1,366
Views
24
CrossRef citations to date
0
Altmetric
Drug Evaluation

Ocrelizumab: a B-cell depleting therapy for multiple sclerosis

, , , , , & show all
Pages 1163-1172 | Received 12 Apr 2017, Accepted 23 Jun 2017, Published online: 03 Jul 2017

References

  • Goodin DS. The epidemiology of multiple sclerosis: insights to disease pathogenesis. Handb Clin Neurol. 2014;122:231–266.
  • Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372(9648):1502–1517.
  • Miller DH, Leary SM. Primary-progressive multiple sclerosis. Lancet Neurol. 2007;6(10):903–912.
  • Lassmann H, Bruck W, Lucchinetti CF. The immunopathology of multiple sclerosis: an overview. Brain Pathol. 2007;17(2):210–218.
  • Bar-Or A, Fawaz L, Fan B, et al. Abnormal B-cell cytokine responses a trigger of T-cell-mediated disease in MS? Ann Neurol. 2010;67(4):452–461.
  • Owens GP, Bennett JL, Lassmann H, et al. Antibodies produced by clonally expanded plasma cells in multiple sclerosis cerebrospinal fluid. Ann Neurol. 2009;65(6):639–649.
  • Hauser SL. The Charcot Lecture |beating MS: a story of B cells, with twists and turns. Mult Scler. 2015;21(1):8–21.
  • Harp CT, Lovett-Racke AE, Racke MK, et al. Impact of myelin-specific antigen presenting B cells on T cell activation in multiple sclerosis. Clin Immunol. 2008;128(3):382–391.
  • Serafini B, Rosicarelli B, Magliozzi R, et al. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 2004;14(2):164–174.
  • Bartok B, Silverman GJ. Development of anti-CD20 therapy for multiple sclerosis. Exp Cell Res. 2011;317(9):1312–1318.
  • Zouali M, Tsay G. Developing connections amongst B lymphocytes and deregulated pathways in autoimmunity. Mol Med. 2016;22.
  • Ireland SJ, Guzman AA, Frohman EM, et al. B cells from relapsing remitting multiple sclerosis patients support neuro-antigen-specific Th17 responses. J Neuroimmunol. 2016;291:46–53.
  • Romme Christensen J, Bornsen L, Ratzer R, et al. Systemic inflammation in progressive multiple sclerosis involves follicular T-helper, Th17- and activated B-cells and correlates with progression. PLoS One. 2013;8(3):e57820.
  • Krumbholz M, Theil D, Cepok S, et al. Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain. 2006;129(Pt 1):200–211.
  • Serafini B, Severa M, Columba-Cabezas S, et al. Epstein-Barr virus latent infection and BAFF expression in B cells in the multiple sclerosis brain: implications for viral persistence and intrathecal B-cell activation. J Neuropathol Exp Neurol. 2010;69(7):677–693.
  • Parker Harp CR, Archambault AS, Sim J, et al. B cell antigen presentation is sufficient to drive neuroinflammation in an animal model of multiple sclerosis. J Immunol. 2015;194(11):5077–5084.
  • Magliozzi R, Howell O, Vora A, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain. 2007;130(Pt 4):1089–1104.
  • Zivadinov R, Cerza N, Hagemeier J, et al. Humoral response to EBV is associated with cortical atrophy and lesion burden in patients with MS. Neurol Neuroimmunol Neuroinflamm. 2016;3(1):e190.
  • Baker D, Marta M, Pryce G, et al. Memory B cells are major targets for effective immunotherapy in relapsing multiple sclerosis. EBioMedicine. 2017;16:41–50.
  • Krumbholz M, Derfuss T, Hohlfeld R, et al. B cells and antibodies in multiple sclerosis pathogenesis and therapy. Nat Rev Neurol. 2012;8(11):613–623.
  • English C, Aloi JJ. New FDA-approved disease-modifying therapies for multiple sclerosis. Clin Ther. 2015;37(4):691–715.
  • Hartung DM, Bourdette DN, Ahmed SM, et al. The cost of multiple sclerosis drugs in the US and the pharmaceutical industry: too big to fail? Neurology. 2015;84(21):2185–2192.
  • Moccia M, Palladino R, Lanzillo R, et al. Predictors of the 10-year direct costs for treating multiple sclerosis. Acta Neurol Scand. 2017;135(5):522–528.
