664
Views
12
CrossRef citations to date
0
Altmetric
Review

Advances in immunotherapy for pediatric acute myeloid leukemia

, &
Pages 51-63 | Received 15 Aug 2017, Accepted 21 Sep 2017, Published online: 11 Oct 2017

References

  • Zwaan CM, Kolb EA, Reinhardt D, et al. Collaborative efforts driving progress in pediatric acute myeloid leukemia. J Clin Oncol. 2015 Sep ;33(27):2949–2962. PubMed PMID: 26304895; PubMed Central PMCID: PMCPMC4567700.
  • Alexander TB, Wang L, Inaba H, et al. Decreased relapsed rate and treatment-related mortality contribute to improved outcomes for pediatric acute myeloid leukemia in successive clinical trials. Cancer. 2017  Oct 1;123(19):3791–3798. PubMed PMID: 28556917.
  • Levis M. Midostaurin approved for FLT3-mutated AML. Blood. 2017 Jun 29;129(26):3403–3406. PubMed PMID: 28546144.
  • Johnston DL, Alonzo TA, Gerbing RB, et al. Central nervous system disease in pediatric acute myeloid leukemia: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2017 Apr 28. doi: 10.1002/pbc.26612. [Epub ahead of print]. PubMed PMID: 28453910.
  • O’Rourke DM, Nasrallah MP, Desai A, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. 2017 Jul 19;9(399). pii: eaaa0984. PubMed PMID: 28724573.
  • O’Hare P, Lucchini G, Cummins M, et al. Allogeneic stem cell transplantation for refractory acute myeloid leukemia in pediatric patients: the UK experience. Bone Marrow Transplant. 2017 Jun;52(6):825–831. PubMed PMID: 28218757.
  • Horowitz MM, Gale RP, Sondel PM, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood. 1990 Feb 01;75(3):555–562. PubMed PMID: 2297567.
  • Khong HT, Restifo NP. Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat Immunol. 2002 Nov;3(11):999–1005. PubMed PMID: 12407407; PubMed Central PMCID: PMC1508168.
  • Vago L, Perna SK, Zanussi M, et al. Loss of mismatched HLA in leukemia after stem-cell transplantation. N Engl J Med. 2009 Jul ;361(5):478–488. PubMed PMID: 19641204.
  • Zhou Q, Munger ME, Veenstra RG, et al. Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood. 2011 Apr ;117(17):4501–4510. PubMed PMID: 21385853; PubMed Central PMCID: PMCPMC3099570.
  • Teague RM, Kline J. Immune evasion in acute myeloid leukemia: current concepts and future directions. J Immunother Cancer. 2013 Aug 27;1(13). PubMed PMID: 24353898; pii: 1/1/13. PubMed Central PMCID: PMCPMC3864190.
  • Vereecque R, Buffenoir G, Gonzalez R, et al. Gamma-ray irradiation induces B7.1 expression in myeloid leukaemic cells. Br J Haematol. 2000 Mar;108(4):825–831. PubMed PMID: 10792289.
  • Lion E, Willemen Y, Berneman ZN, et al. Natural killer cell immune escape in acute myeloid leukemia. Leukemia. 2012 Sep;26(9):2019–2026. PubMed PMID: 22446501.
  • Dotti G, Gottschalk S, Savoldo B, et al. Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol Rev. 2014 Jan;257(1):107–126. PubMed PMID: 24329793; PubMed Central PMCID: PMCPMC3874724.
  • Ehninger A, Kramer M, Rollig C, et al. Distribution and levels of cell surface expression of CD33 and CD123 in acute myeloid leukemia. Blood Cancer J. 2014 Jun 13;4:e218. PubMed PMID: 24927407; PubMed Central PMCID: PMCPMC4080210.
  • Weber G, Gerdemann U, Caruana I, et al. Generation of multi-leukemia antigen-specific T cells to enhance the graft-versus-leukemia effect after allogeneic stem cell transplant. Leukemia. 2013 Jul;27(7):1538–1547. PubMed PMID: 23528871; PubMed Central PMCID: PMCPMC3867129.
  • Chapuis AG, Ragnarsson GB, Nguyen HN, et al. Transferred WT1-reactive CD8+ T cells can mediate antileukemic activity and persist in post-transplant patients. Sci Transl Med. 2013 Feb 27;5(174):174ra27. PubMed PMID: 23447018; PubMed Central PMCID: PMCPMC3678970.
  • Guo Y, Niiya H, Azuma T, et al. Direct recognition and lysis of leukemia cells by WT1-specific CD4+ T lymphocytes in an HLA class II-restricted manner. Blood. 2005 Aug ;106(4):1415–1418. PubMed PMID: 15845894.
  • Kim YJ, Cho SG, Lee S, et al. Potential role of adoptively transferred allogeneic WT1-specific CD4+ and CD8+ T lymphocytes for the sustained remission of refractory AML. Bone Marrow Transplant. 2010 Mar;45(3):597–599. PubMed PMID: 19684628.
