8,901
Views
105
CrossRef citations to date
0
Altmetric
Review

Diabetic retinopathy: a complex pathophysiology requiring novel therapeutic strategies

, , , &
Pages 1257-1270 | Received 20 Sep 2018, Accepted 05 Nov 2018, Published online: 14 Nov 2018

References

  • Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet. 2010;376:124–136.
  • Joussen AM, Smyth N, Niessen C. Pathophysiology of diabetic macular edema. In: Developments in ophthalmology. 2007. p. 1–12.
  • Bandello F, Lattanzio R, Zucchiatti I, et al. Pathophysiology and treatment of diabetic retinopathy. Acta Diabetol. 2013;50:1–20.
  • Tarr JM, Kaul K, Chopra M, et al. Pathophysiology of diabetic retinopathy. ISRN Ophthalmol. 2013;2013:343560.
  • Thomas RL, Dunstan F, Luzio SD, et al. Incidence of diabetic retinopathy in people with type 2 diabetes mellitus attending the diabetic retinopathy screening service for wales: retrospective analysis. BMJ. 2012;344:e874.
  • Simó R, Hernández C. Novel approaches for treating diabetic retinopathy based on recent pathogenic evidence. - PubMed – NCBI. [cited 2018 Oct 31]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25936649
  • Wang J-H, Ling D, Tu L, et al. Gene therapy for diabetic retinopathy: are we ready to make the leap from bench to bedside? Pharmacol Ther. 2017;173:1–18.
  • Yau JWY, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35:556–564.
  • Viswanath K, McGavin DD. Diabetic retinopathy: clinical findings and management. Community Eye Health. 2003;16:21.
  • Diabetic retinopathy - Symptoms and causes. Mayo clinic. 2015 [cited 2018 Jan 18]. Available from: http://www.mayoclinic.org/diseases-conditions/diabetic-retinopathy/symptoms-causes/syc-20371611
  • Cantrill HL. The diabetic retinopathy study and the early treatment diabetic retinopathy study. - PubMed – NCBI. [cited 2018 Jan 18]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/6389409
  • Diabetic Retinopathy Diagnosis. American academy of ophthalmology. 2017 [cited 2018 Jan 18]. Available from: https://www.aao.org/eye-health/diseases/diabetic-retinopathy-diagnosis
  • Stitt AW, Anderson HR, Gardiner TA, et al. Diabetic retinopathy: quantitative variation in capillary basement membrane thickening in arterial or venous environments. Br J Ophthalmol. 1994;78:133–137.
  • Balabanov R, Dore-Duffy P. Role of the CNS microvascular pericyte in the blood-brain barrier. J Neurosci Res. 1998;53:637–644.
  • Cogan DG, Kuwabara T. The mural cell in perspective. Arch Ophthal. 1967;78:133–139.
  • Stitt AW, Gardiner TA, Archer DB. Histological and ultrastructural investigation of retinal microaneurysm development in diabetic patients. Br J Ophthalmol. 1995;79:362–367.
  • Szwergold B, Kappler F, Brown T. Identification of fructose 3-phosphate in the lens of diabetic rats. Science. 1990;247:451–454.
  • Gabbay KH. Hyperglycemia, polyol metabolism, and complications of diabetes mellitus. Annu Rev Med. 1975;26:521–536.
  • Steinmetz PR, Balko C, Gabbay KH. The sorbitol pathway and the complications of diabetes. N Engl J Med. 1973;288:831–836.
  • Barnett PA, Gonzalez RG, Chylack LT, et al. The effect of oxidation on sorbitol pathway kinetics. Diabetes. 1986;35:426–432.
  • Lassègue B, Clempus RE. Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol. 2003;285:R277–R297.
  • Hammes HP, Martin S, Federlin K, et al. Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. Proc Nat Acad Sci. 1992;89:9364.
  • Peppa M, Uribarri J, Vlassara HG. Advanced glycation end products, and diabetes complications: what is new and what works. Clin Diabetes. 2003;21:186–187.
  • Hammes HP, Martin S, Federlin K, et al. Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. Proc Natl Acad Sci U.S.A. 1991;88:11555–11558.
