233
Views
0
CrossRef citations to date
0
Altmetric
Review

Biological therapies in patients with liver disease: are they really lifesavers?

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 473-490 | Received 30 Jun 2021, Accepted 30 Nov 2021, Published online: 29 Dec 2021

References

  • Chang C, Tanaka A, Bowlusd C, et al. The use of biologics in the treatment of autoimmune liver disease. Expert Opin Investig Drugs. 2020;29(4):385–398.
  • Engel B, Taubert R, Jaeckel E, et al. The future of autoimmune liver disease s – understanding pathogenesis and improving morbidity and mortality. Liver Int. 2020;40(1):149–153.
  • Cassim S, Bilodeau M, Vincent C, et al. Novel immunotherapies for autoimmune hepatitis. Front Pediatr. 2017;5:8.
  • Czaja AJ. Diagnosis and management of autoimmune hepatitis: current status and future directions. Gut Liver. 2016;10(2):177–203.
  • Manns MP, Czaja AJ, Gorham JD, et al. Diagnosis and management of autoimmune hepatitis. Hepatology. 2010;51(6):2193–2213.
  • European Association for the Study of the Liver. EASL clinical practice guidelines: autoimmune hepatitis. J Hepatol. 2015;63(4):971–1004.
  • Donaldson PT, Doherty DG, Hayllar KM, et al. Susceptibility to autoimmune chronic active hepatitis: human leukocyte antigens DR4 and A1-B8-DR3 are independent risk factors. Hepatology. 1991;13(4):701–706.
  • Woynarowski M, Nemeth A, Baruch Y, et al. Budesonide versus prednisone with azathioprine for the treatment of autoimmune hepatitis in children and adolescents. J Pediatr. 2013;163(5):1347.e–53.e.
  • Kanzler S, Gerken G, Lohr H, et al. Duration of immunosuppressive therapy in autoimmune hepatitis. J Hepatol. 2001;34(2):354–355.
  • Oo YH, Weston CJ, Lalor PF, et al. Distinct roles for CCR4 and CXCR3 in the recruitment and positioning of regulatory T cells in the inflamed human liver. J Iimmunol. 2010;184(6):2886–2898.
  • Villeneuve PJ, Schaubel DE, Fenton SS, et al. Cancer incidence among Canadian kidney transplant recipients. Am J Transplant. 2007;7(4):941–948.
  • Gjaerde LI, Shepherd L, Jablonowska E, et al. Trends in incidences and risk factors for hepatocellular carcinoma and other liver events in HIV and hepatitis C virus-coinfected individuals from 2001 to 2014: a multicohort study. Clin Infect Dis. 2016;63(6):821–829.
  • Hirschfield GM, Beuers U, Corpechot C, et al EASL clinical practice guidelines: the diagnosis and management of patients with primary biliary cholangitis. European Association for the Study of the Liver. J Hepatol. 2017;67(1):145–172.
  • Beuers U, Trauner M, Jansen P, et al. New paradigms in the treatment of hepatic cholestasis: from UDCA to FXR, PXR and beyond. J Hepatol. 2015;62(1):S25–S37.
  • Wagner M, Fickert P. Drug therapies for chronic cholestatic liver diseases. Annu Rev Pharmacol Toxicol. 2020;60(1):503–527.
  • Invernizzi P, Floreani A, Carbone M, et al. Primary biliary cholangitis: advances in management and treatment of the disease. Dis Liver Dis. 2017;49(8):841–846.
  • Corpechot C, Chazouillères O, Rousseau A, et al. A placebo-controlled trial of bezafibrate in primary biliary cholangitis. N Engl J Med. 2018;378(23):2171–2181.
  • Kok T, Bloks VW, Wolters H, et al. Peroxisome proliferator-activated receptor alpha (PPARalpha)-mediated regulation of multidrug resistance 2 (Mdr2) expression and function in mice. Biochem J. 2003;369(3):539–547.
  • Mazzetti M, Marconi G, Mancinelli M, et al. The management of cholestatic liver diseases: current therapies and emerging new possibilities. J Clin Med. 2021;10(8):1763.
  • Tischendorf JJ, Hecker H, Kruger M, et al. Characterization, outcome, and prognosis in 273 patients with primary sclerosing cholangitis: a single center study. Am J Gastroenterol. 2007;102(1):107–114.
  • Eaton JE, Talwalkar JA, Lazaridis KN, et al. Pathogenesis of primary sclerosing cholangitis and advances in diagnosis and management. Gastroenterology. 2013;145(3):521–536.
  • Hirschfield GM, Karlsen TH, Lindor KD, et al. Primary sclerosing cholangitis. Lancet. 2013;382(9904):1587–1599.
  • Olsson R, Boberg KM, de Muckadell OS, et al. High-doseursodeoxycholic acid in primary sclerosing cholangitis: a 5-year multicenter, randomized, controlled study. Gastroenterology. 2005;129(5):1464–1472.
