193
Views
18
CrossRef citations to date
0
Altmetric
Review

Icosahedral boron clusters as modifying entities for biomolecules

ORCID Icon, &
Pages 205-213 | Received 22 Dec 2017, Accepted 02 May 2018, Published online: 31 Jul 2018

References

  • Mirkin CA, Taton TA. Materials chemistry - semiconductors meet biology. Nature. 2000;405(6787):626–627.
  • Lesnikowski ZJ. Recent developments with boron as a platform for novel drug design. Expert Opin Drug Discov. 2016;11(6):569–578.
  • Lesnikowski ZJ. Challenges and opportunities for the application of boron clusters in drug design. J Med Chem. 2016;59(17):7738–7758.
  • Grimes RN. Carboranes. London: Academic Press; 2016.
  • Gabel D. Boron clusters in medicinal chemistry: perspectives and problems. Pure Appl Chem. 2015;87(2):173–179.
  • Fernandez-Alvarez R, Dordovic V, Uchman M, et al. Amphiphiles without head-and-tail design: nanostructures based on the self-assembly of anionic boron cluster compounds. Langmuir. 2017. DOI:10.1021/acs.langmuir.7b03306.
  • Farras P, Juarez-Perez EJ, Lepsik M, et al. Metallacarboranes and their interactions: theoretical insights and their applicability. Chem Soc Rev. 2012;41(9):3445–3463.
  • Planas JG, Vinas C, Teixidor F, et al. Self-assembly of mercaptane-metallacarborane complexes by an unconventional cooperative effect: a C-H…S-H…H-B hydrogen/dihydrogen bond interaction. J Am Chem Soc. 2005;127(45):15976–15982.
  • Fanfrlik J, Lepsik M, Horinek D, et al. Interaction of carboranes with biomolecules: formation of dihydrogen bonds. ChemPhysChem. 2006;7(5):1100–1105.
  • Valliant JF, Guenther KJ, King AS, et al. The medicinal chemistry of carboranes. Coord Chem Rev. 2002;232(1–2):173–230.
  • Pitochelli AR, Hawthorne MF. The isolation of the icosahedral B12h12-2 ion. J Am Chem Soc. 1960;82(12):3228–3229.
  • Heying TL, Ager JW, Clark SL, et al. A new series of organoboranes 1. Carboranes from reaction of decaborane with acetylenic compounds. Inorg Chem. 1963;2(6):1089.
  • Fein MM, Mayes N, Cohen MS, et al. Carboranes .2. Preparation of 1- and 1,2-substituted carboranes. Inorg Chem. 1963;2(6):1115.
  • King RB. Three-dimensional aromaticity in polyhedral boranes and related molecules. Chem Rev. 2001;101(5):1119–1152.
  • Issa F, Kassiou M, Rendina LM. Boron in drug discovery: carboranes as unique pharmacophores in biologically active compounds. Chem Rev. 2011;111(9):5701–5722.
  • Sivaev IB, Bregadze VV. Polyhedral boranes for medical applications: current status and perspectives. Eur J Inorg Chem. 2009;2009(11):1433–1450.
  • Uchman M, Jurkiewicz P, Cigler P, et al. Interaction of fluorescently substituted metallacarboranes with cyclodextrins and phospholipid bilayers: fluorescence and light scattering study. Langmuir. 2010;26(9):6268–6275.
  • Hawthorne MF, Young DC, Wegner PA. Carbametallic boron hydride derivatives .I. Apparent analogs of ferrocene and ferricinium ion. J Am Chem Soc. 1965;87(8):1818.
  • Goszczynski TM, Fink K, Kowalski K, et al. Interactions of boron clusters and their derivatives with serum albumin. Sci Rep. 2017;7(1):9800.
  • Uchman M, Dordovic V, Tosner Z, et al. Classical amphiphilic behavior of nonclassical amphiphiles: a comparison of metallacarborane self-assembly with SDS micellization. Angew Chem Int Ed Engl. 2015;54(47):14113–14117.
  • Bauduin P, Prevost S, Farras P, et al. A theta-shaped amphiphilic cobaltabisdicarbollide anion: transition from monolayer vesicles to micelles. Angew Chem Int Ed Engl. 2011;50(23):5298–5300.