  • Sohn HJ, Lee JY, Lee HJ, et al. Simultaneous in vitro generation of CD8 and CD4 T cells specific to three universal tumor associated antigens of WT1, survivin and TERT and adoptive T cell transfer for the treatment of acute myeloid leukemia. Oncotarget. 2017 Jul ;8(27):44059–44072. PubMed PMID: 28477011.
  • Gubin MM, Artyomov MN, Mardis ER, et al. Tumor neoantigens: building a framework for personalized cancer immunotherapy. J Clin Invest. 2015 Sep;125(9):3413–3421. PubMed PMID: 26258412; PubMed Central PMCID: PMC4588307.
  • Yarchoan M, Johnson BA, 3rd, Lutz ER, et al. Targeting neoantigens to augment antitumour immunity. Nature Rev Cancer. 2017 Apr;17(4):209–222. PubMed PMID: 28233802.
  • Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013 Jul ;499(7457):214–218. PubMed PMID: 23770567; PubMed Central PMCID: PMCPMC3919509.
  • Cancer Genome Atlas Research N, Ley TJ, Miller C, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013 May 30;368(22):2059–2074. PubMed PMID: 23634996; PubMed Central PMCID: PMCPMC3767041.
  • Sutherland MK, Yu C, Lewis TS, et al. Anti-leukemic activity of lintuzumab (SGN-33) in preclinical models of acute myeloid leukemia. MAbs. 2009 Sep-Oct;1(5):481–490. PubMed PMID: 20065652; PubMed Central PMCID: PMCPMC2759498.
  • Raza A, Jurcic JG, Roboz GJ, et al. Complete remissions observed in acute myeloid leukemia following prolonged exposure to lintuzumab: a phase 1 trial. Leuk Lymphoma. 2009 Aug;50(8):1336–1344. PubMed PMID: 19557623.
  • Sekeres MA, Lancet JE, Wood BL, et al. Randomized phase IIb study of low-dose cytarabine and lintuzumab versus low-dose cytarabine and placebo in older adults with untreated acute myeloid leukemia. Haematologica. 2013 Jan;98(1):119–128. PubMed PMID: 22801961; PubMed Central PMCID: PMC3533673.
  • Feldman EJ, Brandwein J, Stone R, et al. Phase III randomized multicenter study of a humanized anti-CD33 monoclonal antibody, lintuzumab, in combination with chemotherapy, versus chemotherapy alone in patients with refractory or first-relapsed acute myeloid leukemia. J Clin Oncol. 2005 Jun ;23(18):4110–4116. PubMed PMID: 15961759.
  • Sievers EL, Larson RA, Stadtmauer EA, et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol. 2001 Jul ;19(13):3244–3254. PubMed PMID: 11432892.
  • Petersdorf SH, Kopecky KJ, Slovak M, et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013 Jun ;121(24):4854–4860. PubMed PMID: 23591789; PubMed Central PMCID: PMCPMC3682338.
  • Burnett AK, Hills RK, Milligan D, et al. Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: results of the MRC AML15 trial. J Clin Oncol. 2011 Feb 01;29(4):369–377. PubMed PMID: 21172891.
  • Burnett AK, Russell NH, Hills RK, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy improves survival in older patients with acute myeloid leukemia. J Clin Oncol. 2012 Nov ;30(32):3924–3931. PubMed PMID: 22851554.
  • Castaigne S, Pautas C, Terre C, et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet. 2012 Apr ;379(9825):1508–1516. PubMed PMID: 22482940.
  • Pollard JA, Loken M, Gerbing RB, et al. CD33 expression and its association with gemtuzumab ozogamicin response: results from the randomized phase III Children’s Oncology Group Trial AAML0531. J Clin Oncol. 2016 Mar ;34(7):747–755. PubMed PMID: 26786921; PubMed Central PMCID: PMCPMC4872025.
  • Zwaan CM, Reinhardt D, Corbacioglu S, et al. Gemtuzumab ozogamicin: first clinical experiences in children with relapsed/refractory acute myeloid leukemia treated on compassionate-use basis. Blood. 2003 May ;101(10):3868–3871. PubMed PMID: 12543868.
  • Reinhardt D, Diekamp S, Fleischhack G, et al. Gemtuzumab ozogamicin (Mylotarg) in children with refractory or relapsed acute myeloid leukemia. Onkologie. 2004 Jun;27(3):269–272. PubMed PMID: 15249716.
  • Arceci RJ, Sande J, Lange B, et al. Safety and efficacy of gemtuzumab ozogamicin in pediatric patients with advanced CD33+ acute myeloid leukemia. Blood. 2005 Aug ;106(4):1183–1188. PubMed PMID: 15886328.