  • ICER. Multiple sclerosis: evidence Report – ICER [online].[ cited 2017 Feb 15]; Available from: https://icer-review.org/material/ms-evidence-report/
  • Gold R, Toumi M, Meesen B, et al. The payer’s perspective: what is the burden of MS and how should the patient’s perspective be integrated in health technology assessment conducted for taking decisions on access to care and treatment? Mult Scler. 2016;22(2 Suppl):60–70.
  • Ernstsson O, Gyllensten H, Alexanderson K, et al. Cost of illness of multiple sclerosis - a systematic review. PLoS One. 2016;11(7):e0159129.
  • Naci H, Fleurence R, Birt J, et al. Economic burden of multiple sclerosis: a systematic review of the literature. Pharmacoeconomics. 2010;28(5):363–379.
  • Kolasa K. How much is the cost of multiple sclerosis–systematic literature review. Przegl Epidemiol. 2013;67(1):75-79, 157-160.
  • Ma VY, Chan L, Carruthers KJ. Incidence, prevalence, costs, and impact on disability of common conditions requiring rehabilitation in the United States: stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, osteoarthritis, rheumatoid arthritis, limb loss, and back pain. Arch Phys Med Rehabil. 2014;95(5):986–995e981.
  • Maloney DG. Follicular NHL: from antibodies and vaccines to graft-versus-lymphoma effects. ASH Education Program Book. 2007 Jan 1;2007(1):226–232.
  • Montalban X, Hauser SL, Kappos L, et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. 2017;376(3):209–220.
  • Looney RJ, Anolik J, Sanz I. B lymphocytes in systemic lupus erythematosus: lessons from therapy targeting B cells. Lupus. 2004;13(5):381–390.
  • Du J, Yang H, Guo Y, et al. Structure of the fab fragment of therapeutic antibody ofatumumab provides insights into the recognition mechanism with CD20. Mol Immunol. 2009;46(11–12):2419–2423.
  • Fischer SK, Yang J, Anand B, et al. The assay design used for measurement of therapeutic antibody concentrations can affect pharmacokinetic parameters: case studies. MAbs. 2012;4(5):623–631.
  • Morschhauser F, Marlton P, Vitolo U, et al. Results of a phase I/II study of ocrelizumab, a fully humanized anti-CD20 mAb, in patients with relapsed/refractory follicular lymphoma. Ann Oncol. 2010;21(9):1870–1876.
  • Cragg MS, Walshe CA, Ivanov AO, et al. The biology of CD20 and its potential as a target for mAb therapy. Curr Dir Autoimmun. 2005;8:140–174.
  • Boross P, Leusen JH. Mechanisms of action of CD20 antibodies. Am J Cancer Res. 2012;2(6):676–690.
  • Melis JP, Strumane K, Ruuls SR, et al. Complement in therapy and disease: regulating the complement system with antibody-based therapeutics. Mol Immunol. 2015;67(2 Pt A):117–130.
  • Engelberts PJ, Voorhorst M, Schuurman J, et al. Type I CD20 antibodies recruit the B cell receptor for complement-dependent lysis of malignant B Cells. J Immunol. 2016;197(12):4829–4837.
  • Cartron G, Dacheux L, Salles G, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood. 2002;99(3):754–758.
  • Pross HF, Maroun JA. The standardization of NK cell assays for use in studies of biological response modifiers. J Immunol Methods. 1984;68(1–2):235–249.
  • Cragg MS, Morgan SM, Chan HT, et al. Complement-mediated lysis by anti-CD20 mAb correlates with segregation into lipid rafts. Blood. 2003;101(3):1045–1052.
  • Stashenko P, Nadler LM, Hardy R, et al. Characterization of a human B lymphocyte-specific antigen. J Immunol. 1980;125(4):1678–1685.
  • Hauser SL, Bar-Or A, Comi G, et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017;376(3):221–234.
  • Huffstutter JE, Taylor J, Schechtman J, et al. Single- versus dual-infusion of B-cell-depleting antibody ocrelizumab in rheumatoid arthritis: results from the phase III FEATURE trial. Int J Clin Rheumtol. 2011;6(6):689–696.
  • Hauser SL, Waubant E, Arnold DL, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008;358(7):676–688.
  • Kappos L, Li D, Calabresi PA, et al. Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet. 2011;378(9805):1779–1787.