  • Trivedi PJ, Hirschfield GM. Treatment of autoimmune liver disease: current and future therapeutic options. Ther Adv Chronic Dis. 2013;4(3):119–141.
  • Trivedi PJ, Hirschfield GM. Review article: overlap syndromes and autoimmune liver disease. Aliment Pharmacol Ther. 2012;36(6):517–533.
  • Tse CS, Loftus EV Jr, Raffals LE, et al. Effects of vedolizumab, Adalimumab and infliximab on biliary inflammation in individuals with primary sclerosing cholangitis and inflammatory bowel disease. Aliment Pharmacol Ther. 2018;48(2):190–195.
  • D’Agostino D, Costaguta A, Alvarez F. Successful treatment of refractory autoimmune hepatitis with rituximab. Pediatrics. 2013;132(2):e526–e530.
  • Burak KW, Swain MG, Santodomingo-Garzon T, et al. Rituximab for the treatment of patients with autoimmune hepatitis who are refractory or intolerant to standard therapy. Can J Gastroenterol. 2013;27(5):273–280.
  • Beland K, Marceau G, Labardy A, et al. Depletion of B cells induces remission of autoimmune hepatitis in mice through reduced antigen presentation and help to T cells. Hepatology. 2015;62(5):1511–1523.
  • Than NN, Jeffery HC, Oo YH. Autoimmune hepatitis: progress from global immunosuppression to personalised regulatory T cell therapy. Can J Gastroenterol Hepatol. 2016;2016:7181685.
  • Zachou K, Muratori P, Koukoulis GK, et al. Review article: autoimmune hepatitis – current management and challenges. Aliment Pharmacol Ther. 2013;38(8):887–913.
  • Than NN, Hodson J, Schmidt-Martin D, et al. Efficacy of rituximab in difficult-to-manage autoimmune hepatitis: results from the International Autoimmune Hepatitis Group. JHEP Rep. 2019;1(6):437–445.
  • Rodrigues S, Lopes S, Magro F, et al. Autoimmune hepatitis and anti-tumor necrosis factor alpha therapy: a single center report of 8 cases. World J Gastroenterol. 2015;21(24):7584–7588.
  • Van Casteren-messidoro C, Prins G, van Tilburg A, et al. Autoimmune hepatitis following treatment with infliximab for inflammatory bowel disease. J Crohns Colitis. 2012;6(5):630–631.
  • Dang LJ, Lubel JS, Gunatheesan S, et al. Drug-induced lupus and autoimmune hepatitis secondary to infliximab for psoriasis. Australas J Dermatol. 2014;55(1):75–79.
  • Dorner T, Posch MG, Li Y, et al. Treatment of primary Sjogren’s syndrome with ianalumab (VAY736) targeting B cells by BAFF receptor blockade coupled with enhanced, antibody-dependent cellular cytotoxicity. Ann Rheum Dis. 2019;78(5):641–647.
  • Saadoun D, Rosenzwajg M, Joly F, et al. Regulatory T-Cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N Engl J Med. 2011;365(22):2067–2077.
  • Koreth J, Matsuoka KI, Kim HT, et al. Interleukin-2 and regulatory Tcells in graft-versus-host disease. N Engl J Med. 2011;365(22):2055–2066.
  • Rosenzwajg M, Churlaud G, Mallone R, et al. Low-dose interleukin 2 in patients with type 1 diabetes: a phase ½ randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2013;1(4):295–305.
  • Cunningham-Rundles C, Bodian C. Common variable immunodeficiency: clinical and immunological features of 248 patients. Clin Immunol. 1999;92(1):34–48.
  • Khanna A, Jopson L, Howel D, et al. Rituximab is ineffective for treatment of fatigue in primary biliary cholangitis: a phase 2 randomized controlled trial. Hepatology. 2018;70(5):1646–1657.
  • Tsuda M, Moritoki Y, Lian ZX, et al. Biochemical and immunologic effects of rituximab in patients with primary biliary cirrhosis and an incomplete response to ursodeoxycholic acid. Hepatology. 2012;55(2):512–521.
  • Myers RP, Swain MG, Lee SS, et al. B-cell depletion with rituximab in patients with primary biliary cirrhosis refractory to ursodeoxycholic acid. Am J Gastroenterol. 2013;108(6):933–941.
  • Hirschfield GM, Gershwin ME, Strauss R, et al. Ustekinumab for patients with primary biliary cholangitis who have an inadequate response to ursodeoxycholic acid: a proof-of-concept study. Hepatology. 2016;64(1):189–199.
  • Bowlus CL, Yang GX, Liu CH, et al. Therapeutic trials of biologics in primary biliary cholangitis: an open label study of Abatacept and review of the literature. J Autoimmun. 2019;101:26–34.
