161
Views
0
CrossRef citations to date
0
Altmetric
Review

Near-infrared photoimmunotherapy for the treatment of skin disorders

, , , , &
Pages 509-517 | Received 25 Jun 2021, Accepted 25 Nov 2021, Published online: 03 Dec 2021

References

  • Kobayashi H, Furusawa A, Rosenberg A, et al. Near-infrared photoimmunotherapy of cancer: a new approach that kills cancer cells and enhances anti-cancer host immunity. Int Immunol. 2021;33(1):7–15.
  • Kobayashi H, Choyke PL. Near-Infrared Photoimmunotherapy of Cancer. Acc Chem Res. 2019 Aug 20; 52(8):2332–2339.
  • Sato K, Ando K, Okuyama S, et al. Photoinduced Ligand Release from a Silicon Phthalocyanine Dye Conjugated with Monoclonal Antibodies: a Mechanism of Cancer Cell Cytotoxicity after Near-Infrared Photoimmunotherapy. ACS Cent Sci. 2018;4(11):1559–1569.
  • Nakamura Y, Nagaya T, Sato K, et al. Alterations of filopodia by near infrared photoimmunotherapy: evaluation with 3D low-coherent quantitative phase microscopy. Biomed Opt Express. 2016;7(7):2738–2748.
  • Ogata F, Nagaya T, Okuyama S, et al. Dynamic changes in the cell membrane on three dimensional low coherent quantitative phase microscopy (3D LC-QPM) after treatment with the near infrared photoimmunotherapy. Oncotarget. 2017;8(61):104295–104302.
  • Ogawa M, Tomita Y, Nakamura Y, et al. Immunogenic cancer cell death selectively induced by near infrared photoimmunotherapy initiates host tumor immunity. Oncotarget. 2017;8(6):10425–10436.
  • Nagaya T, Friedman J, Maruoka Y, et al. Host Immunity Following Near-Infrared Photoimmunotherapy Is Enhanced with PD-1 Checkpoint Blockade to Eradicate Established Antigenic Tumors. Cancer Immunol Res. 2019;7(3):401–413.
  • Paraboschi I, Turnock S, Kramer-Marek G, et al. Near-InfraRed PhotoImmunoTherapy (NIR-PIT) for the local control of solid cancers: challenges and potentials for human applications [published online ahead of print, 2021 Apr 6]. Crit Rev Oncol Hematol. 2021;161:103325.
  • Okuyama S, Nagaya T, Sato K, et al. Interstitial near-infrared photoimmunotherapy: effective treatment areas and light doses needed for use with fiber optic diffusers. Oncotarget. 2018;9(13):11159–11169.
  • Nagaya T, Okuyama S, Ogata F, et al. Endoscopic near infrared photoimmunotherapy using a fiber optic diffuser for peritoneal dissemination of gastric cancer. Cancer Sci. 2018;109(6):1902–1908.
  • Railkar R, Krane LS, Li QQ, et al. Epidermal Growth Factor Receptor (EGFR)-targeted Photoimmunotherapy (PIT) for the Treatment of EGFR-expressing Bladder Cancer. Mol Cancer Ther. 2017;16(10):2201–2214.
  • Kiss B, van Den Berg NS, Ertsey R, et al. CD47-Targeted Near-Infrared Photoimmunotherapy for Human Bladder Cancer. Clin Cancer Res. 2019;25(12):3561–3571.
  • Nagaya T, Nakamura Y, Okuyama S, et al. Near-Infrared Photoimmunotherapy Targeting Prostate Cancer with Prostate-Specific Membrane Antigen (PSMA) Antibody. Mol Cancer Res. 2017;15(9):1153–1162.
  • Maawy AA, Hiroshima Y, Zhang Y, et al. Near infra-red photoimmunotherapy with anti-CEA-IR700 results in extensive tumor lysis and a significant decrease in tumor burden in orthotopic mouse models of pancreatic cancer. PLoS One. 2015;10(3):e0121989.