  • Stitt A, Gardiner TA, Anderson NL, et al. The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes. 2002;51:2826–2832.
  • Zong H, Ward M, Stitt AW. AGEs, RAGE, and diabetic retinopathy. Curr Diab Rep. 2011;11:244–252.
  • Wang QJ. PKD at the crossroads of DAG and PKC signaling. Trends Pharmacol Sci. 2006;27:317–323.
  • Rosse C, Linch M, Kermorgant S, et al. PKC and the control of localized signal dynamics. Nat Rev Mol Cell Biol. 2010;11:103–112.
  • Xia P, Inoguchi T, Kern TS, et al. Characterization of the mechanism for the chronic activation of diacylglycerol-protein kinase C pathway in diabetes and hypergalactosemia. Diabetes. 1994;43:1122–1129.
  • Koya D, King GL. Protein kinase C activation and the development of diabetic complications. Diabetes. 1998;47:859–866.
  • Nerlich AG, Sauer U, Kolm-Litty V, et al. Expression of glutamine: fructose-6-phosphateamidotransferase in human tissues: evidence for high variability and distinct regulation in diabetes. Diabetes. 1998;47:170–178.
  • Wells L. Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science. 2001;291:2376–2378.
  • Chen Y-Q, Su M, Walia RR, et al. Sp1 sites mediate activation of the plasminogen activator inhibitor-1 promoter by glucose in vascular smooth muscle cells. J Biol Chem. 1998;273:8225–8231.
  • Goldberg HJ, Scholey J, Fantus IG. Glucosamine activates the plasminogen activator inhibitor 1 gene promoter through Sp1 DNA binding sites in glomerular mesangial cells. Diabetes. 2000;49:863–871.
  • Kadonaga J, Courey A, Ladika J, et al. Distinct regions of Sp1 modulate DNA binding and transcriptional activation. Science. 1988;242:1566–1570.
  • Hart GW. Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins. Annu Rev Biochem. 1997;66:315–335.
  • Kiss L, Szabó C. The pathogenesis of diabetic complications: the role of DNA injury and poly(ADP-ribose) polymerase activation in peroxynitrite-mediated cytotoxicity. Mem Inst Oswaldo Cruz. 2005;100(Suppl 1):29–37.
  • Obrosova IG, Julius UA. Role for poly(ADP-ribose) polymerase activation in diabetic nephropathy, neuropathy and retinopathy. Curr Vasc Pharmacol. 2005;3:267–283.
  • Peti-Peterdi J, Kang JJ, Toma I. Activation of the renal renin-angiotensin system in diabetes–new concepts. Nephrol Dial Transplant. 2008;23:3047–3049.
  • Shah C. Diabetic retinopathy: a comprehensive review. Indian J Med Sci. 2008;62:500.
  • Verma A, Shan Z, Lei B, et al. ACE2 and Ang-(1-7) confer protection against development of diabetic retinopathy. Mol Ther. 2012;20:28–36.
  • Du X-L, Edelstein D, Rossetti L, et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Nat Acad Sci. 2000;97:12222–12226.
  • Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycemic damage. Nature. 2000;404:787–790.
  • Garcia Soriano F, Virág L, Jagtap P, et al. Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nat Med. 2001;7:108–113.
  • Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813.
  • Kaul K, Hodgkinson A, Tarr JM, et al. Is inflammation a common retinal-renal-nerve pathogenic link in diabetes? Curr Diabetes Rev. 2010;6:294–303.
  • Hernandez C, Segura RM, Fonollosa A, et al. Interleukin-8, monocyte chemoattractant protein-1 and IL-10 in the vitreous fluid of patients with proliferative diabetic retinopathy. Diabet Med. 2005;22:719–722.
  • Doganay S, Evereklioglu C, Er H, et al. Comparison of serum NO, TNF-α, IL-1β, sIL-2R, IL-6 and IL-8 levels with grades of retinopathy in patients with diabetes mellitus. Eye. 2002;16:163–170.
  • Kern TS, Miller CM, Du Y, et al. Topical administration of nepafenac inhibits diabetes-induced retinal microvascular disease and underlying abnormalities of retinal metabolism and physiology. Diabetes. 2007;56:373–379.