  • Aplenc R, Alonzo TA, Gerbing RB, et al. Safety and efficacy of gemtuzumab ozogamicin in combination with chemotherapy for pediatric acute myeloid leukemia: a report from the Children’s Oncology Group. J Clin Oncol. 2008 May ;26(14):2390–3295. PubMed PMID: 18467731; PubMed Central PMCID: PMCPMC4558626.
  • Cooper TM, Franklin J, Gerbing RB, et al. AAML03P1, a pilot study of the safety of gemtuzumab ozogamicin in combination with chemotherapy for newly diagnosed childhood acute myeloid leukemia: a report from the Children’s Oncology Group. Cancer. 2012 Feb ;118(3):761–769. PubMed PMID: 21766293.
  • Gamis AS, Alonzo TA, Meshinchi S, et al. Gemtuzumab ozogamicin in children and adolescents with de novo acute myeloid leukemia improves event-free survival by reducing relapse risk: results from the randomized phase III Children’s Oncology Group trial AAML0531. J Clin Oncol. 2014 Sep 20;32(27):3021–3032. PubMed PMID: 25092781; PubMed Central PMCID: PMCPMC4162498.
  • Guest EM, Aplenc R, Sung L, et al. Gemtuzumab ozogamicin in infants with AML: results from the Children’s Oncology Group trials, AAML03P1 and AAML0531. Blood. 2017 Aug 17;130(7):943–945. PubMed PMID: 28674028.
  • O’Hear C, Inaba H, Pounds S, et al. Gemtuzumab ozogamicin can reduce minimal residual disease in patients with childhood acute myeloid leukemia. Cancer. 2013 Nov ;119(22):4036–4043. PubMed PMID: 24006085; PubMed Central PMCID: PMCPMC4271731.
  • O’Hear C, Rubnitz JE. Recent research and future prospects for gemtuzumab ozogamicin: could it make a comeback? Expert Rev Hematol. 2014 Aug; 7(4):427–429. PubMed PMID: 24871925.
  • Roman E, Cooney E, Harrison L, et al. Preliminary results of the safety of immunotherapy with gemtuzumab ozogamicin following reduced intensity allogeneic stem cell transplant in children with CD33+ acute myeloid leukemia. Clin Cancer Res. 2005 Oct ;11(19 Pt 2):7164s–7170s. PubMed PMID: 16203817.
  • Hasle H, Abrahamsson J, Forestier E, et al. Gemtuzumab ozogamicin as postconsolidation therapy does not prevent relapse in children with AML: results from NOPHO-AML 2004. Blood. 2012 Aug ;120(5):978–984. PubMed PMID: 22730539.
  • Zahler S, Bhatia M, Ricci A, et al. A phase I study of reduced-intensity conditioning and allogeneic stem cell transplantation followed by dose escalation of targeted consolidation immunotherapy with gemtuzumab ozogamicin in children and adolescents with CD33+ acute myeloid leukemia. Biol Blood Marrow Transplant. 2016 Apr;22(4):698–704. PubMed PMID: 26785332.
  • Satwani P, Bhatia M, Garvin JH Jr., et al. A Phase I study of gemtuzumab ozogamicin (GO) in combination with busulfan and cyclophosphamide (Bu/Cy) and allogeneic stem cell transplantation in children with poor-risk CD33+ AML: a new targeted immunochemotherapy myeloablative conditioning (MAC) regimen. Biol Blood Marrow Transplant. 2012 Feb;18(2):324–329. PubMed PMID: 22079471.
  • Tarlock K, Alonzo TA, Gerbing RB, et al. Gemtuzumab ozogamicin reduces relapse risk in FLT3/ITD acute myeloid leukemia: a report from the Children’s Oncology Group. Clin Cancer Res. 2016 Apr ;22(8):1951–1957. PubMed PMID: 26644412; PubMed Central PMCID: PMCPMC4834220.
  • Lamba JK, Pounds S, Cao X, et al. Coding polymorphisms in CD33 and response to gemtuzumab ozogamicin in pediatric patients with AML: a pilot study. Leukemia. 2009 Feb;23(2):402–404. PubMed PMID: 18615103; PubMed Central PMCID: PMCPMC2659556.
  • Lamba JK, Chauhan L, Shin M, et al. CD33 splicing polymorphism determines gemtuzumab ozogamicin response in de novo acute myeloid leukemia: report from randomized phase III Children’s Oncology Group Trial AAML0531. J Clin Oncol. 2017 Aug 10;35(23):2674-2682. PubMed PMID: 28644774.
  • Kung Sutherland MS, Walter RB, Jeffrey SC, et al. SGN-CD33A: a novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood. 2013 Aug ;122(8):1455–1463. PubMed PMID: 23770776.
  • Frankel A, Liu JS, Rizzieri D, et al. Phase I clinical study of diphtheria toxin-interleukin 3 fusion protein in patients with acute myeloid leukemia and myelodysplasia. Leuk Lymphoma. 2008 Mar;49(3):543–553. PubMed PMID: 18297533.