  • Shimoda S, Harada K, Niiro H, et al. CX3CL1 (fractalkine): a signpost for biliary inflammation in primary biliary cirrhosis. Hepatology. 2010;51(2):567–575.
  • Tanaka H, Yang GX, Iwakoshi N, et al. Anti-CD40 ligand monoclonal antibody delays the progression of murine autoimmune cholangitis. Clin Exp Immunol. 2013;174(3):364–371.
  • Hommes DW, Erkelens W, Ponsioen C, et al. A double-blind, placebo-controlled, randomized study of infliximab in primary sclerosing cholangitis. J Clin Gastroenterol. 2008;42(5):522–526.
  • Arndtz K, Corrigan M, Rowe A, et al. Investigating the safety and activity of the use of BTT1023 (Timolumab), in the treatment of patients with primary sclerosing cholangitis (BUTEO): a single-arm, two-stage, open-label, multi-centre, phase II clinical trial protocol. BMJ Open. 2017;7(6):e015081.
  • Lynch KD, Chapman RW, Keshav S, et al. Effects of Vedolizumab in patients with primary sclerosing cholangitis and inflammatory bowel diseases. Clin Gastroenterol Hepatol. 2020;18(1):179–187.
  • Muir A, Goodman Z, Bowlus C, et al. Serum lysyl oxidase-like-2 (SLOXL2) levels correlate with disease severity in patients with primary sclerosing cholangitis. J Hepatol. 2016;64(2):S428.
  • Muir AJ, Levy C, Janssen HLA, et al. GS-US-321-0102 investigators. Simtuzumab for primary sclerosing cholangitis: phase 2 study results with insights on the natural history of the disease. Hepatology. 2019;69(2):684–698.
  • McGlynn KA, Petrick JL, El-Serag HB. Epidemiology of hepatocellular carcinoma. Hepatology. 2021;73(S1):4–13.
  • European Association for the Study of the Liver. EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2018;69(1):182–236.
  • Heimbach JK, Kulik LM, Finn RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology. 2018;67(1):358–380.
  • Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology. 2005;42(5):1208–1236.
  • Matsui O, Kobayashi S, Sanada J, et al. Hepatocelluar nodules in liver cirrhosis: hemodynamic evaluation (angiography-assisted CT) with special reference to multi-step hepatocarcinogenesis. Abdom Imaging. 2011;36(3):264–272.
  • Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–390.
  • Cheng AL, Kang YK, Chen Z, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10(1):25–34.
  • Kudo M, Finn RS, Qin S, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 noninferiority trial. Lancet. 2018;391(10126):1163–1173.
  • Bruix J, Qin S, Merle P, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;389(10064):56–66.
  • Abou-Alfa GK, Meyer T, Cheng AL, et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med. 2018;379(1):54–63.
  • Banales JM, Marin JJG, Lamarca A, et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol. 2020;17(9):557–588.
  • Nakeeb A, Pitt HA, Sohn TA, et al. Cholangiocarcinoma. A spectrum of intrahepatic, perihilar, and distal tumors. Ann Surg. 1996;224(4):463–473.
  • Massarweh NN, El-Serag HB. Epidemiology of hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Cancer Control. 2017;24(3):1073274817729245.
  • Valle JW, Borbath I, Khan SA, et al. Biliary cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016;27:v28–v37.
  • Clements O, Eliahoo J, Kim JU, et al. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: a systematic review and metanalysis. J Hepatol. 2020;72(1):95–103.
  • Lendvai G, Szekerczés T, Illyés I, et al. Cholangiocarcinoma: classification, histopathology and molecular carcinogenesis. Pathol Oncol Res. 2018;26(1):3–15.
  • Valle J, Wasan H, Palmer DH, et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 2010;362(14):1273–1281.
  • Lamarca A, Palmer DH, Wasan HS, et al. A randomised phase III, multi-centre, open-label study of Active Symptom Control (ASC) alone or ASC with oxaliplatin/5-FU chemotherapy (ASC+mFOLFOX) for patients (pts) with locally advanced/metastatic biliary tract cancers (ABC) previously-treated with cisplatin/gemcitabine (CisGem) chemotherapy. J Clin Oncol. 2019;37(S15):4003.
  • Abou-Alfa GK, Macarulla T, Javle MM, et al. ClarIDHy: a global, phase 3, randomized, double-blind study of ivosidenib (IVO) vs placebo in patients with advanced cholangiocarcinoma (CC) with an isocitrate dehydrogenase 1 (IDH1) mutation. Ann Oncol. 2019;30(S5):v851–v934.