  • Hanaoka H, Nagaya T, Sato K, et al. Glypican-3 targeted human heavy chain antibody as a drug carrier for hepatocellular carcinoma therapy. Mol Pharm. 2015;12(6):2151–2157.
  • Sato K, Choyke PL, Kobayashi H. Photoimmunotherapy of gastric cancer peritoneal carcinomatosis in a mouse model. PLoS One. 2014;9(11):e113276.
  • Wei D, Tao Z, Shi Q, et al. Selective Photokilling of Colorectal Tumors by Near-Infrared Photoimmunotherapy with a GPA33-Targeted Single-Chain Antibody Variable Fragment Conjugate. Mol Pharm. 2020;17(7):2508–2517.
  • Sato K, Nagaya T, Choyke PL, et al. Near infrared photoimmunotherapy in the treatment of pleural disseminated NSCLC: preclinical experience. Theranostics. 2015;5(7):698–709.
  • Sato K, Nagaya T, Mitsunaga M, et al. Near infrared photoimmunotherapy for lung metastases. Cancer Lett. 2015;365(1):112–121.
  • Sato K, Nagaya T, Nakamura Y, et al. Near infrared photoimmunotherapy prevents lung cancer metastases in a murine model. Oncotarget. 2015;6(23):19747–19758.
  • Nagaya T, Nakamura Y, Sato K, et al. Near infrared photoimmunotherapy with avelumab, an anti-programmed death-ligand 1 (PD-L1) antibody. Oncotarget. 2017;8(5):8807–8817.
  • Nakamura Y, Ohler ZW, Householder D, et al. Near Infrared Photoimmunotherapy in a Transgenic Mouse Model of Spontaneous Epidermal Growth Factor Receptor (EGFR)-expressing Lung Cancer. Mol Cancer Ther. 2017;16(2):408–414.
  • Nagaya T, Nakamura Y, Okuyama S, et al. Syngeneic Mouse Models of Oral Cancer Are Effectively Targeted by Anti-CD44-Based NIR-PIT. Mol Cancer Res. 2017;15(12):1667–1677.
  • Sato K, Hanaoka H, Watanabe R, et al. Near infrared photoimmunotherapy in the treatment of disseminated peritoneal ovarian cancer. Mol Cancer Ther. 2015;14(1):141–150.
  • Nagaya T, Sato K, Harada T, et al. Near Infrared Photoimmunotherapy Targeting EGFR Positive Triple Negative Breast Cancer: optimizing the Conjugate-Light Regimen. PLoS One. 2015;10(8):e0136829.
  • Jin J, Krishnamachary B, Mironchik Y, et al. Phototheranostics of CD44-positive cell populations in triple negative breast cancer. Sci Rep. 2016;6:27871.
  • Yamaguchi H, Pantarat N, Suzuki T, et al. Using a Small Protein Mimetic for HER2-Overexpressing Breast Cancer. Int J Mol Sci. 2019;20(23):5835.
  • Jing H, Weidensteiner C, Reichardt W, et al. Imaging and Selective Elimination of Glioblastoma Stem Cells with Theranostic Near-Infrared-Labeled CD133-Specific Antibodies. Theranostics. 2016;6(6):862–874.
  • Burley TA, Mączyńska J, Shah A, et al. Near-infrared photoimmunotherapy targeting EGFR-Shedding new light on glioblastoma treatment. Int J Cancer. 2018;142(11):2363–2374.
  • Combalia A, Carrera C. Squamous Cell Carcinoma: an Update on Diagnosis and Treatment. Dermatol Pract Concept. 2020;10(3):e2020066. 2020 Jun 29. Published.
  • Parekh V, Seykora JT. Cutaneous Squamous Cell Carcinoma. Clin Lab Med. 2017;37(3):503–525.
  • Que SKT, Zwald FO, Schmults CD. Cutaneous squamous cell carcinoma: incidence, risk factors, diagnosis, and staging. J Am Acad Dermatol. 2018;78(2):237–247.
  • Alam M, Ratner D. Cutaneous squamous-cell carcinoma. N Engl J Med. 2001;344(13):975–983.