  • Bodet-Milin C, Kraeber-Bodere F, Eugene T, et al. Radioimmunotherapy for treatment of acute leukemia. Semin Nucl Med. 2016 Mar;46(2):135–146. PubMed PMID: 26897718.
  • Hagemann UB, Wickstroem K, Wang E, et al. In vitro and in vivo efficacy of a novel CD33-targeted thorium-227 conjugate for the treatment of acute myeloid leukemia. Mol Cancer Ther. 2016 Oct;15(10):2422–2431. PubMed PMID: 27535972.
  • Kontermann RE, Brinkmann U. Bispecific antibodies. Drug Discov Today. 2015 Jul;20(7):838–847. PubMed PMID: 25728220
  • Li J, Stagg NJ, Johnston J, et al. Membrane-proximal epitope facilitates efficient T cell synapse formation by anti-FcRH5/CD3 and is a requirement for myeloma cell killing. Cancer Cell. 2017 Mar ;31(3):383–395. PubMed PMID: 28262555; PubMed Central PMCID: PMC5357723.
  • Huehls AM, Coupet TA, Sentman CL. Bispecific T-cell engagers for cancer immunotherapy. Immunol Cell Biol. 2015 Mar;93(3):290–296. PubMed PMID: 25367186; PubMed Central PMCID: PMC4445461.
  • Leong SR, Sukumaran S, Hristopoulos M, et al. An anti-CD3/anti-CLL-1 bispecific antibody for the treatment of acute myeloid leukemia. Blood. 2017 Feb ;129(5):609–618. PubMed PMID: 27908880; PubMed Central PMCID: PMCPMC5290988.
  • Liu X, Shin N, Koblish HK, et al. Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood. 2010 Apr ;115(17):3520–3530. PubMed PMID: 20197554.
  • Sampson JH, Schmittling RJ, Archer GE, et al. A pilot study of IL-2Ralpha blockade during lymphopenia depletes regulatory T-cells and correlates with enhanced immunity in patients with glioblastoma. PLoS One. 2012;7(2):e31046. PubMed PMID: 22383993; PubMed Central PMCID: PMC3288003.
  • Kamphorst AO, Wieland A, Nasti T, et al. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science. 2017 Mar ;355(6332):1423–1427. PubMed PMID: 28280249.
  • Hui E, Cheung J, Zhu J, et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science. 2017 Mar ;355(6332):1428–1433. PubMed PMID: 28280247.
  • Lesokhin AM, Ansell SM, Armand P, et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol. 2016 Aug ;34(23):2698–2704. PubMed PMID: 27269947; PubMed Central PMCID: PMCPMC5019749 online at http://www.jco.org/. Author contributions are found at the end of this article.
  • Ansell SM, Lesokhin AM, Borrello I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015 Jan ;372(4):311–319. PubMed PMID: 25482239; PubMed Central PMCID: PMCPMC4348009.
  • Armand P, Shipp MA, Ribrag V, et al. Programmed death-1 blockade with pembrolizumab in patients with classical Hodgkin lymphoma after brentuximab vedotin failure. J Clin Oncol. 2016 Jun 27. pii: JCO673467. [Epub ahead of print]. PubMed PMID: 27354476.
  • Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013 Apr;13(4):227–242. PubMed PMID: 23470321; PubMed Central PMCID: PMC3786574.
  • Merryman RW, Kim HT, Zinzani PL, et al. Safety and efficacy of allogeneic hematopoietic stem cell transplant after PD-1 blockade in relapsed/refractory lymphoma. Blood. 2017 Mar ;129(10):1380–1388. PubMed PMID: 28073785; PubMed Central PMCID: PMCPMC5345733.
  • McDuffee E, Aue G, Cook L, et al. Tumor regression concomitant with steroid-refractory GvHD highlights the pitfalls of PD-1 blockade following allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2017 May;52(5):759–761. PubMed PMID: 28067871.
  • Onizuka M, Kojima M, Matsui K, et al. Successful treatment with low-dose nivolumab in refractory Hodgkin lymphoma after allogeneic stem cell transplantation. Int J Hematol. 2017 Jul;106(1):141–145. PubMed PMID: 28097534.
  • Shad AT, Huo JS, Darcy C, et al. Tolerance and effectiveness of nivolumab after pediatric T-cell replete, haploidentical, bone marrow transplantation: a case report. Pediatr Blood Cancer. 2017 Mar;64(3). doi: 10.1002/pbc.26257. Epub 2016 Sep 21. PubMed PMID: 27650634.
  • Albring JC, Inselmann S, Sauer T, et al. PD-1 checkpoint blockade in patients with relapsed AML after allogeneic stem cell transplantation. Bone Marrow Transplant. 2017 Feb;52(2):317–320. PubMed PMID: 27892950.
