159
Views
5
CrossRef citations to date
0
Altmetric
Review

Emerging role of biologics for the treatment of melioidosis and glanders

, &
Pages 1319-1332 | Received 16 Jul 2019, Accepted 03 Oct 2019, Published online: 15 Oct 2019

References

  • Currie BJ. Burkholderia pseudomallei and Burkholderia mallei: melioidosis and glanders. In: Mandell GL, Bennett JE, Dolin R, editors. Principles and practice of infectious diseases. 6th ed. London (England): Churchill Livingstone; 2004. p. 2869–2879.
  • Dvorak GD, Spickler AR. Glanders. J Am Vet Med Assoc. 2008;233:570–577.
  • Wiersinga WJ, Virk HS, Torres AG, et al. Melioidosis. Nat Rev Dis Prim. 2018;4:17107.
  • Galyov EE, Brett PJ, DeShazer D. Molecular insights into Burkholderia mallei and Burkholderia pseudomallei pathogenesis. Annu Rev Microbiol. 2010;64:495–517.
  • Wiersinga WJ, Currie BJ, Peacock SJ. Melioidosis. N Engl J Med. 2012;367:1035–1044.
  • Limmathurotsakul D, Golding N, Dance DAB, et al. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat Microbiol. 2016;1:1–5.
  • Khan I, Wieler LH, Melzer F, et al. Glanders in animals: a review on epidemiology, clinical presentation, diagnosis and countermeasures. Transbound Emerg Dis. 2013;60:204–221.
  • Khakhum N, Tapia D, Torres AG. Defense against biological attacks: burkholderia mallei and glanders. 2019. DOI:10.1007/978-3-030-03053-7
  • Aschenbroich SA, Lafontaine ER, Hogan RJ. Melioidosis and glanders modulation of the innate immune system: barriers to current and future vaccine approaches. Expert Rev Vaccines. 2017;15:1163–1181.
  • Currie BJ. Melioidosis: evolving concepts in epidemiology, pathogenesis, and treatment. Semin Respir Crit Care Med. 2015;36:111–125.
  • Estes DM, Dow SW, Schweizer HP, et al. Present and future therapeutic strategies for melioidosis and glanders. Expert Rev Anti Infect Ther. 2010. DOI:10.1586/eri.10.4
  • Morici L, Torres AG, Titball RW. Novel multi-component vaccine approaches for Burkholderia pseudomallei. Clin Exp Immunol. 2019;196:178–188. .
  • Lipsitz R, Garges S, Aurigemma R, et al. Workshop on treatment of and postexposure prophylaxis for Burkholderia pseudomallei and B. mallei Infection, 2010. Emerg Infect Dis. 2012;18:e2.
  • Saiprom N, Amornchai P, Wuthiekanun V, et al. Trimethoprim/sulfamethoxazole resistance in clinical isolates of Burkholderia pseudomallei from Thailand. Int J Antimicrob Agents. 2015;45:557–559.
  • Ross BN, Myers JN, Muruato LA, et al. Evaluating new compounds to treat Burkholderia pseudomallei infections. Front Cell Infect Microbiol. 2018;8:1–8.
  • Harris P, Engler C, Norton R. Comparative in vitro susceptibility of Burkholderia pseudomallei to doripenem, ertapenem, tigecycline and moxifloxacin. Int J Antimicrob Agents. 2011;37:547–549.
  • Cai Y, Wang R, Liang B, et al. Systematic review and meta-analysis of the effectiveness and safety of tigecycline for treatment of infectious disease. Antimicrob Agents Chemother. 2011;55:1162–1172.
  • Chaowagul W, Suputtamongkul Y, Smith MD, et al. Oral fluoroquinolones for maintenance treatment of melioidosis. Trans R Soc Trop Med Hyg. 1997;91:599–601.
  • Barnes KB, Hamblin KA, Richards MI, et al. Demonstrating the protective efficacy of the novel fluoroquinolone finafloxacin against an inhalational exposure to Burkholderia pseudomallei. Antimicrob Agents Chemother. 2017;61:1–17.