  • Kuppermann BD, Blumenkranz MS, Haller JA, et al. Randomized controlled study of an intravitreous dexamethasone drug delivery system in patients with persistent macular edema. Arch Ophthalmol. 2007;125:309–317.
  • Gillies MC, Sutter FK, Simpson JM, et al. Intravitreal triamcinolone for refractory diabetic macular edema: two-year results of a double-masked, placebo-controlled, randomized clinical trial. Ophthalmology. 2006;113:1533–1538.
  • Comer GM, Ciulla TA. Pharmacotherapy for diabetic retinopathy. Curr Opin Ophthalmol. 2004;15:508–518.
  • Ishida S, Usui T, Yamashiro K, et al. VEGF164Is proinflammatory in the diabetic retina. Invest Ophthalmol. 2003;44:2155.
  • Joussen AM, Poulaki V, Qin W, et al. Retinal vascular endothelial growth factor induces intercellular adhesion molecule-1 and endothelial nitric oxide synthase expression and initiates early diabetic retinal leukocyte adhesion in vivo. Am J Pathol. 2002;160:501–509.
  • Adamis AP, Shima DT, Yeo KT, et al. Synthesis and secretion of vascular permeability factor/vascular endothelial growth factor by human retinal pigment epithelial cells. Biochem Biophys Res Commun. 1993;193:631–638.
  • Wirostko B, Wong T, Simo R. Vascular endothelial growth factor and diabetic complications. Prog Retin Eye Res. 2008;27:608–621.
  • Claesson-Welsh L. Vascular growth factors and angiogenesis. Springer Science & Business Media; 2012.
  • Bates DO, Curry FE. Vascular endothelial growth factor increases microvascular permeability via a Ca(2)-dependent pathway. Am J Physiol Heart Circ Physiol. 1997;273:H687–H694.
  • Bek T. Diabetic retinopathy. In: New concepts in diabetes and its treatment. Switzerland: Karger. 2000. p. 135–151.
  • Roy S, Trudeau K, Roy S, et al. Mitochondrial dysfunction and endoplasmic reticulum stress in diabetic retinopathy: mechanistic insights into high glucose-induced retinal cell death. Curr Clin Pharmacol. 2013;8:278–284.
  • Engerman RL, Kern TS. Retinopathy in animal models of diabetes. Diabetes/Metabolism Rev. 1995;11:109–120.
  • Simó R, Hernández C, European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR). Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metab. 2014;25:23–33.
  • Hernández C, Dal Monte M, Simó R, et al. Neuroprotection as a therapeutic target for diabetic retinopathy. J Diabetes Res. 2016;2016:9508541.
  • Hammes HP, Federoff HJ, Brownlee M. Nerve growth factor prevents both neuroretinal programmed cell death and capillary pathology in experimental diabetes. Mol Med. 1995;1:527–534.
  • Barber AJ, Lieth E, Khin SA, et al. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest. 1998;102:783–791.
  • El-Remessy AB, Al-Shabrawey M, Khalifa Y, et al. Neuroprotective and blood-retinal barrier-preserving effects of cannabidiol in experimental diabetes. Am J Pathol. 2006;168:235–244.
  • Gardner TW, Davila JR. The neurovascular unit and the pathophysiologic basis of diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2017;255:1–6.
  • Duh EJ, Sun JK, Stitt AW. Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight. 2017;2(14).
  • Simó R, Stitt AW, Gardner TW. Neurodegeneration in diabetic retinopathy: does it really matter? Diabetologia. 2018;61:1902–1912.
  • Shah JH. Improving diabetes care in the clinic. Delhi, India: JP Medical Ltd; 2014.
  • Lachin JM, Genuth S, Nathan DM, et al. Effect of glycemic exposure on the risk of microvascular complications in the diabetes control and complications trial–revisited. Diabetes. 2008;57:995–1001.
  • White NH, Sun W, Cleary PA, et al. Effect of prior intensive therapy in type 1 diabetes on 10-year progression of retinopathy in the DCCT/EDIC: comparison of adults and adolescents. Diabetes. 2010;59:1244–1253.