  • Herbaux C, Gauthier J, Brice P, et al. Efficacy and tolerability of nivolumab after allogeneic transplantation for relapsed Hodgkin lymphoma. Blood. 2017 May ;129(18):2471–2478. PubMed PMID: 28270452.
  • Sahin U, Derhovanessian E, Miller M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017 Jul ;547(7662):222–226. PubMed PMID: 28678784.
  • Ott PA, Hu Z, Keskin DB, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017 Jul ;547(7662):217–221. PubMed PMID: 28678778.
  • Di Stasi A, Jimenez AM, Minagawa K, et al. Review of the results of WT1 peptide vaccination strategies for myelodysplastic syndromes and acute myeloid leukemia from nine different studies. Front Immunol. 2015;6:36. PubMed PMID: 25699052; PubMed Central PMCID: PMCPMC4316779.
  • Kobayashi Y, Sakura T, Miyawaki S, et al. A new peptide vaccine OCV-501: in vitro pharmacology and phase 1 study in patients with acute myeloid leukemia. Cancer Immunol Immunother. 2017 Jul;66(7):851–863. PubMed PMID: 28321480; PubMed Central PMCID: PMCPMC5489634.
  • Qazilbash MH, Wieder E, Thall PF, et al. PR1 peptide vaccine induces specific immunity with clinical responses in myeloid malignancies. Leukemia. 2017 Mar;31(3):697–704. PubMed PMID: 27654852; PubMed Central PMCID: PMCPMC5332281.
  • Dagvadorj N, Deuretzbacher A, Weisenberger D, et al. Targeting of the WT191-138 fragment to human dendritic cells improves leukemia-specific T-cell responses providing an alternative approach to WT1-based vaccination. Cancer Immunol Immunother. 2017 Mar;66(3):319–332. PubMed PMID: 27896368.
  • Weinstock M, Rosenblatt J, Avigan D. Dendritic cell therapies for hematologic malignancies. Mol Ther Methods Clin Dev. 2017 Jun 16:5:66–75. PubMed PMID: 28480306; PubMed Central PMCID: PMCPMC5415319.
  • Khoury HJ, Collins RH, Jr., Blum W, et al. Immune responses and long-term disease recurrence status after telomerase-based dendritic cell immunotherapy in patients with acute myeloid leukemia. Cancer. 2017 Aug 15;123(16):3061–3072. PubMed PMID: 28411378.
  • Sundarasetty BS, Singh VK, Salguero G, et al. Lentivirus-induced dendritic cells for immunization against high-risk WT1(+) acute myeloid leukemia. Hum Gene Ther. 2013 Feb;24(2):220–237. PubMed PMID: 23311414; PubMed Central PMCID: PMCPMC3696945.
  • De Haar C, Plantinga M, Blokland NJ, et al. Generation of a cord blood-derived Wilms Tumor 1 dendritic cell vaccine for AML patients treated with allogeneic cord blood transplantation. Oncoimmunology. 2015 Nov;4(11):e1023973. PubMed PMID: 26451309; PubMed Central PMCID: PMCPMC4589057.
  • Rosenblatt J, Stone RM, Uhl L, et al. Individualized vaccination of AML patients in remission is associated with induction of antileukemia immunity and prolonged remissions. Sci Transl Med. 2016 Dec ;8(368):368ra171. PubMed PMID: 27928025.
  • Distler E, Wolfel C, Kohler S, et al. Acute myeloid leukemia (AML)-reactive cytotoxic T lymphocyte clones rapidly expanded from CD8(+) CD62L((high)+) T cells of healthy donors prevent AML engraftment in NOD/SCID IL2Rgamma(null) mice. Exp Hematol. 2008 Apr;36(4):451–463. PubMed PMID: 18261837.
  • Ma Q, Wang C, Jones D, et al. Adoptive transfer of PR1 cytotoxic T lymphocytes associated with reduced leukemia burden in a mouse acute myeloid leukemia xenograft model. Cytotherapy. 2010 Dec;12(8):1056–1062. PubMed PMID: 20735170; PubMed Central PMCID: PMCPMC3365857.
  • Distler E, Albrecht J, Brunk A, et al. Patient-individualized CD8(+) cytolytic T-cell therapy effectively combats minimal residual leukemia in immunodeficient mice. Int J Cancer. 2016 Mar ;138(5):1256–1268. PubMed PMID: 26376181.
  • Eshhar Z, Waks T, Gross G, et al. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA. 1993 Jan 15;90(2):720–724. PubMed PMID: 8421711; PubMed Central PMCID: PMCPMC45737.
  • Hombach A, Wieczarkowiecz A, Marquardt T, et al. Tumor-specific T cell activation by recombinant immunoreceptors: CD3 zeta signaling and CD28 costimulation are simultaneously required for efficient IL-2 secretion and can be integrated into one combined CD28/CD3 zeta signaling receptor molecule. J Immunol. 2001 Dec 01;167(11):6123–6131. PubMed PMID: 11714771.