  • Chan E, Martelli P, Hui S, et al. In vitro susceptibility of ceftolozane-tazobactam against Burkholderia pseudomallei. Antimicrob Agents Chemother. 2018;6:1–2.
  • Sengyee S, Saiprom N, Paksanont S, et al. Susceptibility of clinical isolates of burkholderia pseudomallei to a lipid a biosynthesis inhibitor. Am J Trop Med Hyg. 2017;97:62–67.
  • Bommineni GR, Kapilashrami K, Cummings JE, et al. Thiolactomycin-based inhibitors of bacterial β-ketoacyl-acp synthases with in vivo activity. J Med Chem. 2016;59:5377–5390.
  • Kreisberg JF, Ong NT, Krishna A, et al. Growth inhibition of pathogenic bacteria by sulfonylurea herbicides. Antimicrob Agents Chemother. 2013;57:1513–1517.
  • Cummings JE, Kingry LC, Rholl DA, et al. The Burkholderia pseudomallei enoyl-acyl carrier protein reductase fabI1 is essential for in vivo growth and is the target of a novel chemotherapeutic with efficacy. Antimicrob Agents Chemother. 2014;58:931–935.
  • Cummings JE, Beaupre AJ, Knudson SE, et al. Substituted diphenyl ethers as a novel chemotherapeutic platform against Burkholderia pseudomallei. Antimicrob Agents Chemother. 2014;58:1646–1651.
  • Laws TR, Taylor AW, Russell P, et al. The treatment of melioidosis: is there a role for repurposed drugs? A proposal and review. Expert Rev Anti Infect Ther. 2019;00:1–11.
  • Mima T, Kvitko BH, Rholl DA, et al. In vitro activity of BAL30072 against Burkholderia pseudomallei. Int J Antimicrob Agents. 2011;38:157–159.
  • de Bandeira TJPG, Brilhante RSN, Rocha MFG, et al. In vitro antimicrobial susceptibility of clinical and environmental strains of Burkholderia pseudomallei from Brazil. Int J Antimicrob Agents. 2013;42:375–377.
  • Scarff JM, Waidyarachchi SL, Meyer CJ, et al. Aminomethyl spectinomycins: a novel antibacterial chemotype for biothreat pathogens. J Antibiot (Tokyo). 2019. DOI:10.1038/s41429-019-0194-8.
  • Barnes KB, Steward J, Thwaite JE, et al. Trimethoprim/sulfamethoxazole (co-trimoxazole) prophylaxis is effective against acute murine inhalational melioidosis and glanders. Int J Antimicrob Agents. 2013;41:552–557.
  • Siritongsuk P, Hongsing N, Thammawithan S, et al. Two-phase bactericidal mechanism of silver nanoparticles against Burkholderia Pseudomallei. PLoS One. 2016;11:1–22.
  • Ruiz SI, El-Gendy N, Bowen LE, et al. Formulation and characterization of nanocluster ceftazidime for the treatment of acute pulmonary melioidosis. J Pharm Sci. 2016;105:3399–3408.
  • Ruiz SI, Bowen LE, Bailey MM, et al. Pulmonary delivery of ceftazidime for the treatment of melioidosis in a murine model. Mol Pharm. 2018;15:1371–1376.
  • Castelo-Branco DSCM, Riello GB, Vasconcelos DC, et al. Farnesol increases the susceptibility of Burkholderia pseudomallei biofilm to antimicrobials used to treat melioidosis. J Appl Microbiol. 2016;120:600–606.
  • Koh GCKW, Limmathurotsakul D. Gamma interferon supplementation for melioidosis. Antimicrob Agents Chemother. 2010;54:4520.
  • Propst KL, Troyer RM, Kellihan LM, et al. Immunotherapy markedly increases the effectiveness of antimicrobial therapy for treatment of Burkholderia pseudomallei infection. Antimicrob Agents Chemother. 2010;54:1785–1792.
  • Waag DM. Efficacy of postexposure therapy against glanders in mice. Antimicrob Agents Chemother. 2015;59:2236–2241.
  • Khakhum N, Bharaj P, Myers JN, et al. Burkholderia pseudomallei tonB hcp1 live attenuated vaccine strain elicits full protective immunity against aerosolized melioidosis infection. mSphere. 2019;4:1–13.