  • Study of Orally Administered Enasidenib (AG-221) in adults with advanced solid tumors, including glioma, or angioimmunoblastic T-cell lymphoma, with an IDH2 mutation. [Cited 2021 Jun 26]. Available from: https://clinicaltrials.gov/ct2/show/NCT02273739
  • Comparing NUC-1031 plus cisplatin to gemcitabine plus cisplatin in patients with advanced biliary tract cancer. [Cited 2021 Jun 26]. Available from: https://clinicaltrials.gov/ct2/show/NCT04163900
  • Javle MM, Lowery M, Shroff RT, et al. A phase 2 study of BGJ398 in patients (pts) with advanced or metastatic FGFRaltered cholangiocarcinoma (CCA) who failed or are intolerant to platinum-based chemotherapy [abstract]. J Clin Oncol. 2016;34(S4):335.
  • Meric-Bernstam F, Arkenau HT, Tran B, et al. Efficacy of TAS-120, an irreversible fibroblast growth factor receptor (FGFR) inhibitor, in cholangiocarcinoma patients with FGFR pathway alterations who were previously treated with chemotherapy and other FGFR inhibitors [abstract O-001]. Ann Oncol. 2018;29(S5):v100.
  • A study to evaluate the efficacy and safety of pemigatinib versus chemotherapy in unresectable or metastatic cholangiocarcinoma (FIGHT-302). [Cited 2021 Jun 26]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT03656536
  • Phase 3 study of BGJ398 (Oral Infigratinib) in first line cholangiocarcinoma with FGFR2 gene fusions/translocations. [Cited 2021 Jun 26]; Available from: https://clinicaltrials.gov/ct2/show/NCT03773302
  • Massironi S, Pilla L, Elvevi A, et al. New and emerging systemic therapeutic options for advanced cholangiocarcinoma. Cells. 2020;9(3):688.
  • Morvan MG, Lanier LL. NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer. 2016;16(1):7–19.
  • Sun C, Xu J, Huang Q, et al. High NKG2A expression contributes to NK cell exhaustion and predicts a poor prognosis of patients with liver cancer. Oncoimmunology. 2017;6(1):e1264562.
  • Sui Q, Zhang J, Sun X, et al. NK cells are the crucial antitumor mediators when STAT3-mediated immu-nosuppression is blocked in hepatocellular carcinoma. J Immunol. 2014;193(4):2016–2023.
  • Zhang QF, Yin WW, Xia Y, et al. Liver-infiltrating CD11b(-)CD27(-) NK subsets account for NK-cell dysfunction in patients with hepatocellular carcinoma and are associated with tumor progression. Cell Mol Immunol. 2017;14(10):819–829.
  • Gabrilovich DI. Myeloid-derived suppressor cells. Cancer Immunol Res. 2017;5(1):3–8.
  • Hoechst B, Ormandy LA, Ballmaier M, et al. A new population of myeloid-derived sup-pressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology. 2008;135(1):234–243.
  • Zhang S, Ma X, Zhu C, et al. The role of myeloid-derived suppressor cells in patients with solid tumors: a meta-analysis. PLoS One. 2016;11(10):e0164514.
  • Garnelo M, Tan A, Her Z, et al. Interaction between tumour-infiltrating B cells and T cells controls the progression of hepatocellular carcinoma. Gut. 2017;66(2):342–351.
  • Fu J, Xu D, Liu Z, et al. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology. 2007;132(7):2328–2339.
  • Gao Q, Qiu SJ, Fan J, et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol. 2007;25(18):2586–2593.
  • Hogdall D, Lewinska M, Andersen JB. Desmoplastic tumor microenvironment and immunotherapy in cholangiocarcinoma. Trends Cancer. 2018;4(3):239–255.
  • Boulter L, Guest RV, Kendall TJ, et al. WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited. J Clin Invest. 2015;125(3):1269–1285.
  • Yang X, Lin Y, Shi Y, et al. FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling. Cancer Res. 2016;76(14):4124–4135.
  • Lim Y, Koh JJ, Kim K, et al. High ratio of programmed cell death protein 1 (PD-1)(+)/CD8(+) tumor-infiltrating lymphocytes identifies a poor prognostic subset of extrahepatic bile duct cancer undergoing surgery plus adjuvant chemoradiotherapy. Radiother Oncol. 2015;117(1):165–170.
  • Oshikiri T, Miyamoto M, Shichinohe T, et al. Prognostic value of intratumoral CD8+ T lymphocyte in extrahepatic bile duct carcinoma as essential immune response. J Surg Oncol. 2003;84(4):224–228.
  • Binnewies M, Roberts EW, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24(5):541–550.
  • Goeppert B, Frauenschuh L, Zucknick M, et al. Prognostic impact of tumour infiltrating immune cells on biliary tract cancer. Br J Cancer. 2013;109(10):2665–2674.
  • Kasper HU, Drebber U, Stippel DL, et al. Liver tumor infiltrating lymphocytes: comparison of hepatocellular and cholangiolarcarcinoma. World J Gastroenterol. 2009;15(40):5053–5057.
  • Job S, Rapoud D, Dos Santos A, et al. Identification of four immune subtypes characterized by distinct composition and functions of tumor microenvironment in intrahepatic cholangiocarcinoma. Hepatology. 2020;72(3):965–981.