  • Maher J, Brentjens RJ, Gunset G, et al. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta/CD28 receptor. Nat Biotechnol. 2002 Jan;20(1):70–75. PubMed PMID: 11753365.
  • Imai C, Iwamoto S, Campana D. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood. 2005 Jul 01;106(1):376–383. PubMed PMID: 15755898; PubMed Central PMCID: PMCPMC1895123.
  • Savoldo B, Ramos CA, Liu E, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest. 2011 May;121(5):1822–1826. PubMed PMID: 21540550; PubMed Central PMCID: PMCPMC3083795.
  • Bonifant CL, Szoor A, Torres D, et al. CD123-Engager T cells as a novel immunotherapeutic for acute myeloid leukemia. Mol Ther. 2016 Sep ;24(9):1615–1626. PubMed PMID: 27401038; PubMed Central PMCID: PMCPMC5113097.
  • Spranger S, Jeremias I, Wilde S, et al. TCR-transgenic lymphocytes specific for HMMR/Rhamm limit tumor outgrowth in vivo. Blood. 2012 Apr ;119(15):3440–3449. PubMed PMID: 22371883.
  • Stauss HJ, Thomas S, Cesco-Gaspere M, et al. WT1-specific T cell receptor gene therapy: improving TCR function in transduced T cells. Blood Cells Mol Dis. 2008 Jan-Feb;40(1):113–116. PubMed PMID: 17855129.
  • Maus MV, Grupp SA, Porter DL, et al. Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood. 2014 Apr ;123(17):2625–2635. PubMed PMID: 24578504; PubMed Central PMCID: PMCPMC3999751.
  • Sadelain M, Riviere I, Riddell S. Therapeutic T cell engineering. Nature. 2017 May 24;545(7655):423–431. PubMed PMID: 28541315.
  • Dutour A, Marin V, Pizzitola I, et al. In vitro and in vivo antitumor effect of anti-CD33 chimeric receptor-expressing EBV-CTL against CD33 acute myeloid leukemia. Adv Hematol. 2012;2012:683065. PubMed PMID: 22272203; PubMed Central PMCID: PMCPMC3261457.
  • Tettamanti S, Marin V, Pizzitola I, et al. Targeting of acute myeloid leukaemia by cytokine-induced killer cells redirected with a novel CD123-specific chimeric antigen receptor. Br J Haematol. 2013 May;161(3):389–401. PubMed PMID: 23432359.
  • Mardiros A, Dos Santos C, McDonald T, et al. T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. Blood. 2013 Oct ;122(18):3138–3148. PubMed PMID: 24030378; PubMed Central PMCID: PMCPMC3814731.
  • Pizzitola I, Anjos-Afonso F, Rouault-Pierre K, et al. Chimeric antigen receptors against CD33/CD123 antigens efficiently target primary acute myeloid leukemia cells in vivo. Leukemia. 2014 Aug;28(8):1596–1605. PubMed PMID: 24504024.
  • Kenderian SS, Ruella M, Shestova O, et al. CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia. Leukemia. 2015 Aug;29(8):1637–1647. PubMed PMID: 25721896; PubMed Central PMCID: PMCPMC4644600.
  • Zhou L, Liu X, Wang X, et al. CD123 redirected multiple virus-specific T cells for acute myeloid. Leukemia Leuk Res. 2016 Feb;41:76–84. PubMed PMID: 26740053.
  • Lynn RC, Poussin M, Kalota A, et al. Targeting of folate receptor beta on acute myeloid leukemia blasts with chimeric antigen receptor-expressing T cells. Blood. 2015 May ;125(22):3466–3476. PubMed PMID: 25887778; PubMed Central PMCID: PMCPMC4447861.
  • Lynn RC, Feng Y, Schutsky K, et al. High-affinity FRbeta-specific CAR T cells eradicate AML and normal myeloid lineage without HSC toxicity. Leukemia. 2016 Jun;30(6):1355–1364. PubMed PMID: 26898190; PubMed Central PMCID: PMCPMC4889499.
  • Cartellieri M, Feldmann A, Koristka S, et al. Switching CAR T cells on and off: a novel modular platform for retargeting of T cells to AML blasts. Blood Cancer J. 2016 Aug ;6(8):e458. PubMed PMID: 27518241; PubMed Central PMCID: PMCPMC5022178 directed to CD33, La and the UniCAR platform technology. AE, SL and MC are employed by GEMoaB and CPT, respectively. The other authors declare no conflict of interest.