  • Photocoagulation for diabetic macular edema. Early treatment diabetic retinopathy study report number 1. Early treatment diabetic retinopathy study research group. Arch Ophthalmol. 1985;103:1796–1806.
  • Early photocoagulation for diabetic retinopathy. ETDRS report number 9. Early treatment diabetic retinopathy study research group. Ophthalmology. 1991;98:766–785.
  • Michael M, Ronald K, Marie CG. Renal and Retinal Effects of Enalapril and Losartan in Type. 1 diabetes. N Engl J Med. 2009;361:1410–1411.
  • Chaturvedi N, Porta M, Klein R, et al. Effect of candesartan on prevention (DIRECT-Prevent 1) and progression (DIRECT-Protect 1) of retinopathy in type 1 diabetes: randomized, placebo-controlled trials. Lancet. 2008;372:1394–1402.
  • Sjølie AK, Klein R, Porta M, et al. Effect of candesartan on progression and regression of retinopathy in type 2 diabetes (DIRECT-Protect 2): a randomized placebo-controlled trial. Lancet. 2008;372:1385–1393.
  • Mohammad G, Siddiquei MM, Othman A, et al. High-mobility group box-1 protein activates inflammatory signaling pathway components and disrupts retinal vascular-barrier in the diabetic retina. Exp Eye Res. 2013;107:101–109.
  • Leal EC, Manivannan A, Hosoya KI, et al. Inducible nitric oxide synthase isoform is a key mediator of leukostasis and blood-retinal barrier breakdown in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2007;48:5257–5265.
  • Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy. N Engl J Med. 2012;366:1227–1239.
  • The ACCORD Study Group and ACCORD Eye Study Group. Effects of medical therapies on retinopathy progression in type 2 diabetes. N Engl J Med. 2010;363:233–244.
  • Keech AC, Mitchell P, Summanen PA, et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomized controlled trial. Lancet. 2007;370:1687–1697.
  • Zhang X, Bao S, Hambly BD, et al. Vascular endothelial growth factor-A: a multifunctional molecular player in diabetic retinopathy. Int J Biochem Cell Biol. 2009;41:2368–2371.
  • Kamal AD1, Dixon AN, Bain SC. Safety and side effects of the insulin analogues. - PubMed - NCBI. [cited 2018 Jun 27]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/16370962
  • Berezin A. Metabolic memory phenomenon in diabetes mellitus: achieving and perspectives. - PubMed - NCBI. [cited 2018 Jun 27]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27025794
  • Romero-Aroca P. Is laser photocoagulation treatment currently useful in diabetic macular edema? Med Hypothesis Discov Innov Ophthalmol. 2015;4:5.
  • Cagnoni F, Njwe CA, Zaninelli A, et al. Blocking the RAAS at different levels: an update on the use of the direct renin inhibitors alone and in combination. Vasc Health Risk Manag. 2010;6:549.
  • Jonas JB. Intravitreal triamcinolone acetonide for diabetic retinopathy. - PubMed - NCBI. [cited 2018 Jun 27]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/17245081
  • PKC-DRS2 Group, et al. Effect of ruboxistaurin on visual loss in patients with diabetic retinopathy. - PubMed - NCBI. [cited 2018 Jun 27]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/16989901
  • Knickelbein JE, Abbott AB, Chew EY. Fenofibrate and diabetic retinopathy. - PubMed - NCBI. [cited 2018 Jun 30]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27525681
  • Blinder KJ, Dugel P, Chen S, et al. Anti-VEGF treatment of diabetic macular edema in clinical practice: effectiveness and patterns of use (ECHO Study Report 1). Clin Ophthalmol. 2017;11:393.
  • Yacyshyn OK, Lai PFH, Forse K, et al. Tyrosine phosphatase beta regulates angiopoietin-Tie2 signaling in human endothelial cells. Angiogenesis. 2009;12:25–33.
  • Gamble JR, Goings G, Upshaw-Earley J, et al. Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions. Circ Res. 2000;87:603–607.
  • Holash J, Maisonpierre PC, Compton D, et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science. 1999;284:1994–1998.
  • Scharpfenecker M, Fiedler U, Reiss Y, et al. The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J Cell Sci. 2005;118:771–780.