  • Kappos L, Calabresi P, O’Connor P, et al. Long-term safety and efficacy of ocrelizumab in patients with relapsing-remitting multiple sclerosis: week 144 results of a phase II, randomised, multicentre trial. In 28th Congress of the European Committee for Treatment and Research in Multiple Sclerosis 2012 Oct 10 (p. 362).
  • Traboulsee A, Giovannoni G, Bar-Or A, et al. NEDA analysis by epoch in patients with relapsing multiple sclerosis treated with ocrelizumab: results from the OPERA I and OPERA II Phase III Studies. Mult Scler. 2017;23(1_suppl):2–90.
  • Rotstein DL, Healy BC, Malik MT, et al. Evaluation of no evidence of disease activity in a 7-year longitudinal multiple sclerosis cohort. JAMA Neurol. 2015;72(2):152–158. .
  • Uher T, Havrdova E, Sobisek L, et al. Is no evidence of disease activity an achievable goal in MS patients on intramuscular interferon beta-1a treatment over long-term follow-up? Mult Scler. 2017;23(2):242–252.
  • Cree BA, Gourraud PA, Gourraud PA, Oksenberg JR, et al. University of California SFMSET; Long-term evolution of multiple sclerosis disability in the treatment era. Ann Neurol 2016;80(4):499–510.
  • Lublin F, Miller DH, Freedman MS, et al. Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet. 2016;387(10023):1075–1084.
  • Wolinsky JS, Narayana PA, O’Connor P, et al. Glatiramer acetate in primary progressive multiple sclerosis: results of a multinational, multicenter, double-blind, placebo-controlled trial. Ann Neurol. 2007;61(1):14–24.
  • Hawker K, O’Connor P, Freedman MS, et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol. 2009;66(4):460–471.
  • Wolinsky JS, Montalban X, Arnold D, et al. Evaluation of no evidence of progression (NEP) in patients with primary progressive multiple sclerosis in the ORATORIO trial. Mult Scler. 2017;29(1):2–90.
  • Mysler EF, Spindler AJ, Guzman R, et al. Efficacy and safety of ocrelizumab in active proliferative lupus nephritis: results from a randomized, double-blind, phase III study. Arthritis Rheum. 2013;65(9):2368–2379.
  • Tak PP, Mease PJ, Genovese MC, et al. Safety and efficacy of ocrelizumab in patients with rheumatoid arthritis and an inadequate response to at least one tumor necrosis factor inhibitor: results of a forty-eight-week randomized, double-blind, placebo-controlled, parallel-group phase III trial. Arthritis Rheum. 2012;64(2):360–370.
  • Rigby W, Tony HP, Oelke K, et al. Safety and efficacy of ocrelizumab in patients with rheumatoid arthritis and an inadequate response to methotrexate: results of a forty-eight-week randomized, double-blind, placebo-controlled, parallel-group phase III trial. Arthritis Rheum. 2012;64(2):350–359.
  • Stohl W, Gomez-Reino J, Olech E, et al. Safety and efficacy of ocrelizumab in combination with methotrexate in MTX-naive subjects with rheumatoid arthritis: the phase III FILM trial. Ann Rheum Dis. 2012;71(8):1289–1296.
  • Emery P, Rigby W, Tak PP, et al. Safety with ocrelizumab in rheumatoid arthritis: results from the ocrelizumab phase III program. PLoS One. 2014;9(2):e87379.
  • Geurts JJ, Stys PK, Minagar A, et al. Gray matter pathology in (chronic) MS: modern views on an early observation. J Neurol Sci. 2009;282(1–2):12–20.
  • Howell OW, Reeves CA, Nicholas R, et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain. 2011;134(Pt 9):2755–2771.
  • Choi SR, Howell OW, Carassiti D, et al. Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain. 2012;135(Pt 10):2925–2937.
  • Zurawski J, Lassmann H, Bakshi R. Use of magnetic resonance imaging to visualize leptomeningeal inflammation in patients with multiple sclerosis: a review. JAMA Neurol. 2017;74(1):100–109.
  • Absinta M, Vuolo L, Rao A, et al. Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis. Neurology. 2015;85(1):18–28.
  • Zivadinov R, Ramasamy DP, Vaneckova M, et al. Leptomeningeal contrast enhancement is associated with progression of cortical atrophy in MS: a retrospective, pilot, observational longitudinal study. Mult Scler. 2016;1352458516678083.