  • Thokala R, Olivares S, Mi T, et al. Redirecting specificity of T cells using the sleeping beauty system to express chimeric antigen receptors by mix-and-matching of VL and VH domains targeting CD123+ tumors. PLoS One. 2016;11(8):e0159477. PubMed PMID: 27548616; PubMed Central PMCID: PMCPMC4993583 commercial application to Ziopharm Oncology, Inc., and Intrexon Corporation, in exchange for equity interests in each of these companies. Dr. Cooper and all (excluding Tamara Laskowski) the co-authors were eligible to receive equity as a result of the licensing of this technology. All authors have stock options including patents with Intrexon and Ziopharm. The equity was paid out to each author in the second quarter of 2016 and as a result currently none of the authors have a financial interest in either company except Dr. Cooper who has a continuing financial interest as CEO of Ziopharm. Dr. Cooper also has the following disclosures: Royalties (City of Hope Hospital, Duarte, CA), Intellectual property/patent holder (Sangamo BioSciences), ownership interest in Targazyme, Inc., Intrexon, Ziopharm, Immatics. In relation to this study a patent was filed: UTSC.P1286US.P1. This does not alter the authors’ adherence to PLoS One policies on sharing data and materials.
  • Tashiro H, Sauer T, Shum T, et al. Treatment of acute myeloid leukemia with T cells expressing chimeric antigen receptors directed to C-type lectin-like molecule 1. Mol Ther. 2017 Sep 6;25(9):2202–2213. PubMed PMID: 28676343.
  • Ma Q, Garber HR, Lu S, et al. A novel TCR-like CAR with specificity for PR1/HLA-A2 effectively targets myeloid leukemia in vitro when expressed in human adult peripheral blood and cord blood T cells. Cytotherapy. 2016 Aug;18(8):985–994. PubMed PMID: 27265873; PubMed Central PMCID: PMCPMC4935572.
  • Westwood JA, Smyth MJ, Teng MW, et al. Adoptive transfer of T cells modified with a humanized chimeric receptor gene inhibits growth of Lewis-Y-expressing tumors in mice. Proc Natl Acad Sci USA. 2005 Dec ;102(52):19051–19056. PubMed PMID: 16365285; PubMed Central PMCID: PMCPMC1323148.
  • Neeson P, Shin A, Tainton KM, et al. Ex vivo culture of chimeric antigen receptor T cells generates functional CD8+ T cells with effector and central memory-like phenotype. Gene Ther. 2010 Sep;17(9):1105–1116. PubMed PMID: 20428216.
  • Peinert S, Prince HM, Guru PM, et al. Gene-modified T cells as immunotherapy for multiple myeloma and acute myeloid leukemia expressing the Lewis Y antigen. Gene Ther. 2010 May;17(5):678–686. PubMed PMID: 20200563.
  • Ritchie DS, Neeson PJ, Khot A, et al. Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Mol Ther. 2013 Nov;21(11):2122–2129. PubMed PMID: 23831595; PubMed Central PMCID: PMCPMC3831035.
  • Wang QS, Wang Y, Lv HY, et al. Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia. Mol Ther. 2015 Jan;23(1):184–191. PubMed PMID: 25174587; PubMed Central PMCID: PMCPMC4426796.
  • Bonifant CL, Jackson HJ, Brentjens RJ, et al. Toxicity and management in CAR T-cell therapy. Mol Ther Oncolytics. 2016;3:16011. PubMed PMID: 27626062; PubMed Central PMCID: PMCPMC5008265.
  • Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014 Jul ;124(2):188–195. PubMed PMID: 24876563; PubMed Central PMCID: PMCPMC4093680.
  • Kochenderfer JN, Dudley ME, Carpenter RO, et al. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood. 2013 Dec ;122(25):4129–4139. PubMed PMID: 24055823; PubMed Central PMCID: PMCPMC3862276.
  • Brudno JN, Somerville RP, Shi V, et al. Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J Clin Oncol. 2016 Apr ;34(10):1112–1121. PubMed PMID: 26811520; PubMed Central PMCID: PMCPMC4872017.
  • Qasim W, Zhan H, Samarasinghe S, et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med. 2017 Jan 25;9(374). pii: eaaj2013. PubMed PMID: 28123068.
  • Bonini C, Ferrari G, Verzeletti S, et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science. 1997 Jun 13;276(5319):1719–1724. PubMed PMID: 9180086.
  • Di Stasi A, Tey SK, Dotti G, et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med. 2011 Nov ;365(18):1673–1683. PubMed PMID: 22047558; PubMed Central PMCID: PMCPMC3236370.
  • Verheyden S, Bernier M, Demanet C. Identification of natural killer cell receptor phenotypes associated with leukemia. Leukemia. 2004 Dec;18(12):2002–2007. PubMed PMID: 15470487.
  • Costello RT, Sivori S, Marcenaro E, et al. Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood. 2002 May 15;99(10):3661–3667. PubMed PMID: 11986221.
  • Fauriat C, Just-Landi S, Mallet F, et al. Deficient expression of NCR in NK cells from acute myeloid leukemia: evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction. Blood. 2007 Jan ;109(1):323–330. PubMed PMID: 16940427.