  • Bolinger MT, Antonetti DA. Moving past Anti-VEGF: novel therapies for treating diabetic retinopathy. Int J Mol Sci. 2016;17:1498.
  • Genentech: Press Releases. [cited 2018 Feb 27]. Available from: https://www.gene.com/media/press-releases/14705/2018-02-11/phase-ii-data-support-potential-for-nove
  • Patrício JPH, Barbosa JPP, Ramos RMM, et al. Relative cardiovascular and gastrointestinal safety of non-selective non-steroidal anti-inflammatory drugs versus cyclo-oxygenase-2 inhibitors: implications for clinical practice. Clin Drug Investig. 2013;33:167–183.
  • Maldonado RM, Vianna RNG, Cardoso GP, et al. Intravitreal injection of commercially available ketorolac tromethamine in eyes with diabetic macular edema refractory to laser photocoagulation. Curr Eye Res. 2011;36:768–773.
  • Schoenberger SD, Kim SJ, Shah R, et al. Reduction of interleukin 8 and platelet-derived growth factor levels by topical ketorolac, 0.45%, in patients with diabetic retinopathy. JAMA Ophthalmol. 2014;132:32.
  • Friedman SM, Almukhtar TH, Baker CW, et al. Topical nepafenec in eyes with noncentral diabetic macular edema. Retina. 2015;35:944–956.
  • McCormack PL. Ketorolac 0.45% ophthalmic solution. Drugs Aging. 2011;28:583–589.
  • Solomon K. Topical ketorolac tromethamine 0.5% ophthalmic solution in ocular inflammation after cataract surgery. Ophthalmology. 2001;108:331–337.
  • Krady JK, Basu A, Allen CM, et al. Minocycline reduces proinflammatory cytokine expression, microglial activation, and Caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes. 2005;54:1559–1565.
  • Cukras CA, Petrou P, Chew EY, et al. Oral minocycline for the treatment of diabetic macular edema (DME): results of a phase I/II clinical study. Invest Ophthalmol Vis Sci. 2012;53:3865–3874.
  • Wu Y, Chen Y, Wu Q, et al. Minocycline inhibits PARP‑1 expression and decreases apoptosis in diabetic retinopathy. Mol Med Rep. 2015;12:4887–4894.
  • Ciulla TA, Criswell MH, Danis RP, et al. Squalamine lactate reduces choroidal neovascularization in a Laser-Injury model in the rat. Retina. 2003;23:808–814.
  • Higgins RD, Yan Y, Geng Y, et al. Regression of retinopathy by squalamine in a mouse model. Pediatr Res. 2004;56:144–149.
  • Liegl R, Koenig S, Siedlecki J, et al. Temsirolimus inhibits proliferation and migration in retinal pigment epithelial and endothelial cells via mTOR inhibition and decreases VEGF and PDGF expression. PLoS One. 2014;9:e88203.
  • Yagasaki R, Tanimoto Y, Abe K, et al. Anti-angiogenic effects of mammalian target of rapamycin inhibitors in a mouse model of oxygen-induced retinopathy. Biol Pharm Bull. 2014;37:1838–1842.
  • Dugel PU, Blumenkranz MS, Haller JA, et al. A randomized, dose-escalation study of subconjunctival and intravitreal injections of sirolimus in patients with diabetic macular edema. Ophthalmology. 2012;119:124–131.
  • Seto B. Rapamycin and mTOR: a serendipitous discovery and implications for breast cancer. Clin Transl Med. 2012;1:29.
  • Millen AE, Klein R, Folsom AR, et al. Relation between intake of vitamins C and E and risk of diabetic retinopathy in the atherosclerosis risk in communities study. Am J Clin Nutr. 2004;79:865–873.
  • Chous AP, Richer SP, Gerson JD, et al. The Diabetes Visual Function Supplement Study (DiVFuSS). Br J Ophthalmol. 2016;100:227–234.
  • Salvemini D, Page DC. A nonpeptidyl mimic of superoxide dismutase with therapeutic activity in rats. Science. 1999;286:304–306.
  • Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54:1615–1625.
  • Marchetti V, Menghini R, Rizza S, et al. Benfotiamine counteracts glucose toxicity effects on endothelial progenitor cell differentiation via Akt/FoxO signaling. Diabetes. 2006;55:2231–2237.
