1,868
Views
8
CrossRef citations to date
0
Altmetric
Review

Gene therapy for inherited retinal and optic nerve degenerations

, , &
Pages 37-49 | Received 22 Jun 2017, Accepted 03 Oct 2017, Published online: 23 Oct 2017

References

  • Sohocki MM, Daiger SP, Bowne SJ, et al. Prevalence of mutations causing retinitis pigmentosa and other inherited retinopathies. Hum Mutat. 2001;17(1):42–51.
  • Sengillo JD, Justus S, Tsai YT, et al. Gene and cell-based therapies for inherited retinal disorders: an update. Am J Med Genet Part C Seminars Med Genet. 2016;172(4):349–366.
  • Carter PJ, Samulski RJ. Adeno-associated viral vectors as gene delivery vehicles. Int J Mol Med. 2000;6(1):17–27.
  • Penaud-Budloo M, Le Guiner C, Nowrouzi A. Adeno-associated virus vector genomes persist as episomal chromatin in primate muscle. J Virol. 2008;82(16):7875–7885.
  • Day TP, Byrne LC, Schaffer DV, et al. Advances in AAV vector development for gene therapy in the retina. Adv Exp Med Biol. 2014;801:687–693.
  • Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev. 2008;21(4):583–593.
  • Surace EM, Auricchio A. Versatility of AAV vectors for retinal gene transfer. J Vis. 2008;48(3):353–359.
  • Hareendran S, Balakrishnan B, Sen D, et al. Adeno-associated virus (AAV) vectors in gene therapy: immune challenges and strategies to circumvent them. Rev Med Virol. 2013;23(6):399–413.
  • McCarty DM, Monahan PE, Samulski RJ. Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther. 2001;8(16):1248–1254.
  • McCarty DM. Self-complementary AAV vectors; advances and applications. Mol Ther. 2008;16(10):1648–1656.
  • Everson EM, Trobirdge GD. Retroviral vector interactions with hematopoietic cells. Curr Opin Virol. 2016;21:41–46.
  • Sakuma T, Barry MA, Ikeda Y. Lentiviral vectors: basic to translational. Biochem J. 2012;443(3):603–618.
  • Kumar M, Keller B, Makalou N, et al. Systematic determination of the packaging limit of lentiviral vectors. Hum Gene Ther. 2004;12(15):1893–1905.
  • Zufferey R, Dull T, Mandel RJ, et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol. 1998;72:9873–9880.
  • Streilein JW. Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol. 2003;3(11):879–889.
  • Moore NA, Bracha P, Hussain RM, et al. Gene therapy for age-related macular degeneration. Expert Opin Biol Ther. 2017 Oct;17(10):1235–1244.
  • Yu-Wai-Man P. Genetic manipulation for inherited neurodegenerative diseases: myth or reality? Br J Ophthalmol. 2016;100(10):1322–1331.
  • Li Q, Miller R, Han PY, et al. Intraocular route of AAV2 vector administration defines humoral immune response and therapeutic potential. Mol Vis. 2008;14:1760–1769.
  • Hanein S, Perrault I, Gerber S, et al. Leber congenital amaurosis: comprehensive survey of the genetic heterogeneity, refinement of the clinical definition, and genotype-phenotype correlations as a strategy for molecular diagnosis. Hum Mutat. 2004;23(4):306–317.
  • Den Hollander AI, Roepman R, Koenekoop RK, et al. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res. 2008;27(4):391–419.
  • Allikmets R. Leber congenital amaurosis: a genetic paradigm. Ophthalmic Genet. 2004;25(2):67–79.
  • Lorenz B, Gyurus P, Preising M, et al. Early-onset severe rod-cone dystrophy in young children with RPE65 mutations. Invest Ophthalmol Vis Sci. 2000;41(9):2735–2742.
  • Thompson DA, Gyurus P, Fleischer LL, et al. Genetics and phenotypes of RPE65 mutations in inherited retinal degeneration. Invest Ophthalmol Vis Sci. 2000;41(13):4293–4299.
  • Redmond TM, Yu S, Lee E, et al. Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat Genet. 1998;20(4):344–351.
  • Redmond TM, Poliakov E, Yu S, et al. Mutation of key residues of RPE65 abolishes its enzymatic role as isomerohydrolase in the visual cycle. Proc Natl Acad Sci USA. 2005;102(38):13658–13663.