  • Stratigos AJ, Garbe C, Dessinioti C, et al. European interdisciplinary guideline on invasive squamous cell carcinoma of the skin: part 1. epidemiology, diagnostics and prevention. Eur J Cancer. 2020;128:60–82.
  • Schmitz L, Kanitakis J. Histological classification of cutaneous squamous cell carcinomas with different severity. J Eur Acad Dermatol Venereol. 2019;33(Suppl 8):11–15.
  • Thompson AK, Kelley BF, Prokop LJ, et al. Risk Factors for Cutaneous Squamous Cell Carcinoma Recurrence, Metastasis, and Disease-Specific Death: a Systematic Review and Meta-analysis. JAMA Dermatol. 2016;152(4):419–428.
  • Work Group; Invited Reviewers, Kim JYS, et al. Guidelines of care for the management of cutaneous squamous cell carcinoma. J Am Acad Dermatol. 2018;78(3):560–578.
  • Burton KA, Ashack KA, Khachemoune A. Cutaneous Squamous Cell Carcinoma: a Review of High-Risk and Metastatic Disease. Am J Clin Dermatol. 2016;17(5):491–508.
  • Foote MC, McGrath M, Guminski A, et al. Phase II study of single-agent panitumumab in patients with incurable cutaneous squamous cell carcinoma. Ann Oncol. 2014;25(10):2047–2052.
  • Cañueto J, Cardeñoso E, García JL, et al. Epidermal growth factor receptor expression is associated with poor outcome in cutaneous squamous cell carcinoma. Br J Dermatol. 2017;176(5):1279–1287.
  • Shimizu T, Izumi H, Oga A, et al. Epidermal growth factor receptor overexpression and genetic aberrations in metastatic squamous-cell carcinoma of the skin. Dermatology. 2001;202(3):203–206.
  • Saba NF, Chen ZG, Haigentz M, et al. Targeting the EGFR and Immune Pathways in Squamous Cell Carcinoma of the Head and Neck (SCCHN): forging a New Alliance. Mol Cancer Ther. 2019;18(11):1909–1915.
  • Corchado-Cobos R, García-Sancha N, González-Sarmiento R, et al. Cutaneous Squamous Cell Carcinoma: from Biology to Therapy. Int J Mol Sci. 2020;21(8):2956.
  • Kochuparambil ST, McDonald D, Fidler MJ, et al. Study of RM-1929 and photoimmunotherapy in patients with recurrent head and neck cancer. Ann Oncol. 2017;28:v372.
  • Cognetti DM, Johnson JM, Curry JM, et al. Results of a phase 2a, multicenter, open-label, study of RM-1929 photoimmunotherapy (PIT) in patients with locoregional, recurrent head and neck squamous cell carcinoma (rHNSCC). J Clin Oncol. 2019;37(15_suppl):6014.
  • Gillenwater AM, Cognetti D, Johnson JM, et al. RM-1929 photo-immunotherapy in patients with recurrent head and neck cancer: results of a multicenter phase 2a open-label clinical trial. J Clin Oncol. 2018;36(15_suppl):6039.
  • ClinicalTrials.gov. Bethesda (MD): national Library of Medicine. Identifier: NCT02422979 Study of RM-1929 and Photoimmunotherapy in Patients With Recurrent Head and Neck Cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT02422979
  • ClinicalTrials.gov. Bethesda (MD): National Library of Medicine. Identifier: NCT03769506 ASP-1929 Photoimmunotherapy (PIT) Study in Recurrent Head/Neck Cancer for Patients Who Have Failed at Least Two Lines of Therapy. Available from: https://clinicaltrials.gov/ct2/show/NCT03769506
  • ClinicalTrials.gov. Bethesda (MD): national Library of Medicine. Identifier: NCT04305795 An Open-label Study Using ASP-1929 Photoimmunotherapy in Combination With Anti-PD1 Therapy in EGFR Expressing Advanced Solid Tumors. Available from: https://clinicaltrials.gov/ct2/show/NCT04305795
  • Maruoka Y, Wakiyama H, Choyke PL, et al. Near infrared photoimmunotherapy for cancers: a translational perspective. EBioMedicine. 2021;70:103501.
