, Karim Z, et al. Presence of significant synovitis in rheumatoid arthritis patients with disease-modifying antirheumatic drug-induced clinical remission: evidence from an imaging study may explain structural progression. Arthritis Rheum. 2006;54(12):3761–3773. DOI:10.1002/art.22190
  • Schett G, Emery P, Tanaka Y, et al. Tapering biologic and conventional DMARD therapy in rheumatoid arthritis: current evidence and future directions. Ann Rheum Dis. 2016;75(8):1428–1437.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.