  • Acland GM, Aguirre GD, Ray J, et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet. 2001;28(1):92–95.
  • Le Meur G, Stieger K, Smith AJ, et al. Restoration of vision in RPE65-deficient Briard dogs using an AAV serotype 4 vector that specifically targets the retinal pigmented epithelium. Gene Ther. 2007;14(4):292–303.
  • Bainbridge JW, Smith AJ, Barker SS, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. New Engl J Med. 2008;358(21):2231–2239.
  • Hauswirth WW, Aleman TS, Kaushal S, et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther. 2008;19(10):979–990.
  • Maguire AM, Simonelli F, Pierce EA, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. New Engl J Med. 2008;358(21):2240–2248.
  • Maguire AM, High KA, Auricchio A, et al. Age-dependent effects of RPE65 gene therapy for Leber’s congenital amaurosis: a phase 1 dose-escalation trial. Lancet. 2009;374(9701):1597–1605.
  • Testa F, Maguire AM, Rossi S, et al. Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with Leber congenital Amaurosis type 2. Ophthalmology. 2013;120(6):1283–1291.
  • Bainbridge JW, Mehat MS, Sundaram V, et al. Long-term effect of gene therapy on Leber’s congenital amaurosis. New Engl J Med. 2015;372(20):1887–1897.
  • Jacobson SG, Cideciyan AV, Roman AJ, et al. Improvement and decline in vision with gene therapy in childhood blindness. New Engl J Med. 2015;372(20):1920–1926.
  • Bennett J, Wellman J, Marshall KA, et al. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial. Lancet. 2016;388(10045):661–672.
  • Spark therapeutics announces new positive data from continuation of phase 3 trial of voretigene neparvovec. 2016. Accessed June 2017. Available from: http://ir.sparktx.com/phoenix.zhtml?c=253900&p=irol-newsArticle&ID=2194535
  • Spark therapeutics completes rolling biologics license application submission to FDA for investigational gene therapy voretigene neparvovec. 2017. Accessed June 2017. Available from: http://ir.sparktx.com/phoenix.zhtml?c=253900&p=irol-newsArticle&ID=2273905
  • Le Muer G, Lebranchu P, Pereon Y, et al. Gene therapy in Leber congenital amaurosis due to RPE mutations: results of the first six patients included in a clinical trial. Invest Ophthalmol Vis Sci. 2013;54:5969.
  • Applied Gentic Technologies Corporation (AGTC). 2017. Accessed June 2017. Available from: https://www.agtc.com/products
  • MeiraGTx. 2017. Accessed June 2017. Available from: http://meiragtx.com/pipeline/
  • Boye SL, Peterson JJ, Choudhury S, et al. Gene therapy fully restores vision to the all-cone Nrl(-/-) Gucy2e(-/-) mouse model of leber congenital amaurosis-1. Hum Gene Ther. 2015;26(9):575–592.
  • Mihelec M, Pearson RA, Robbie SJ, et al. Long-term preservation of cones and improvement in visual function following gene therapy in a mouse model of leber congenital amaurosis caused by guanylate cyclase-1 deficiency. Hum Gene Ther. 2011;22(10):1179–1190.
  • Pawlyk BS, Smith AJ, Buch PK, et al. Gene replacement therapy rescuesphotoreceptor degeneration in a murine model of Leber congenital amaurosis lacking RPGRIP. Invest Ophthalmol Vis Sci. 2005;46(9):3039–3045.
  • Sanchez-Alcudia R, Garcia-Hoyos M, Lopez-Martinez MA, et al. A comprehensive analysis of choroideremia: from genetic characterization to clinical practice. PLoS One. 2016;11(4):e0151943.
  • MacLaren RE, Groppe M, Barnard AR, et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet. 2014;383(9923):1129–1137.
  • Preising M, Ayuso C. Rab escort protein 1 (REP1) in intracellular traffic: a functional and pathophysiological overview. Ophthalmic Genet. 2004;25(2):101–110.
  • Dimopoulos IS, Chan S, MacLaren RE, et al. Pathogenic mechanisms and the prospect of gene therapy for choroideremia. Expert Opin Orphan Drugs. 2015;3(7):787–798.
  • Alory C, Balch WE. Organization of the Rab-GDI/CHM superfamily: the functional basis for choroideremia disease. Traffic. 2001;2(8):532–543.