  • Zhu AX, Kang YK, Yen CJ, et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (reach-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019;20(2):282–296.
  • Rimassa L, Assenat E, Peck-Radosavljevic M, et al. Tivantinib for second-line treatment of MET-high, advanced hepatocellular carcinoma (METIV-HCC): a final analysis of a phase 3, randomised, placebo-controlled study. Lancet Oncol. 2018;19(5):682–693.
  • El-Khoueiry AB, Sangro B, Yau T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389(10088):2492–2502.
  • Yau T, Park JW, Finn R, et al. CheckMate 459: a randomized, multi-center phase III study of nivolumab (NIVO) vs sorafenib (SOR) as first-line (1L) treatment in patients (pts) with advanced hepatocellular carcinoma (aHCC). Ann Oncol. 2019;30:V874–5.
  • Yau T, Kang JK, Kim TY, et al. Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib: the CheckMate 040 randomized clinical trial. JAMA Oncol. 2020;6(11):e204564.
  • A study of nivolumab in combination with ipilimumab in participants with advanced hepatocellular carcinoma (CheckMate 9DW). [Cited 2021 Jun 26]. Available from: https://clinicaltrials.gov/ct2/show/NCT04039607
  • Zhu AX, Finn RS, Edeline J, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 2018;19(7):940–952.
  • Finn RS, Ryoo BY, Merle P, et al. Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, double-blind, Phase III trial. J Clin Oncol. 2020;38(3):193–202.
  • Phase 3 study of tislelizumab versus sorafenib in participants with unresectable HCC. [Cited 2021 Jun 26]. Available from: https://clinicaltrials.gov/ct2/show/NCT03412773.
  • Finn RS, Qin S, Ikeda M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 2020;382(20):1894–1905.
  • Herbst RS, Soria JC, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–567.
  • Zhu AX, Duda DG, Sahani DV, et al. HCC and angiogenesis: possible targets and future directions. Nat Rev Clin Oncol. 2011;8(5):292–301.
  • Safety and efficacy of lenvatinib (E7080/MK-7902) in combination with pembrolizumab (MK-3475) versus lenvatinib as first-line therapy in participants with advanced hepatocellular carcinoma (MK-7902-002/E7080-G000-311/LEAP-002). [Cited 2021 Jun 26]. Available from: https://clinicaltrials.gov/ct2/show/NCT03713593
  • Finn RS, Ikeda M, Zhu AX, et al. Phase Ib study of lenvatinib plus pembrolizumab in patients with unresectable hepatocellular carcinoma. J Clin Oncol. 2020;38(26):2960–2970.
  • Study of cabozantinib in combination with atezolizumab versus sorafenib in subjects with advanced HCC who have not received previous systemic anticancer therapy (COSMIC-312). [Cited 2021 Jun 26]. Available from: https://clinicaltrials.gov/ct2/show/NCT03755791.
  • Faivre S, Rimassa L, Finn RS. Molecular therapies for HCC: looking outside the box. J Hepatol. 2020;72(2):342–352.
  • A study to evaluate SHR-1210 in combination with apatinib as first-line therapy in patients with advanced HCC. [Cited 2021 Jun 26]. Available from: https://clinicaltrials.gov/ct2/show/NCT03764293
  • Study of Durvalumab and Tremelimumab as first-line treatment in patients with advanced hepatocellular carcinoma (Himalaya). [Cited 2021 Jun 26]. Available from: https://clinicaltrials.gov/ct2/show/NCT03298451
  • Ott PA, Bang YJ, Piha-Paul SA, et al. T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028. J Clin Oncol. 2019;37(4):318–327.
  • Study of pembrolizumab (MK-3475) in participants with advanced solid tumors (MK-3475-158/KEYNOTE-158). [Cited 2021 Jun 26]. Available from: https://clinicaltrials.gov/ct2/show/NCT02628067.
  • Study of nivolumab in patients with advanced refractory biliary tract cancers. Cited 2021 Jun 26. available from: https://clinicaltrials.gov/ct2/show/NCT02829918
  • Kim RD, Kim DW, Alese OB, et al. A phase II study of nivolumab in patients with advanced refractory biliary tract cancers (BTC). J Clin Oncol. 2019;37(15_suppl):4097.
  • Ueno M, Ikeda M, Morizane C, et al. Nivolumab alone or in combination with cisplatin plus gemcitabine in Japanese patients with unresectable or recurrent biliary tract cancer: a non-randomised, multicentre, open-label, phase 1 study. Lancet Gastroenterol Hepatol. 2019;4(8):611–621.
  • Durvalumab or placebo in combination with Gemcitabine/Cisplatin in patients with 1st line advanced biliary tract cancer (TOPAZ-1) (TOPAZ-1). [Cited 2021 Jun 26]. Available from: https://clinicaltrials.gov/ct2/show/NCT03875235.