  • Ferdinando Giacco MB, Brownlee M, Schmidt AM. Oxidative stress and diabetic complications. Circ Res. 2010;107:1058.
  • Rabbani N, Alam SS, Riaz S, et al. High-dose thiamine therapy for patients with type 2 diabetes and microalbuminuria: a randomized, double-blind placebo-controlled pilot study. Diabetologia. 2009;52:208–212.
  • Thornalley PJ, Babaei-Jadidi R, Al Ali H, et al. High prevalence of low plasma thiamine concentration in diabetes linked to a marker of vascular disease. Diabetologia. 2007;50:2164–2170.
  • Szabó C, Biser A, Benko R, et al. Poly(ADP-ribose) polymerase inhibitors ameliorate nephropathy of type 2 diabetic Leprdb/db mice. Diabetes. 2006;55:3004–3012.
  • Khoshnevis M, Sebag J. Pharmacologic vitreolysis with ocriplasmin: rationale for use and therapeutic potential in vitreo-retinal disorders. BioDrugs. 2015;29:103–112.
  • Haller JA, Stalmans P, Benz MS, et al. Efficacy of intravitreal ocriplasmin for treatment of vitreomacular adhesion: subgroup analyses from two randomized trials. Ophthalmology. 2015;122:117–122.
  • Varma R, Haller JA, Kaiser PK. Improvement in patient-reported visual function after ocriplasmin for vitreomacular adhesion: results of the microplasmin for intravitreous injection-traction release without surgical treatment (MIVI-TRUST) trials. JAMA Ophthalmol. 2015;133:997–1004.
  • Li Y-J, Li X-H, Wang L-F, et al. Therapeutic efficacy of a novel non-peptide αvβ3 integrin antagonist for pathological retinal angiogenesis in mice. Exp Eye Res. 2014;129:119–126.
  • Yoshida T, Gong J, Xu Z, et al. Inhibition of pathological retinal angiogenesis by the integrin αvβ3 antagonist tetraiodothyroacetic acid (tetrac). Exp Eye Res. 2012;94:41–48.
  • Hernández C, Bogdanov P, Solà-Adell C, et al. Topical administration of DPP-IV inhibitors prevents retinal neurodegeneration in experimental diabetes. - PubMed - NCBI. [cited 2018 Oct 31]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28779212
  • Solinís MÁ, Ángeles Solinís M, Del Pozo-Rodríguez A, et al. Treatment of ocular disorders by gene therapy. Eur J Pharm Biopharm. 2015;95:331–342.
  • Gehlbach P, Demetriades AM, Yamamoto S, et al. Periocular gene transfer of sFlt-1 suppresses ocular neovascularization and vascular endothelial growth factor-induced breakdown of the blood-retinal barrier. Hum Gene Ther. 2003;14:129–141.
  • Pechan P, Rubin H, Lukason M, et al. Novel anti-VEGF chimeric molecules delivered by AAV vectors for inhibition of retinal neovascularization. Gene Ther. 2009;16:10–16.
  • Lamartina S, Cimino M, Roscilli G, et al. Helper-dependent adenovirus for the gene therapy of proliferative retinopathies: stable gene transfer, regulated gene expression and therapeutic efficacy. J Gene Med. 2007;9:862–874.
  • Ideno J, Mizukami H, Kakehashi A, et al. Prevention of diabetic retinopathy by intraocular soluble flt-1 gene transfer in a spontaneously diabetic rat model. Int J Mol Med. 2007. DOI:10.3892/ijmm.19.1.75
  • Tu L, Wang J-H, Barathi VA, et al. AAV-mediated gene delivery of the calreticulin anti-angiogenic domain inhibits ocular neovascularization. Angiogenesis. 2018;21:95–109.
  • Wenyi W, Yajian D, Gaoen M., et al AAV-CRISPR/Cas9-Mediated depletion of VEGFR2 blocks angiogenesis in vitro. - PubMed - NCBI. [cited 2018 Aug 14]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29204648
  • Huang X, Zhou G, Wu W, et al. Genome editing abrogates angiogenesis in vivo. Nat Commun. 2017;8:112.