  • Lukashev AN, Zamyatnin AA. Viral vectors for gene therapy: current state and clinical perspectives. Biochemistry. 2016;81(7):700–708.
  • Zinkernagel MS, MacLaren RE. Recent advances and future prospects in choroideremia. Clin Ophthalmol. 2015;9:2195–2200.
  • Bennett J, Maguire AM, Cideciyan AV, et al. Stable transgene expression in rod photoreceptors after recombinant adeno-associated virus-mediated gene transfer to monkey retina. Proc Natl Acad Sci USA. 1999;96(17):9920–9925.
  • Tolmachova T, Tolmachov OE, Barnard AR, et al. Functional expression of Rab escort protein 1 following AAV2-mediated gene delivery in the retina of choroideremia mice and human cells ex vivo. J Mol Med. 2013;91(7):825–837.
  • Rosser DA, Cousens SN, Murdoch IE. How sensitive to clinical change areETDRS logMAR visual acuity measurements? Invest Ophthalmol Vis Sci. 2003;44(8):3278–3281.
  • Edwards TL, Jolly JK, Groppe M, et al. Visual acuity after retinal gene therapy for choroideremia. New Engl J Med. 2016;374(20):1996–1998.
  • NightstaRx. 2017. Accessed June 2017. Available from: https://www.nightstartx.com/our-programs/
  • Spark Therapeutics. SPK-7001: choroideremia. 2017. Accessed June 2017. Available from: http://sparktx.com/scientific-platform-programs/
  • Tolmachova T, Wavre-Shapton ST, Barnard AR, et al. Retinal pigment epithelium defects accelerate photoreceptor degeneration in cell type-specific knockout mouse models of choroideremia. Invest Ophthalmol Vis Sci. 2010;51(10):4913–4920.
  • Syed N, Smith JE, John SK, et al. Evaluation of retinal photoreceptors and pigment epithelium in a female carrier of choroideremia. Ophthalmology. 2001;108(4):711–720.
  • MacDonald IM, Chan CC, Hiriyanna KT, et al. REP-1 localization in the eye. Invest Ophthalmol Vis Sci 2005;46(13) :540.
  • Black A, Vasireddy V, Chung DC, et al. Adeno-associated virus 8-mediated gene therapy for choroideremia: preclinical studies in in vitro and in vivo models. J Gene Med. 2014;16(5–6):122–130.
  • Vandenberghe LH, Bell P, Maguire AM, et al. Dosage thresholds for AAV2 and AAV8 photoreceptor gene therapy in monkey. Sci Transl Med. 2011;3(88):88ra54.
  • Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet. 2006;368(9549):1795–1809.
  • Mackay DS, Henderson RH, Sergouniotis PI, et al. Novel mutations in MERTK associated with childhood onset rod-cone dystrophy. Mol Vis. 2010;16:369–377.
  • Shahzadi A, Riazuddin SA, Ali S, et al. Nonsense mutation in MERTK causes autosomal recessive retinitis pigmentosa in a consanguineous Pakistani family. The Br J Ophthalmol. 2010;94(8):1094–1099.
  • Ostergaard E, Duno M, Batbayli M, et al. A novel MERTK deletion is a common founder mutation in the Faroe Islands and is responsible for a high proportion of retinitis pigmentosa cases. Mol Vis. 2011;17:1485–1492.
  • D’Cruz PM, Yasumura D, Weir J, et al. Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet. 2000;9(4):645–651.
  • Smith AJ, Schlichtenbrede FC, Tschernutter M, et al. AAV-mediated gene transfer slows photoreceptor loss in the RCS rat model of retinitis pigmentosa. Mol Ther. 2003;8(2):188–195.
  • Conlon TJ, Deng WT, Erger K, et al. Preclinical potency and safety studies of an AAV2-mediated gene therapy vector for the treatment of MERTK associated retinitis pigmentosa. Hum Gene Ther Clin Dev. 2013;24(1):23–28.
  • Ghazi NG, Abboud EB, Nowilaty SR, et al. Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: results of a phase I trial. Hum Genet. 2016;135(3):327–343.
  • Pawlyk BS, Bulgakov OV, Sun X, et al. Photoreceptor rescue by an abbreviated human RPGR gene in a murine model of X-linked retinitis pigmentosa. Gene Ther. 2016;23(2):196–204.
  • Beltran WA, Cideciyan AV, Lewin AS, et al. Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa. Proc Natl Acad Sci USA. 2012;109:2132–2137.