  • Borie D, Kremer JM. Considerations on the appropriateness of the John Cunningham virus antibody assay use in patients with rheumatoid arthritis. Semin Arthritis Rheum. 2015;45(2):163–166.
  • Sorensen PS, Lisby S, Grove R, et al. Safety and efficacy of ofatumumab in relapsing-remitting multiple sclerosis: a phase 2 study. Neurology. 2014;82(7):573–581.
  • Ben Abdelwahed R, Donnou S, Ouakrim H, et al. Preclinical study of ublituximab, a glycoengineered anti-human CD20 antibody, in murine models of primary cerebral and intraocular B-cell lymphomas. Invest Ophthalmol Vis Sci. 2013;54(5):3657–3665.
  • TG Therapeutics I. Phase 2 study of ublituximab in patients with relapsing forms of multiple sclerosis. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2000-2017 Feb 09. NLM Identifier: NCT02738775). Available from: https://clinicaltrials.gov/ct2/show/record/NCT02738775
  • Klein C, Lammens A, Schafer W, et al. Epitope interactions of monoclonal antibodies targeting CD20 and their relationship to functional properties. MAbs. 2013;5(1):22–33.
  • Du J, Wang H, Zhong C, et al. Structural basis for recognition of CD20 by therapeutic antibody rituximab. J Biol Chem. 2007;282(20):15073–15080.
  • Bar-Or A, Calabresi PA, Arnold D, et al. Rituximab in relapsing-remitting multiple sclerosis: a 72-week, open-label, phase I trial. Ann Neurol. 2008;63(3):395–400.
  • GlaxoSmithKline. Ofatumumab subcutaneous administration in subjects with relapsing-remitting multiple sclerosis (MIRROR). In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2000-2017 Feb 09. NLM Identifier: NCT01457924). Available from: https://clinicaltrials.gov/ct2/show/record/NCT01457924
  • Coles AJ, Twyman CL, Arnold DL, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet. 2012;380(9856):1829–1839.
  • MedImmune L. Safety and tolerability study of MEDI-551, a B-cell depleting agent, to treat relapsing forms of multiple sclerosis. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2000-2017 Feb 09. NLM Identifier: NCT01585766). Available from: https://clinicaltrials.gov/ct2/show/record/NCT01585766
  • Novartis. A study to assess the effect of a single infusion of VAY736 on disease activity in patients with relapsing-remitting multiple sclerosis. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2000-2017 Feb 09. NLM Identifier: NCT02038049). Available from: https://clinicaltrials.gov/ct2/show/NCT02038049
  • Herbst R, Wang Y, Gallagher S, et al. B-cell depletion in vitro and in vivo with an afucosylated anti-CD19 antibody. J Pharmacol Exp Ther. 2010;335(1):213–222.
  • MedImmune L. A double-masked, placebo-controlled study with open label period to evaluate MEDI-551 in neuromyelitis optica and neuromyelitis optica spectrum disorders. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2000-2017 Feb 09. NLM Identifier: NCT02200770). Available from: https://clinicaltrials.gov/ct2/show/NCT02200770
  • Krumbholz M, Theil D, Derfuss T, et al. BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J Exp Med. 2005;201(2):195–200.
  • Krumbholz M, Faber H, Steinmeyer F, et al. Interferon-beta increases BAFF levels in multiple sclerosis: implications for B cell autoimmunity. Brain. 2008;131(Pt 6):1455–1463.
  • Kappos L, Hartung HP, Freedman MS, et al. Atacicept in multiple sclerosis (ATAMS): a randomised, placebo-controlled, double-blind, phase 2 trial. Lancet Neurol. 2014;13(4):353–363.
  • Gandhi S, Jakimovski D, Ahmed R, et al. Use of natalizumab in multiple sclerosis: current perspectives. Expert Opin Biol Ther. 2016;16(9):1151–1162.
  • Cox AL, Thompson SA, Jones JL, et al. Lymphocyte homeostasis following therapeutic lymphocyte depletion in multiple sclerosis. Eur J Immunol. 2005;35(11):3332–3342.
  • Roche. U.S. FDA grants breakthrough therapy designation for Roche’s investigational medicine ocrelizumab in primary progressive multiple sclerosis. [ cited 2017 Feb 12; Available from: http://www.roche.com/investors/updates/inv-update-2016-02-17.htm

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.