  • O’Neill CH, Scoggins CR. Melanoma. J Surg Oncol. 2019;120(5):873–881.
  • Rastrelli M, Tropea S, Rossi CR, et al. Melanoma: epidemiology, risk factors, pathogenesis, diagnosis and classification. Vivo. 2014;28(6):1005–1011.
  • Titus-Ernstoff L, Perry AE, Spencer SK, et al. Pigmentary characteristics and moles in relation to melanoma risk. Int J Cancer. 2005;116(1):144–149.
  • Psaty EL, Scope A, Halpern AC, et al. Defining the patient at high risk for melanoma. Int J Dermatol. 2010;49(4):362–376.
  • Gumaste PV, Penn LA, Cymerman RM, et al. Skin cancer risk in BRCA1/2 mutation carriers. Br J Dermatol. 2015;172(6):1498–1506.
  • Garbe C, Amaral T, Peris K, et al. European consensus-based interdisciplinary guideline for melanoma. Part 1: diagnostics - Update 2019. Eur J Cancer. 2020;126:141–158.
  • Elder DE, Bastian BC, Cree IA, et al. The 2018 World Health Organization Classification of Cutaneous, Mucosal, and Uveal Melanoma: detailed Analysis of 9 Distinct Subtypes Defined by Their Evolutionary Pathway. Arch Pathol Lab Med. 2020;144(4):500–522.
  • Kallini JR, Jain SK, Khachemoune A. Lentigo maligna: review of salient characteristics and management. Am J Clin Dermatol. 2013;14(6):473–480.
  • Goydos JS, Shoen SL. Acral Lentiginous Melanoma. Cancer Treat Res. 2016;167:321–329.
  • Cochran AM, Buchanan PJ, Bueno RAJ, et al. Subungual melanoma: a review of current treatment. Plast Reconstr Surg. 2014;134(2):259–273.
  • Breslow A. Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma. Ann Surg. 1970;172(5):902–908.
  • Domingues B, Lopes JM, Soares P, et al. Melanoma treatment in review. Immunotargets Ther. 2018;7:35–49.
  • Davis LE, Shalin SC, Tackett AJ. Current state of melanoma diagnosis and treatment. Cancer Biol Ther. 2019;20(11):1366–1379.
  • Batus M, Waheed S, Ruby C, et al. Optimal management of metastatic melanoma: current strategies and future directions. Am J Clin Dermatol. 2013;14(3):179–194.
  • Wilson MA, Schuchter LM. Chemotherapy for Melanoma. Cancer Treat Res. 2016;167:209–229.
  • Garbe C, Peris K, Hauschild A, et al. Diagnosis and treatment of melanoma. European consensus-based interdisciplinary guideline - Update 2016. Eur J Cancer. 2016;63:201–217.
  • Scolyer RA, Long GV, Thompson JF. Evolving concepts in melanoma classification and their relevance to multidisciplinary melanoma patient care. Mol Oncol. 2011;5(2):124–136.
  • Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507–2516.
  • Fs H, Sj O, Df M, et al. Improved survival with ipilimumab in patients with metastatic melanoma [published correction appears in N Engl J Med. N Engl J Med. 2010;363(8):711–723. 2010 Sep 23;363(13):1290].
  • Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N Engl J Med. 2015;373(1):23–34. published correction appears in N Engl J Med. 2018 Nov 29;379(22):2185.
  • Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N Engl J Med. 2019;381(16):1535–1546.
  • Iorgulescu JB, Braun D, Oliveira G, et al. Acquired mechanisms of immune escape in cancer following immunotherapy. Genome Med. 2018;10(1):87.
  • Kines RC, Varsavsky I, Choudhary S, et al. An Infrared Dye-Conjugated Virus-like Particle for the Treatment of Primary Uveal Melanoma. Mol Cancer Ther. 2018;17(2):565–574.