  • Farrar GJ, Millington-Ward S, Chadderton N, et al. Gene-based therapies for dominantly inherited retinopathies. Gene Ther. 2012;19(2):137–144.
  • Palfi A, Chadderton N, O’Reilly M, et al. Efficient gene delivery to photoreceptors using AAV2/rh10 and rescue of the Rho(−/−) mouse. Mol Ther Methods Clin Dev. 2015;2:15016.
  • Millington-Ward S, Chadderton N, O’Reilly M, et al. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther. 2011;19(4):642–649.
  • Mathur P, Yang J. Usher syndrome: hearing loss, retinal degeneration and associated abnormalities. Biochim Biophys Acta. 2015;1852(3):406–420.
  • Lentz J, Usher Syndrome KB Type I. Gene reviews. 2016. Accessed June 2017. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1265/
  • Hasson T, Heintzelman MB, Santos-Sacchi J, et al. Expression in cochlea and retina of myosin VIIa, the gene product defective in Usher syndrome type 1B. Proc Natl Acad Sci USA. 1995;92(21):9815–9819.
  • Hashimoto T, Gibbs D, Lillo C, et al. Lentiviral gene replacement therapy of retinas in a mouse model for Usher syndrome type 1B. Gene Ther. 2007;14(7):584–594.
  • BioMedica O and Sanofi-aventis enter new collaboration to develop gene-based treatments for ocular diseases. 2009. Accessed June 2017. Available from: http://www.oxfordbiomedica.co.uk/pipeline.
  • Fink TL, Klepcyk PJ, Oette SM, et al. Plasmid size up to 20 kbp does not limit effective in vivo lung gene transfer using compacted DNA nanoparticles. Gene Ther. 2006;13(13):1048–1051.
  • Konstan MW, Davis PB, Wagener JS, et al. Compacted DNA nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fibrosis transmembrane regulator reconstitution. Hum Gene Ther. 2004;15(12):1255–1269.
  • Han Z, Conley SM, Makkia R, et al. Comparative analysis of DNA nanoparticles and AAVs for ocular gene delivery. PloS One. 2012;7(12):e52189.
  • Blacharski PA. Fundus flavimaculatus. D. Newsome (Ed.), Retinal Dystrophies and Degenerations, New York: Raven Press; 1988,135–139.
  • Petit L, Punzo C. Gene therapy approaches for the treatment of retinal disorders. Discov Med. 2016;22(121):221–229.
  • Tsybovsky Y, Molday RS, Palczewski K. The ATP-binding cassette transporter ABCA4: structural and functional properties and role in retinal disease. Adv Exp Med Biol. 2010;703:105–125.
  • Han Z, Conley SM, Naash MI. Gene therapy for Stargardt disease associated with ABCA4 gene. Adv Exp Med Biol. 2014;801:719–724.
  • Kong J, Kim SR, Binley K, et al. Correction of the disease phenotype in the mouse model of Stargardt disease by lentiviral gene therapy. Gene Ther. 2008;15(19):1311–1320.
  • Lu LJ, Liu J, Adelman RA. Novel therapeutics for Stargardt disease. Graefe’s Arch Clin Exp Ophthalmol. 2017;251(10):2299–2309.
  • Binley K, Widdowson P, Loader J, et al. Transduction of photoreceptors with equine infectious anemia virus lentiviral vectors: safety and biodistribution of StarGen for Stargardt disease. Invest Ophthalmol Vis Sci. 2013;54(6):4061–4071.
  • Yu-Wai-Man P, Chinnery PF. Leber hereditary optic neuropathy. Gene reviews. 2000. Accessed June 2017. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1174/.
  • Cwerman-Thibault H, Augustin S, Ellouze S, et al. Gene therapy for mitochondrial diseases: leber hereditary optic neuropathy as the first candidate for a clinical trial. C R Biol. 2014;337(3):193–206.
  • Bonnet C, Augustin S, Ellouze S, et al. The optimized allotopic expression of ND1 or ND4 genes restores respiratory chain complex I activity in fibroblasts harboring mutations in these genes. Biochim Biophys Acta. 2008;1783(10):1707–1717.
  • Qi X, Sun L, Lewin AS, et al. The mutant human ND4 subunit of complex I induces optic neuropathy in the mouse. Invest Ophthalmol Vis Sci. 2007;48(1):1–10.