  • Szczepanski MJ, Szajnik M, Welsh A, et al. Interleukin-15 enhances natural killer cell cytotoxicity in patients with acute myeloid leukemia by upregulating the activating NK cell receptors. Cancer Immunol Immunother. 2010 Jan;59(1):73–79. PubMed PMID: 19526239; PubMed Central PMCID: PMCPMC3721322.
  • Sanchez-Correa B, Morgado S, Gayoso I, et al. Human NK cells in acute myeloid leukaemia patients: analysis of NK cell-activating receptors and their ligands. Cancer Immunol Immunother. 2011 Aug;60(8):1195–1205. PubMed PMID: 21644031.
  • Sanchez-Correa B, Gayoso I, Bergua JM, et al. Decreased expression of DNAM-1 on NK cells from acute myeloid leukemia patients. Immunol Cell Biol. 2012 Jan;90(1):109–115. PubMed PMID: 21383766.
  • Sugioka DK, Goncalves CE, Bicalho MD. KIR repertory in patients with hematopoietic diseases and healthy family members. BMC Hematol. 2016;16:25. PubMed PMID: 27708784; PubMed Central PMCID: PMCPMC5041293.
  • Chretien AS, Fauriat C, Orlanducci F, et al. Natural killer defective maturation is associated with adverse clinical outcome in patients with acute myeloid leukemia. Front Immunol. 2017;8:573. PubMed PMID: 28611767; PubMed Central PMCID: PMCPMC5447002.
  • Khaznadar Z, Henry G, Setterblad N, et al. Acute myeloid leukemia impairs natural killer cells through the formation of a deficient cytotoxic immunological synapse. Eur J Immunol. 2014 Oct;44(10):3068–3080. PubMed PMID: 25041786.
  • Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002 Mar 15;295(5562):2097–2100. PubMed PMID: 11896281.
  • Ruggeri L, Mancusi A, Capanni M, et al. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood. 2007 Jul ;110(1):433–440. PubMed PMID: 17371948; PubMed Central PMCID: PMCPMC1896125.
  • Cooley S, Trachtenberg E, Bergemann TL, et al. Donors with group B KIR haplotypes improve relapse-free survival after unrelated hematopoietic cell transplantation for acute myelogenous leukemia. Blood. 2009 Jan ;113(3):726–732. PubMed PMID: 18945962; PubMed Central PMCID: PMCPMC2628378.
  • Venton G, Labiad Y, Colle J, et al. Natural killer cells in acute myeloid leukemia patients: from phenotype to transcriptomic analysis. Immunol Res. 2016 Dec;64(5–6):1225–1236. PubMed PMID: 27481509.
  • Miller JS, Soignier Y, Panoskaltsis-Mortari A, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005 Apr 15;105(8):3051–3057. PubMed PMID: 15632206.
  • Bachanova V, Cooley S, Defor TE, et al. Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL-2 diphtheria toxin fusion protein. Blood. 2014 Jun ;123(25):3855–3863. PubMed PMID: 24719405; PubMed Central PMCID: PMCPMC4064329.
  • Rubnitz JE, Inaba H, Ribeiro RC, et al. NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol. 2010 Feb ;28(6):955–959. PubMed PMID: 20085940; PubMed Central PMCID: PMCPMC2834435.
  • Shimasaki N, Fujisaki H, Cho D, et al. A clinically adaptable method to enhance the cytotoxicity of natural killer cells against B-cell malignancies. Cytotherapy. 2012 Aug;14(7):830–840. PubMed PMID: 22458956.
  • Li L, Liu LN, Feller S, et al. Expression of chimeric antigen receptors in natural killer cells with a regulatory-compliant non-viral method. Cancer Gene Ther. 2010 Mar;17(3):147–154. PubMed PMID: 19745843; PubMed Central PMCID: PMCPMC2821468.
  • Altvater B, Landmeier S, Pscherer S, et al. 2B4 (CD244) signaling by recombinant antigen-specific chimeric receptors costimulates natural killer cell activation to leukemia and neuroblastoma cells. Clin Cancer Res. 2009 Aug ;15(15):4857–4866. PubMed PMID: 19638467; PubMed Central PMCID: PMCPMC2771629.
  • Chu Y, Hochberg J, Yahr A, et al. Targeting CD20+ aggressive B-cell non-Hodgkin lymphoma by anti-CD20 CAR mRNA-modified expanded natural killer cells in vitro and in NSG mice. Cancer Immunol Res. 2015 Apr;3(4):333–344. PubMed PMID: 25492700.
  • Suerth JD, Morgan MA, Kloess S, et al. Efficient generation of gene-modified human natural killer cells via alpharetroviral vectors. J Mol Med (Berl). 2016 Jan;94(1):83–93. PubMed PMID: 26300042.
  • Schirrmann T, Pecher G. Specific targeting of CD33(+) leukemia cells by a natural killer cell line modified with a chimeric receptor. Leuk Res. 2005 Mar;29(3):301–306. PubMed PMID: 15661266.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.