  • Guadecitabine and durvalumab in treating patients with advanced liver, pancreatic, bile duct, or gallbladder cancer: [Cited 2021 Jun 26]; Available from: https://clinicaltrials.gov/ct2/show/NCT03257761
  • A Phase I, open-label, multicentre study to evaluate the safety, tolerability and pharmacokinetics of MEDI4736 in patients with advanced solid tumours. [Cited 2021 Jun 26]. Available from: https://clinicaltrials.gov/ct2/show/NCT01938612
  • Klein O, Kee D, Nagrial A, et al. Evaluation of combination nivolumab and ipilimumab immunotherapy in patients with advanced biliary tract cancers: subgroup analysis of a phase 2 nonrandomized clinical trial. JAMA Oncol. 2020;30:e202814.
  • Atezolizumab with or without cobimetinib in treating patients with metastatic bile duct cancer that cannot be removed by surgery or gallbladder cancer. [Cited 2021 Jun 26]. Available from: https://clinicaltrials.gov/ct2/show/NCT03201458
  • Mazzaferro V, Regalia E, Doci R, et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med. 1996;334(11):693–699.
  • Llovet JM, Fuster J, Bruix J. Intention-to-treat analysis of surgical treatment for early hepatocellular carcinoma: resection versus transplantation. Hepatology. 1999;30(6):1434–1440.
  • Ho CM, Lee PH, Chen CL, et al. Long-term outcomes after resection versus transplantation for hepatocellular carcinoma within UCSF criteria. Ann Surg Oncol. 2012;19(3):826–833.
  • Yao FY, Ferrell L, Bass NM, et al. Liver transplantation for hepatocellular carcinoma: expansion of the tumor size limits does not adversely impact survival. Hepatology. 2001;33(6):1394–1403.
  • Schwartz ME, D’Amico F, Vitale A, et al. Liver transplantation for hepatocellular carcinoma: are the Milan criteria still valid? Eur J Surg Oncol. 2008;34(3):256–262.
  • Ravaioli M, Ercolani G, Cescon M, et al. Liver transplantation for hepatocellular carcinoma: further considerations on selection criteria. Liver Transpl. 2004;10(9):1195–1202.
  • Yoo HY, Patt CH, Geschwind JF, et al. The outcome of liver transplantation in patients with hepatocellular carcinoma in the United States between 1988 and 2001: 5-year survival has improved significantly with time. J Clin Oncol. 2003;21(23):4329–4335.
  • Zavaglia C, De Carlis L, Alberti AB, et al. Predictors of long-term survival after liver transplantation for hepatocellular carcinoma. Am J Gastroenterol. 2005;100(12):2708–2716.
  • Regalia E, Fassati LR, Valente U, et al. Pattern and management of recurrent hepatocellular carcinoma after liver transplantation. J Hepatobiliary Pancreat Surg. 1998;5(1):29–34.
  • Au KP, Chok KSH. Multidisciplinary approach for post-liver transplant recurrence of hepatocellular carcinoma: a proposed management algorithm. World J Gastroenterol. 2018;24(45):5081–5094.
  • Couzin-Frankel J. Immune therapy steps up the attack. Science. 2010;330(6003):440–443.
  • Buttner N, Schmidt N, Thimme R. Perspectives of immunotherapy in hepatocellular carcinoma (HCC). Z Gastroenterol. 2016;54(12):1334–1342.
  • Dizon DS, Krilov L, Cohen E, et al. Clinical cancer advances 2016: annual report on progress against cancer from the American Society of Clinical Oncology. J Clin Oncol. 2016;34(9):987–1011.
  • Palucka AK, Coussens LM. The basis of oncoimmunology. Cell. 2016;164(6):1233–1247.
  • Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–264.
  • Kudo M. Systemic therapy for hepatocellular carcinoma: latest advances. Cancers (Basel). 2018;10(11):412.
  • Riella LV, Paterson AM, Sharpe AH, et al. Role of the PD-1 pathway in the immune response. Am J Transplant. 2012;12(10):2575–2587.
  • Tanaka K, Albin MJ, Yuan X, et al. PDL1 is required for peripheral transplantation tolerance and protection from chronic allograft rejection. J Immunol. 2007;179(8):5204–5210.
  • Zhang T, Fresnay S, Welty E, et al. Selective CD28 blockade attenuates acute and chronic rejection of murine cardiac allografts in a CTLA-4-dependent manner. Am J Transplant. 2011;11(8):1599–1609.
  • Li H, Li X, Liu S, et al. Programmed cell death-1 (PD-1) checkpoint blockade in combination with a mammalian target of rapamycin inhibitor restrains hepatocellular carcinoma growth induced by hepatoma cell-intrinsic PD-1. Hepatology. 2017;66(6):1920–1933.