  • Ellouze S, Augustin S, Bouaita A, et al. Optimized allotopic expression of the human mitochondrial ND4 prevents blindness in a rat model of mitochondrial dysfunction. Am J Hum Genet. 2008;83(3):373–387.
  • Feuer WJ, Schiffman JC, Davis JL, et al. Gene therapy for leber hereditary optic neuropathy: initial results. Ophthalmology. 2016;123(3):558–570.
  • Dimopoulos IS, Xu M, Feuer R, et al. Gene therapy for Leber hereditary optic neuropathy: initial results (Ophthalmology 2016;123:558–570). Ophthalmology. 2017;124(3):e22.
  • Wan X, Pei H, Zhao MJ, et al. Efficacy and safety of rAAV2-ND4 treatment for Leber’s hereditary optic neuropathy. Sci Rep. 2016;6:21587.
  • GenSight. GS010. 2017. Accessed June 2017. Available from: http://www.gensight-biologics.com/index.php?page=lhon-leber-hereditary-optic-neuropathy
  • Zobor D, Zobor G, Kohl S. Achromatopsia: on the doorstep of a possible therapy. Ophthalmic Res. 2015;54(2):103–108.
  • Michalakis S, Schon C, Becirovic E, et al. Gene therapy for achromatopsia. J Gene Med. 2017;19:3.
  • Kohl S, Hamel C. Clinical utility gene card for: achromatopsia - update 2013Eur J Hum Genet201321(11). DOIdoi:10.1038/ejhg.2013.44.
  • Alexander JJ, Umino Y, Everhart D, et al. Restoration of cone vision in a mouse model of achromatopsia. Nat Med. 2007;13(6):685–687.
  • Komaromy AM, Alexander JJ, Rowlan JS, et al. Gene therapy rescues cone function in congenital achromatopsia. Hum Mol Genet. 2010;19(13):2581–2593.
  • Pang JJ, Deng WT, Dai X, et al. AAV-mediated cone rescue in a naturally occurring mouse model of CNGA3-achromatopsia. PloS One. 2012;7(4):e35250.
  • Applied Gentic Technologies Corporation. 2017. Achromatopsia. Accessed June 2017. Available from: https://www.agtc.com/products/achromatopsia
  • Schubert T, Wissinger B. Restoration of synaptic function in sight for degenerative retinal disease. J Clin Invest. 2015;125(7):2572–2575.
  • Molday RS, Kellner U, Weber B. X-linked juvenile retinoschisis: clinical diagnosis, genetic analysis, and molecular mechanisms. Prog Retin Eye Res. 2012;31(3):195–212.
  • Weber BH, Schrewe H, Molday LL, et al. Inactivation of the murine X-linked juvenile retinoschisis gene, Rs1h, suggests a role of retinoschisin in retinal cell layer organization and synaptic structure. Proc Natl Acad Sci USA. 2002;99(9):6222–6227.
  • Molday LL, Min SH, Seeliger MW, et al. Disease mechanisms and gene therapy in a mouse model for X-linked retinoschisis. Adv Exp Med Biol. 2006;572:283–289.
  • Byrne LC, Ozturk BE, Lee T, et al. Retinoschisin gene therapy in photoreceptors, Muller glia or all retinal cells in the Rs1h−/− mouse. Gene Ther. 2014;21(6):585–592.
  • Ou J, Vijayasarathy C, Ziccardi L, et al. Synaptic pathology and therapeutic repair in adult retinoschisis mouse by AAV-RS1 transfer. J Clin Invest. 2015;125(7):2891–2903.
  • Ye GJ, Conlon T, Erger K, et al. Safety and biodistribution evaluation of rAAV2tYF-CB-hRS1, a recombinant Adeno-associated virus vector expressing retinoschisin, in RS1-deficient mice. Hum Gene Ther Clin Dev. 2015;26(3):177–184.
  • Applied Gentic Technologies Corporation. X linked retinoschisis. 2017. Accessed June 2017. Available from: https://www.agtc.com/products/x-Linked-retinoschisis
  • Gao G, Vandenberghe LH, Wilson JM. New recombinant serotypes of AAV vectors. Curr Gene Ther. 2005;5(3):285–297.
  • Mitchell AM, Nicolson SC, Warischalk JK, et al. AAV’s anatomy: roadmap for optimizing vectors for translational success. Curr Gene Ther. 2010;10(5):319–340.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.