  • Brusselle D, Bauduin P, Girard L, et al. Lyotropic lamellar phase formed from monolayered theta-shaped carborane-cage amphiphiles. Angew Chem Int Ed Engl. 2013;52(46):12114–12118.
  • Matejicek P, Cigler P, Olejniczak AB, et al. Aggregation behavior of nucleoside-boron cluster conjugates in aqueous solutions. Langmuir. 2008;24(6):2625–2630.
  • Locher GL. Biological effects and therapeutic possibilities of neutrons. Am J Roentgenol Radi. 1936;36(1):1–13.
  • Barth RF, Vicente MG, Harling OK, et al. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiat Oncol. 2012;7:146.
  • Moss RL. Critical review, with an optimistic outlook, on boron neutron capture therapy (BNCT). Appl Radiat Isot. 2014;88:2–11.
  • Yamamoto T, Nakai K, Matsumura A. Boron neutron capture therapy for glioblastoma. Cancer Lett. 2008;262(2):143–152.
  • Kabalka GW, Wu ZZ, Yao ML, et al. The syntheses and in vivo biodistribution of novel boronated unnatural amino acids. Appl Radiat Isot. 2004;61(5):1111–1115.
  • Semioshkin A, Laskova J, Ilinova A, et al. Reactions of oxonium derivatives of [B12H12](2-) with sulphur nucleophiles. Synthesis of novel B-12-based mercaptanes, sulfides and nucleosides. J Organomet Chem. 2011;696(2):539–543.
  • Barth RF, Yang W, Al-Madhoun AS, et al. Boron-containing nucleosides as potential delivery agents for neutron capture therapy of brain tumors. Cancer Res. 2004;64(17):6287–6295.
  • Al-Madhoun AS, Johnsamuel J, Barth RF, et al. Evaluation of human thymidine kinase 1 substrates as new candidates for boron neutron capture therapy. Cancer Res. 2004;64(17):6280–6286.
  • Grin MA, Semioshkin AA, Titeev RA, et al. Synthesis of a cycloimide bacteriochlorin p conjugate with the closo-dodecaborate anion. Mendeleev Commun. 2007;17(1):14–15.
  • Semioshkin A, Tsaryova O, Zhidkova O, et al. Reactions of oxonium derivatives of (B12H12)(2-) with phenoles, and synthesis and photochemical properties of a phthalocyanine containing four (B12H12)(2-) groups. J Porphyrins Phthalocyanines. 2006;10(11):1293–1300.
  • Hawthorne MF, Maderna A. Applications of radiolabeled boron clusters to the diagnosis and treatment of cancer. Chem Rev. 1999;99(12):3421–3434.
  • Mier W, Gabel D, Haberkorn U, et al. Conjugation of the closo-borane mereaptoundecahydrododecaborate (BSH) to a tumour selective peptide. Zeitschrift Fur Anorganische Und Allgemeine Chemie. 2004;630(8–9):1258–1262.
  • Yang W, Barth RF, Wu G, et al. Boron neutron capture therapy of EGFR or EGFRvIII positive gliomas using either boronated monoclonal antibodies or epidermal growth factor as molecular targeting agents. Appl Radiat Isot. 2009;67(7–8 Suppl):S328–S331.
  • Nakamura H. Liposomal boron delivery for neutron capture therapy. Methods Enzymol. 2009;465:179–208.
  • Qian EA, Wixtrom AI, Axtell JC, et al. Atomically precise organomimetic cluster nanomolecules assembled via perfluoroaryl-thiol SNAr chemistry. Nat Chem. 2017;9(4):333–340.
  • Pushechnikov A, Jalisatgi SS, Hawthorne MF. Dendritic closomers: novel spherical hybrid dendrimers. Chem Commun. 2013;49(34):3579–3581.
  • Tafreshi NK, Lloyd MC, Bui MM, et al. Carbonic anhydrase IX as an imaging and therapeutic target for tumors and metastases. Subcell Biochem. 2014;75:221–254.