  • De Toni EN, Gerbes AL. Tapering of immunosuppression and sustained treatment with nivolumab in a liver transplant recipient. Gastroenterology. 2017;152(6):1631–1633.
  • Friend BD, Venick RS, McDiarmid SV, et al. Fatal orthotopic liver transplant organ rejection induced by a checkpoint inhibitor in two patients with refractory, metastatic hepatocellular carcinoma. Pediatr Blood Cancer. 2017;64(12):e26682.
  • Varkaris A, Lewis DW, Nugent FW. Preserved liver transplant after PD-1 pathway inhibitor for hepatocellular carcinoma. Am J Gastroenterol. 2017;112(12):1895–1896.
  • Deleon TT, Salomao MA, Aqel BA. Pilot evaluation of PD-1 inhibition in metastatic cancer patients with a history of liver transplantation: the Mayo clinic experience. J Gastrointest Oncol. 2018;9(6):1054–1062.
  • Al Jarroudi O, Ulusakarya A, Almohamad W, et al. Anti-Programmed cell death Protein 1 (PD-1) immunotherapy for metastatic hepatocellular carcinoma after liver transplantation: a report of three cases. Cureus. 2020;12(10):e11150.
  • Guoying W, Tang H, Zhang Y, et al. Programmed death receptor (PD)-1 monoclonal antibody-induced acute immune hepatitis in the treatment; of recurrent hepatocellular carcinoma after liver transplantation: a case report. Organ Transplantation. 2016;1. 44–47.
  • Robbins HA, Clarke CA, Arron ST, et al. Melanoma risk and survival among organ transplant recipients. J Invest Dermatol. 2015;135(11):2657–2665.
  • Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–723.
  • Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364(26): 2517–6. doi:https://doi.org/10.1056/NEJMoa1104621.
  • Liu M, Guo W, Zhang S. Cancer immunotherapy in patients with new or recurrent malignancies after liver transplantation. Int J Surg Oncol (N Y). 2017;2(11):e49.
  • Lipson EJ, Bodell MA, Kraus ES, et al. Successful administration of ipilimumab to two kidney transplantation patients with metastatic melanoma. J Clin Oncol. 2014;32(19):e69–71.
  • Alhamad T, Venkatachalam K, Linette GP, et al. Checkpoint inhibitors in kidney transplant recipients and the potential risk of rejection. Am J Transplant. 2016;16(4):1332–1333.
  • Lipson EJ, Bagnasco SM, Jr MJ, et al. Tumor regression and allograft rejection after administration of anti-PD-1. N Engl J Med. 2016;374(9):896–898.
  • Morales RE, Shoushtari AN, Walsh MM, et al. Safety and efficacy of ipilimumab to treat advanced melanoma in the setting of liver transplantation. J Immunother Cancer. 2015;3(1):22.
  • Ranganath HA, Panella TJ. Administration of ipilimumab to a liver transplant recipient with unresectable metastatic melanoma. J Immunother. 2015;38(5):211.
  • Neuberger J. New developments in immunosuppression. Liver Transpl. 2010;16(S2):S77–81.
  • Morard I, Mentha G, Spahr L, et al. Long-term renal function after liver transplantation is related to calcineurin inhibitors blood levels. Clin Transplant. 2006;20(1):96.
  • European Association for the Study of the Liver. EASL clinical practice guidelines: liver transplantation. J Hepatol. 2016;64(2):433–485.
  • Hashim M, Alsebaey A, Ragab A, et al. Efficacy and safety of basiliximab as initial immunosuppression in liver transplantation: a single center study. Ann Hepatol. 2020;19(5):541–545.
  • Neuhaus P, Clavien PA, Kittur D, et al. Improved treatment response with basiliximab immunoprophylaxis after liver transplantation: results from a double-blind randomized placebo-controlled trial. Liver Transpl. 2002;8(2):132–142.
  • Goralczyk AD, Hauke N, Bari N, et al. Interleukin 2 receptor antagonists for liver transplant recipients: a systematic review and meta-analysis of controlled studies. Hepatology. 2011;54(2):541–554.
  • Calmus Y, Kamar N, Gugenheim J, et al. Assessing renal function with daclizumab induction and delayed tacrolimus introduction in liver transplant recipients. Transplantation. 2010;89(12):1504–1510.
  • Neuberger JM, Mamelok RD, Neuhaus P, et al. Delayed introduction of reduced-dose tacrolimus, and renal function in liver transplantation: the ‘ReSpECT’ study. Am J Transplant. 2009;9(2):327–336.
  • Yoshida EM, Marotta PJ, Greig PD, et al. Evaluation of renal function in liver transplant recipients receiving daclizumab (Zenapax), mycophenolate mofetil, and a delayed, low-dose tacrolimus regimen vs. a standard-dose tacrolimus and mycophenolate mofetil regimen: a multicenter randomized clinical trial. Liver Transpl. 2005;11:1064–1072.