  • ClinicalTrials.gov. Bethesda (MD): National Library of Medicine. Identifier: NCT03052127 Study in Subjects With Small Primary Choroidal Melanoma. Available from: https://clinicaltrials.gov/ct2/show/study/NCT03052127
  • Willemze R, Cerroni L, Kempf W, et al. The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas. Blood. 2019;133(16):1703–1714. published correction appears in Blood. 2019 Sep 26;134(13):1112
  • Willemze R. Mycosis fungoides variants-clinicopathologic features, differential diagnosis, and treatment. Semin Cutan Med Surg. 2018;37(1):11–17.
  • Alsayyah A. Is it mycosis fungoides? A comprehensive guide to reaching the diagnosis and avoiding common pitfalls. Ann Diagn Pathol. 2020;47:151546.
  • Trautinger F, Eder J, Assaf C, et al. European Organisation for Research and Treatment of Cancer consensus recommendations for the treatment of mycosis fungoides/Sézary syndrome - Update 2017. Eur J Cancer. 2017;77:57–74.
  • Sernicola A, Russo I, Silic-Benussi M, et al. Targeting the cutaneous lymphocyte antigen (CLA) in inflammatory and neoplastic skin conditions. Expert Opin Biol Ther. 2020;20(3):275–282.
  • Silic-Benussi M, Saponeri A, Michelotto A, et al. Near infrared photoimmunotherapy targeting the cutaneous lymphocyte antigen for mycosis fungoides. Expert Opin Biol Ther. 2020;21:977–981.
  • Magro CM, Dyrsen ME. Cutaneous lymphocyte antigen expression in benign and neoplastic cutaneous B- and T-cell lymphoid infiltrates. J Cutan Pathol. 2008;35(11):1040–1049.
  • Nagaya T, Nakamura Y, Sato K, et al. Near infrared photoimmunotherapy of B-cell lymphoma. Mol Oncol. 2016;10(9):1404–1414.
  • Nocchi L, Portulano C, Franciosa F, et al. Nerve growth factor-mediated photoablation of nociceptors reduces pain behavior in mice. Pain. 2019 Oct;160(10):2305–2315.
  • Nocchi L, Roy N, D’Attilia M, et al. Interleukin-31-mediated photoablation of pruritogenic epidermal neurons reduces itch-associated behaviours in mice. Nat Biomed Eng. 2019 Feb;3(2):114–125.
  • Freund L, Oehrl S, Gräbe G, et al. Skin-Selective CD8 T-Cell Depletion by Photoimmunotherapy Inhibits Human Cutaneous Acute Graft-Versus-Host Disease. J Invest Dermatol. 2020 Jul;140(7):1455–1459.e6.
  • Woodland DL, Kohlmeier JE. Migration, maintenance and recall of memory T cells in peripheral tissues. Nat Rev Immunol. 2009;9(3):153–161.
  • D’Ambrosio D, Iellem A, Colantonio L, et al. Localization of Th-cell subsets in inflammation: differential thresholds for extravasation of Th1 and Th2 cells. Immunol Today. 2000;21(4):183–186.
  • Kieffer JD, Fuhlbrigge RC, Armerding D, et al. Neutrophils, monocytes, and dendritic cells express the same specialized form of PSGL-1 as do skin-homing memory T cells: cutaneous lymphocyte antigen. Biochem Biophys Res Commun. 2001;285(3):577–587.
  • Tsuchiyama J, Yoshino T, Toba K, et al. Induction and characterization of cutaneous lymphocyte antigen on natural killer cells. Br J Haematol. 2002;118(2):654–662.
  • Chang SE, Kim MJ, Lee WS, et al. Natural killer cells in human peripheral blood and primary cutaneous natural killer cell lymphomas may express cutaneous lymphocyte antigen. Acta Derm Venereol. 2003;83(3):162–166.
  • Berg EL, Yoshino T, Rott LS, et al. The cutaneous lymphocyte antigen is a skin lymphocyte homing receptor for the vascular lectin endothelial cell-leukocyte adhesion molecule 1. J Exp Med. 1991;174(6):1461–1466.