  • Mader P, Brynda J, Gitto R, et al. Structural basis for the interaction between carbonic anhydrase and 1,2,3,4-tetrahydroisoquinolin-2-ylsulfonamides. J Med Chem. 2011;54(7):2522–2526.
  • Brynda J, Mader P, Sicha V, et al. Carborane-based carbonic anhydrase inhibitors. Angew Chem Int Ed Engl. 2013;52(51):13760–13763.
  • Mader P, Pecina A, Cigler P, et al. Carborane-based carbonic anhydrase inhibitors: insight into CAII/CAIX specificity from a high-resolution crystal structure, modeling, and quantum chemical calculations. Biomed Res Int. 2014;2014:389869.
  • Cigler P, Kozisek M, Rezacova P, et al. From nonpeptide toward noncarbon protease inhibitors: metallacarboranes as specific and potent inhibitors of HIV protease. Proc Natl Acad Sci U S A. 2005;102(43):15394–15399.
  • Kozisek M, Cigler P, Lepsik M, et al. Inorganic polyhedral metallacarborane inhibitors of HIV protease: a new approach to overcoming antiviral resistance. J Med Chem. 2008;51(15):4839–4843.
  • Rezacova P, Pokorna J, Brynda J, et al. Design of HIV protease inhibitors based on inorganic polyhedral metallacarboranes. J Med Chem. 2009;52(22):7132–7141.
  • Gona KB, Zaulet A, Gomez-Vallejo V, et al. COSAN as a molecular imaging platform: synthesis and “in vivo” imaging. Chem Commun (Camb). 2014;50(77):11415–11417.
  • Volovetsky AB, Shilyagina NY, Dudenkova VV, et al. Biodistribution of amine-amide chlorin e(6) derivative conjugate with a boron nanoparticle for boron neutron-capture therapy. Sovremennye Tehnologii V Medicine. 2016;8(1):34–39.
  • Tarres M, Canetta E, Paul E, et al. Biological interaction of living cells with COSAN-based synthetic vesicles. Sci Rep. 2015;5:7804.
  • Tarres M, Canetta E, Vinas C, et al. Imaging in living cells using nuB-H Raman spectroscopy: monitoring COSAN uptake. Chem Commun (Camb). 2014;50(25):3370–3372.
  • Bush K, Courvalin P, Dantas G, et al. Tackling antibiotic resistance. Nat Rev Microbiol. 2011;9(12):894–896.
  • Totani T, Aono K, Yamamoto K, et al. Synthesis and invitro antimicrobial property of ortho-carborane derivatives. J Med Chem. 1981;24(12):1492–1499.
  • Oros G, Ujvary I, Nachman RJ. Antimicrobial activity of o-carboranylalanine. Amino Acids. 1999;17(4):357–368.
  • Li S, Wang Z, Wei Y, et al. Antimicrobial activity of a ferrocene-substituted carborane derivative targeting multidrug-resistant infection. Biomaterials. 2013;34(4):902–911.
  • Li SH, Wu CY, Tang X, et al. New strategy for reversing biofilm-associated antibiotic resistance through ferrocene-substituted carborane ruthenium(II)-arene complex. Sci China Chem. 2013;56(5):595–603.
  • Wu C, Ye H, Bai W, et al. New potential anticancer agent of carborane derivatives: selective cellular interaction and activity of ferrocene-substituted dithio-o-carborane conjugates. Bioconjug Chem. 2011;22(1):16–25.
  • Adamska A, Rumijowska-Galewicz A, Ruszczynska A, et al. Anti-mycobacterial activity of thymine derivatives bearing boron clusters. Eur J Med Chem. 2016;121:71–81.
  • Kvasnickova E, Masak J, Cejka J, et al. Preparation, characterization, and the selective antimicrobial activity of N-alkylammonium 8-diethyleneglycol cobalt bis-dicarbollide derivatives. J Organomet Chem. 2017;827:23–31.
  • Zheng YK, Liu WW, Chen Y, et al. A highly potent antibacterial agent targeting methicillin-resistant staphylococcus aureus based on cobalt bis(1,2-Dicarbollide) alkoxy derivative. Organometallics. 2017;36(18):3484–3490.