  • Calmus Y, Scheele JR, Gonzalez-Pinto I, et al. Immunoprophylaxis with basiliximab, a chimeric anti-interleukin-2 receptor monoclonal antibody, in combination with azathioprine-containing triple therapy in liver transplant recipients. Liver Transpl. 2002;8(2):123–131.
  • Hirose R, Roberts JP, Quan D, et al. Experience with daclizumab in liver transplantation: renal transplant dosing without calcineurin inhibitors is insufficient to prevent acute rejection in liver transplantation. Transplantation. 2000;69(2):307–311.
  • Bajjoka I, Hsaiky L, Brown K, et al. Preserving renal function in liver transplant recipients with rabbit anti-thymocyte globulin and delayed initiation of calcineurin inhibitors. Liver Transpl. 2008;14(1):66–72.
  • Soliman T, Hetz H, Burghuber C, et al. Short-term versus long-term induction therapy with antithymocyte globulin in orthotopic liver transplantation. Transpl Int. 2007;20(5):447–452.
  • Pawarode A, Fine DM, Pj T. Independent risk factors and natural history of renal dysfunction in liver transplant recipients. Liver Transpl. 2003;9(7):741–747.
  • Campbell MS, Kotlyar DS, Brensinger CM, et al. Renal function after orthotopic liver transplantation is predicted by duration of pretransplantation creatinine elevation. Liver Transpl. 2005;11(9):1048–1055.
  • Paramesh AS, Roayaie S, Doan Y, et al. Post-liver transplant acute renal failure: factors predicting development of end-stage renal disease. Clin Transplant. 2004;18(1):94–99.
  • Choudhary NS, Saigal S, Bansal RK, et al. Acute and chronic rejection after liver transplantation: what A clinician needs to know. J Clin Exp Hepatol. 2017;7(4):358–366.
  • Della-Guardia B, Almeida MD, Meira-Filho SP. Antibody-mediated rejection: hyperacute rejection reality in liver transplantation? A case report. Transplant Process. 2008;40(3):870–871.
  • Afzali B, Lechler RI, Hernandez-Fuentes MP. Allorecognition and the alloresponse: clinical implications. Tissue Antigens. 2007;69(6):545–556.
  • Rodríguez-Perálvarez M, Rico-Juri JM, Tsochatzis E, et al. Biopsy-proven acute cellular rejection as an efficacy endpoint of randomized trials in liver transplantation: a systematic review and critical appraisal. Transpl Int. 2016;29(9):961–973.
  • Gruttadauria S, Vasta F, Mandalà L, et al. Basiliximab in a triple drug regimen with tacrolimus and steroids in liver transplantation. Transplant Process. 2005;37(6):2611.
  • Maluf DG, Stravitz RT, Cotterell AH, et al. Adult living donor versus deceased donor liver transplantation: a 6-year single center experience. Am J Transplant. 2005;5(1):149.
  • Wiesner RH, Demetris AJ, Belle SH, et al. Acute hepatic allograft rejection: incidence, risk factors, and impact on outcome. Hepatology. 1998;28(3):638–645.
  • Demetris A, Adams D, Bellamy C. Update of the international Banff schema for liver allograft rejection: working recommendations for the histopathologic staging and reporting of chronic rejection. An international panel. Hepatology. 2000;31:792–799.
  • Adams DH, Neuberger JM. Patterns of graft rejection following liver transplantation. J Hepatol. 1990;10(1):113.
  • Aydogan C, Sevmis S, Aktas S, et al. Steroid-resistant acute rejections after liver transplant. Exp Clin Transpl. 2010;8. 172–177.
  • Lee JG, Lee J, Lee JJ, et al. Efficacy of rabbit anti-thymocyte globulin for steroid-resistant acute rejection after liver transplantation. Medicine (Baltimore). 2016;95(23):e3711.
  • Lu XJ, Chen YH, Ma Y, et al. Strategies in clinical diagnosis and treatment of steroid-resistant acute rejection after orthotopic liver transplantation. Zhonghua Gan Zang Bing Za Zhi. 2016;24(4):297–301.
  • Wu L, Tam N, Deng R, et al. Steroid-resistant acute rejection after cadaveric liver transplantation: experience from one single center. Clinics Res Hepatol Gastroenterol. 2014;38(5):592–597.
  • Katt J, Schwinge D, Schoknecht T, et al. Increased T helper type 17 response to pathogen stimulation in patients with primary sclerosing cholangitis. Hepatology. 2013;58(3):1084–1093.
  • Silfvast-Kaiser A, Paek SY, Menter A. Anti-IL17 therapies for psoriasis. Expert Opin Biol Ther. 2019;19(1):45–54.
  • Zhang H, Bernuzzi F, Lleo A, et al. Therapeutic Potential of IL-17-mediated signaling pathway in autoimmune liver diseases. Mediators Inflamm. 2015;2015:436450.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.