  • Hatcher CL, Mott TM, Muruato LA, et al. Burkholderia mallei CLH001 attenuated vaccine strain is immunogenic and protects against acute respiratory glanders. Infect Immun. 2016. DOI:10.1128/IAI.00328-16
  • Marchetti R, Dillon MJ, Burtnick MN, et al. Burkholderia pseudomallei capsular polysaccharide recognition by a monoclonal antibody reveals key details toward a biodefense vaccine and diagnostics against melioidosis. ACS Chem Biol. 2015;10:2295–2302.
  • AuCoin DP, Reed DE, Marlenee NL, et al. Polysaccharide specific monoclonal antibodies provide passive protection against intranasal challenge with Burkholderia pseudomallei. PLoS One. 2012;7:e35386.
  • Peddayelachagiri BV, Paul S, Makam SS, et al. Functional characterization and evaluation of in vitro protective efficacy of murine monoclonal antibodies BURK24 and BURK37 against Burkholderia pseudomallei. PLoS One. 2014. DOI:10.1371/journal.pone.0090930
  • Ceballos-Olvera I, Sahoo M, Miller MA, et al. Inflammasome-dependent pyroptosis and IL-18 protect against Burkholderia pseudomallei lung infection while IL-1β is deleterious. PLoS Pathog. 2011;7:e1002452.
  • Weehuizen TAF, Lankelma JM, De Jong HK, et al. Therapeutic administration of a monoclonal anti-IL-1β antibody protects against experimental melioidosis. Shock. 2016;46:566–574.
  • Zhang S, Feng S-H, Li B, et al. In vitro and in vivo studies of monoclonal antibodies with prominent bactericidal activity against Burkholderia pseudomallei and Burkholderia mallei. Clin Vaccine Immunol. 2011;18:825–834.
  • Kim HY, Tsai S, Lo SC, et al. Production and characterization of chimeric monoclonal antibodies against Burkholderia pseudomallei and B. mallei using the DHFR expression system. PLoS One. 2011;6:1–14.
  • Zimmerman SM, Dyke JS, Jelesijevic TP, et al. Antibodies against in vivo-expressed antigens are sufficient to protect against lethal aerosol infection with Burkholderia mallei and Burkholderia pseudomallei. Infect Immun. 2017;85:1–25.
  • Easton A, Haque A, Chu K, et al. Combining vaccination and postexposure CpG therapy provides optimal protection against lethal sepsis in a biodefense model of human melioidosis. J Infect Dis. 2011;204:636–644.
  • Judy BM, Taylor K, Deeraksa A, et al. Prophylactic application of CpG oligonucleotides augments the early host response and confers protection in acute melioidosis. PLoS One. 2012;7. DOI:10.1371/journal.pone.0034176
  • Puangpetch A, Anderson R, Huang YY, et al. Cationic liposomes extend the immunostimulatory effect of CpG oligodeoxynucleotide against Burkholderia pseudomallei Infection in BALB/c mice. Clin Vaccine Immunol. 2012;19:675–683.
  • Puangpetch A, Anderson R, Huang YY, et al. Comparison of the protective effects of killed Burkholderia pseudomallei and CpG oligodeoxynucleotide against live challenge. Vaccine. 2014;32:5983–5988.
  • Koh GCKW, Maude RR, Schreiber MF, et al. Glyburide is anti-inflammatory and associated with reduced mortality in melioidosis. Clin Infect Dis. 2011;52:717–725.
  • Becq F, Verrier B, Rubartelli A, et al. Interleukin-1b secretion is impaired by inhibitors of the atp binding cassette transporter, ABC1. Rapid Commun. 1997;90:2911–2915.
  • Koh GCKW, Weehuizen TA, Breitbach K, et al. Glyburide reduces bacterial dissemination in a mouse model of melioidosis. PLoS Negl Trop Dis. 2013. DOI:10.1371/journal.pntd.0002500
  • Wilson WJ, Afzali MF, Cummings JE, et al. Immune modulation as an effective adjunct post-exposure therapeutic for B. pseudomallei. PLoS Negl Trop Dis. 2016;10:1–15.