  • Semioshkin AA, Sivaev IB, Bregadze VI. Cyclic oxonium derivatives of polyhedral boron hydrides and their synthetic applications. Dalton Trans. 2008;(8):977–992.
  • Sivaev IB, Semioshkin AA, Brellochs B, et al. Synthesis of oxonium derivatives of the dodecahydro-closo-dodecaborate anion [B12H12](2-). Tetramethylene oxonium derivative of [B12H12](2-) as a convenient precursor for the synthesis of functional compounds for boron neutron capture therapy. Polyhedron. 2000;19(6):627–632.
  • Wojtczak BA, Andrysiak A, Gruner B, et al. “Chemical ligation”: a versatile method for nucleoside modification with boron clusters. Chemistry (Easton). 2008;14(34):10675–10682.
  • Goszczynski TM, Kowalski K, Lesnikowski ZJ, et al. Solid state, thermal synthesis of site-specific protein-boron cluster conjugates and their physicochemical and biochemical properties. Biochim Biophys Acta. 2015;1850(2):411–418.
  • Kowalski K, Goszczynski T, Lesnikowski ZJ, et al. Synthesis of lysozyme-metallacarborane conjugates and the effect of boron cluster modification on protein structure and function. ChemBioChem. 2015;16(3):424–431.
  • Khan IU, Beck-Sickinger AG. Targeted tumor diagnosis and therapy with peptide hormones as radiopharmaceuticals. Anticancer Agents Med Chem. 2008;8(2):186–199.
  • Ahrens VM, Frank R, Stadlbauer S, et al. Incorporation of ortho-carbaboranyl-N-epsilon-modified L-lysine into neuropeptide Y receptor Y-1- and Y-2-selective analogues. J Med Chem. 2011;54(7):2368–2377.
  • Frank R, Ahrens VM, Boehnke S, et al. Charge-compensated metallacarborane building blocks for conjugation with peptides. Chembiochem. 2016;17(4):308–317.
  • Betzel T, Hess T, Waser B, et al. closo-borane conjugated regulatory peptides retain high biological affinity: synthesis of closo-borane conjugated Tyr(3)-octreotate derivatives for BNCT. Bioconjug Chem. 2008;19(9):1796–1802.
  • Kimura S, Masunaga S, Harada T, et al. Synthesis and evaluation of cyclic RGD-boron cluster conjugates to develop tumor-selective boron carriers for boron neutron capture therapy. Bioorg Med Chem. 2011;19(5):1721–1728.
  • Varadarajan A, Hawthorne MF. Novel carboranyl amino acids and peptides: reagents for antibody modification and subsequent neutron-capture studies. Bioconjug Chem. 1991;2(4):242–253.
  • Fischli W, Leukart O, Schwyzer R. Hormone-receptor interactions - carboranylalanine (Car) as a phenylalanine analog - reactions with chymotrypsin. Helv Chim Acta. 1977;60(3):959–963.
  • Eberle A, Leukart O, Schiller P, et al. Hormone-receptor interactions - [4-carboranylalanine, 5-leucine]-Enkephalin as a structural probe for opiate receptor. Febs Letters. 1977;82(2):325–328.
  • Nachman RJ, Teal PE, Radel PA, et al. Potent pheromonotropic/myotropic activity of a carboranyl pseudotetrapeptide analogue of the insect pyrokinin/PBAN neuropeptide family administered via injection or topical application. Peptides. 1996;17(5):747–752.
  • Couture R, Drouin JN, Leukart O, et al. Biological-activities of kinins and substance-P octapeptides (4-11) in which phenylalanine residues have been replaced with L-carboranylalanine. Can J Physiol Pharmacol. 1979;57(12):1437–1442.
  • Escher E, Guillemette G, Leukart O, et al. Pharmacological properties of two analogues of angiotensin II containing carboranylalanine (Car). Eur J Pharmacol. 1980;66(4):267–272.
  • Ruff D, Crockford D, Girardi G, et al. A randomized, placebo-controlled, single and multiple dose study of intravenous thymosin beta4 in healthy volunteers. Ann N Y Acad Sci. 2010;1194:223–229.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.