  • Díaz-Lezama, N., Wu Z, Adán-Castro E, et al. Diabetes enhances the efficacy of AAV2 vectors in the retina: therapeutic effect of AAV2 encoding vasoinhibin and soluble VEGF receptor 1. Lab Invest. 2016;96:283–295.
  • Biswal MR, Prentice HM, Dorey CK, et al. A hypoxia-responsive glial cell-specific gene therapy vector for targeting retinal neovascularization. Invest Ophthalmol Vis Sci. 2014;55:8044–8053.
  • Haurigot V, Villacampa P, Ribera A, et al. Long-term retinal PEDF overexpression prevents neovascularization in a murine adult model of retinopathy. PLoS One. 2012;7:e41511.
  • Jiang J, Xia X-B, Xu H-Z, et al. Inhibition of retinal neovascularization by gene transfer of small interfering RNA targeting HIF-1alpha and VEGF. J Cell Physiol. 2009;218:66–74.
  • Le Gat L, Gogat K, Bouquet C, et al. In vivo adenovirus-mediated delivery of a uPA/uPAR antagonist reduces retinal neovascularization in a mouse model of retinopathy. Gene Ther. 2003;10:2098–2103.
  • Igarashi T, Miyake K, Kato K, et al. Lentivirus-mediated expression of angiostatin efficiently inhibits neovascularization in a murine proliferative retinopathy model. Gene Ther. 2003;10:219–226.
  • Auricchio A, Behling KC, Maguire AM, et al. Inhibition of retinal neovascularization by intraocular viral-mediated delivery of anti-angiogenic agents. Mol Ther. 2002;6:490–494.
  • Ghosh P, Sahoo R, Vaidya A, et al. Role of complement and complement regulatory proteins in the complications of diabetes. Endocr Rev. 2015;36:272–288.
  • Adhi M, Cashman SM, Kumar-Singh R, et al. Adeno-associated virus mediated delivery of a non-membrane targeted human soluble CD59 attenuates some aspects of diabetic retinopathy in mice. PLoS One. 2013;8:e79661.
  • Dominguez JM 2nd, Hu P, Caballero S, et al. Adeno-Associated virus overexpression of Angiotensin-Converting Enzyme-2 reverses diabetic retinopathy in type 1 diabetes in mice. - PubMed - NCBI. [cited 2018 Aug 14].. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27178803
  • Vacca O, Charles-Messance H, El Mathari B, et al. AAV-mediated gene therapy in Dystrophin-Dp71 deficient mouse leads to blood-retinal barrier restoration and oedema reabsorption. - PubMed - NCBI. [ cited 2018 Aug 14]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27288449
  • Zhang L, Xia H, Han Q, et al. Effects of antioxidant gene therapy on the development of diabetic retinopathy and the metabolic memory phenomenon. Graefes Arch Clin Exp Ophthalmol. 2015;253:249–259.
  • Xu H, Zhang L, Gu L, et al. Subretinal delivery of AAV2-mediated human erythropoietin gene is protective and safe in experimental diabetic retinopathy. Invest Ophthalmol Vis Sci. 2014;55:1519–1530.
  • Hu B, Zhang Y, Zeng Q, et al. Intravitreal injection of ranibizumab and CTGF shRNA improves retinal gene expression and microvessel ultrastructure in a rodent model of diabetes. Int J Mol Sci. 2014;15:1606–1624.
  • Gong Y, Chang Z-P, Ren R-T, et al. Protective effects of adeno-associated virus mediated brain-derived neurotrophic factor expression on retinal ganglion cells in diabetic rats. Cell Mol Neurobiol. 2012;32:467–475.
  • Ramírez M, Wu Z, Moreno-Carranza B, et al. Vasoinhibin gene transfer by adenoassociated virus type 2 protects against VEGF- and diabetes-induced retinal vasopermeability. Invest Ophthalmol Vis Sci. 2011;52:8944–8950.
  • Shyong M-P, Lee FL, Kuo PC, et al. Reduction of experimental diabetic vascular leakage by delivery of angiostatin with a recombinant adeno-associated virus vector. Mol Vis. 2007;13:133–141.