  • Yoshino T, Okano M, Chen HL, et al. Cutaneous lymphocyte antigen is expressed on memory/effector B cells in the peripheral blood and monocytoid B cells in the lymphoid tissues. Cell Immunol. 1999;197(1):39–45.
  • Kantele A, Savilahti E, Tiimonen H, et al. Cutaneous lymphocyte antigen expression on human effector B cells depends on the site and on the nature of antigen encounter. Eur J Immunol. 2003;33(12):3275–3283.
  • Czarnowicki T, Esaki H, Gonzalez J, et al. Early pediatric atopic dermatitis shows only a cutaneous lymphocyte antigen (CLA)(+) TH2/TH1 cell imbalance, whereas adults acquire CLA(+) TH22/TC22 cell subsets. J Allergy Clin Immunol. 2015;136(4):941–951.e3.
  • Santamaria Babi LF, Picker LJ, Perez Soler MT, et al. Circulating allergen-reactive T cells from patients with atopic dermatitis and allergic contact dermatitis express the skin-selective homing receptor, the cutaneous lymphocyte-associated antigen. J Exp Med. 1995;181(5):1935–1940.
  • Leung DY. Atopic dermatitis: the skin as a window into the pathogenesis of chronic allergic diseases. J Allergy Clin Immunol. 1995 Sep;96(3):302–318. quiz 319.
  • Teraki Y, Hotta T, Shiohara T. Increased circulating skin-homing cutaneous lymphocyte-associated antigen (CLA)+ type 2 cytokine-producing cells, and decreased CLA+ type 1 cytokine-producing cells in atopic dermatitis. Br J Dermatol. 2000;143(2):373–378.
  • Ruiz-Romeu E, Ferran M, de Jesús-gil C, et al. Microbe-Dependent Induction of IL-9 by CLA+T Cells in Psoriasis and Relationship with IL-17A. J Invest Dermatol. 2018;138(3):580–587.
  • Ferran M, Romeu ER, Rincón C, et al. Circulating CLA+ T lymphocytes as peripheral cell biomarkers in T-cell-mediated skin diseases. Exp Dermatol. 2013;22(7):439–442.
  • Davison SC, Ballsdon A, Allen MH, et al. Early migration of cutaneous lymphocyte-associated antigen (CLA) positive T cells into evolving psoriatic plaques. Exp Dermatol. 2001;10(4):280–285.
  • Santamaria LF, Perez Soler MT, Hauser C, et al. Allergen specificity and endothelial transmigration of T cells in allergic contact dermatitis and atopic dermatitis are associated with the cutaneous lymphocyte antigen. Int Arch Allergy Immunol. 1995;107(1–3):359–362.
  • Biedermann T, Schwärzler C, Lametschwandtner G, et al. Targeting CLA/E-selectin interactions prevents CCR4-mediated recruitment of human Th2 memory cells to human skin in vivo. Eur J Immunol. 2002;32(11):3171–3180.
  • Rosenberg A, Inagaki F, Kato T, et al. Wound healing after excision of subcutaneous tumors treated with near-infrared photoimmunotherapy. Cancer Med. 2020;9(16):5932–5939.
  • Li J, Chen J, Kirsner R. Pathophysiology of acute wound healing. Clin Dermatol. 2007;25(1):9–18.
  • Qian LW, Fourcaudot AB, Yamane K, et al. Exacerbated and prolonged inflammation impairs wound healing and increases scarring. Wound Repair Regen. 2016;24(1):26–34.
  • Suzuki R, Takakuda K. Wound healing efficacy of a 660-nm diode laser in a rat incisional wound model. Lasers Med Sci. 2016;31(8):1683–1689.
  • Barolet AC, Litvinov IV, Barolet D. Beneficial Effects of Near-Infrared Light Photobiomodulation in Linear Morphea: a Case Report. Photobiomodul Photomed Laser Surg. 2020;38(11):679–682.
  • Kandolf-Sekulovic L, Kataranovski M, Pavlovic MD. Immunomodulatory effects of low-intensity near-infrared laser irradiation on contact hypersensitivity reaction. Photodermatol Photoimmunol Photomed. 2003;19(4):203–212.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.