  • Asakrah S, Nieves W, Mahdi Z, et al. Post-exposure therapeutic efficacy of COX-2 inhibition against Burkholderia pseudomallei. PLoS Negl Trop Dis. 2013;7:1–10.
  • Skyberg JA, Rollins MCF, Holderness JS, et al. Nasal acai polysaccharides potentiate innate immunity to protect against pulmonary Francisella tularensis and Burkholderia pseudomallei infections. PLoS Pathog. 2012;8. DOI:10.1371/journal.ppat.1002587
  • Cortés-Vieyra R, Bravo-Patiño A, Valdez-Alarcón JJ, et al. Role of glycogen synthase kinase-3 beta in the inflammatory response caused by bacterial pathogens. J Inflamm (United Kingdom). 2012;9:1–9.
  • Tay TF, Maheran M, Too SL, et al. Glycogen synthase kinase-3b inhibition improved survivability of mice infected with Burkholderia pseudomallei. Trop Biomed. 2012;29:551–567.
  • Maniam P, Nurul Aiezzah Z, Mohamed R, et al. Regulatory role of GSK3β in the activation of NF-κB and modulation of cytokine levels in Burkholderia pseudomallei-infected PBMC isolated from streptozotocininduced diabetic animals. Trop Biomed. 2015;32:36–48.
  • Alam S, Javor S, Degardin M, et al. Structure-based design and synthesis of a small molecule that exhibits anti-inflammatory activity by inhibition of myd88-mediated signaling to bacterial toxin exposure. Chem Biol Drug Des. 2015;86:200–209.
  • Mahlapuu M, Håkansson J, Ringstad L, et al. Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol. 2016;6:1–12.
  • Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol. 2003;3:710–720.
  • Madhongsa K, Pasan S, Phophetleb O, et al. Antimicrobial action of the cyclic peptide bactenecin on Burkholderia pseudomallei correlates with efficient membrane permeabilization. PLoS Negl Trop Dis. 2013;7:1–13.
  • Abdelbaqi S, Deslouches B, Steckbeck J, et al. Novel engineered cationic antimicrobial peptides display broad-spectrum activity against Francisella tularensis, Yersinia pestis and Burkholderia pseudomallei. J Med Microbiol. 2016;65:188–194.
  • Samy RP, Thwin MM, Stiles BG, et al. Novel phospholipase A2 inhibitors from python serum are potent peptide antibiotics. Biochimie. 2015;111:30–44.
  • Salmond GPC, Fineran PC. A century of the phage: past, present and future. Nat Publ Gr. 2015;13:777–786.
  • Levin BR, Bull JJ. Population and evolutionary dynamics of phage therapy. Nat Rev Microbiol. 2004;2:166–173.
  • Yordpratum U, Tattawasart U, Wongratanacheewin S, et al. Novel lytic bacteriophages from soil that lyse Burkholderia pseudomallei. FEMS Microbiol Lett. 2011;314:81–88.
  • Kulsuwan R, Wongratanacheewin S, Wongratanacheewin RS, et al. Lytic capability of bacteriophages (family myoviridae) on Burkholderia pseudomallei. Southeast Asian J Trop Med Public Health. 2015;45:1344–1353.
  • Khakhum N, Yordpratum U, Boonmee A, et al. Identification of the Burkholderia pseudomallei bacteriophage ST79 lysis gene cassette. J Appl Microbiol. 2016;121:364–372.
  • Kvitko BH, Cox CR, Deshazer D, et al. X216, a P2-like bacteriophage with broad Burkholderia pseudomallei and B. mallei strain infectivity. BMC Microbiol. 2012;12:289.
  • Guang-Han O, Leang-Chung C, Vellasamy KM, et al. Experimental phage therapy for Burkholderia pseudomallei infection. PLoS One. 2016;11:1–16.
  • Kamjumphol W, Chareonsudjai P, Chareonsudjai S. Antibacterial activity of chitosan against Burkholderia pseudomallei. Microbiologyopen. 2018;7:1–8.
  • Dedrick RM, Guerrero-Bustamante CA, Garlena RA, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med. 2019;25:730–733.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.