871
Views
2
CrossRef citations to date
0
Altmetric
Review

Prospects for CAR T cell immunotherapy in autoimmune diseases: clues from Lupus

, &
Pages 499-507 | Received 27 Sep 2021, Accepted 05 Jan 2022, Published online: 28 Jan 2022

References

  • Hayter SM, Cook MC. Updated assessment of the prevalence, spectrum and case definition of autoimmune disease. Autoimmun Rev. 2012 Aug;11(10):754–765.
  • Wang L, Wang FS, Gershwin ME. Human autoimmune diseases: a comprehensive update. J Intern Med. 2015 Oct;278(4):369–395.
  • van Belle TL, Coppieters KT, Von Herrath MG. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev. 2011 Jan;91(1):79–118.
  • Kipp M, van der Valk P, Amor S. Pathology of multiple sclerosis. CNS Neurol Disord Drug Targets. 2012 Aug;11(5):506–517.
  • Harre U, Schett G. Cellular and molecular pathways of structural damage in rheumatoid arthritis. Semin Immunopathol. 2017 Jun;39(4):355–363.
  • Atassi MZ, Casali P. Molecular mechanisms of autoimmunity. Autoimmunity. 2008 Mar;41(2):123–132.
  • Kaul A, Gordon C, Crow MK, et al. Systemic lupus erythematosus. Nat Rev Dis Primers. 2016 June 16;2(1):16039.
  • Fava A, Petri M. Systemic lupus erythematosus: diagnosis and clinical management. J Autoimmun. 2019 Jan;96:1–13.
  • Harley IT, Kaufman KM, Langefeld CD, et al. Genetic susceptibility to SLE: new insights from fine mapping and genome-wide association studies. Nat Rev Genet. 2009 May;10(5):285–290.
  • Wakeland EK, Liu K, Graham RR, et al. Delineating the genetic basis of systemic lupus erythematosus. Immunity. 2001 Sep;15(3):397–408.
  • Botto M, Dell’Agnola C, Bygrave AE, et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet. 1998 May;19(1):56–59.
  • Botto M, Walport MJ. C1q, autoimmunity and apoptosis. Immunobiology. 2002 Sep;205(4–5):395–406.
  • Mitchell DA, Pickering MC, Warren J, et al. C1q deficiency and autoimmunity: the effects of genetic background on disease expression. J Immunol. [2002 Mar 1];168(5):2538–2543.
  • Lee-Kirsch MA, Gong M, Chowdhury D, et al. Mutations in the gene encoding the 3’-5’ DNA exonuclease TREX1 are associated with systemic Lupus erythematosus. Nat Genet. 2007 Sep;39(9):1065–1067.
  • Kernder A, Richter JG, Fischer-Betz R, et al. Delayed diagnosis adversely affects outcome in systemic lupus erythematosus: cross sectional analysis of the LuLa cohort. Lupus. 2021 Mar;30(3):431–438.
  • Al Daabil M, Massarotti EM, Fine A, et al. Development of SLE among “potential SLE” patients seen in consultation: long-term follow-up. Int J Clin Pract. 2014 Dec;68(12):1508–1513.
  • Olsen NJ, Choi MY, Fritzler MJ. Emerging technologies in autoantibody testing for rheumatic diseases. Arthritis Res Ther. 2017 Jul 24; 19(1):172.
  • Mannik M, Merrill CE, Stamps LD, et al. Multiple autoantibodies form the glomerular immune deposits in patients with systemic lupus erythematosus. J Rheumatol. 2003 Jul;30(7):1495–1504.
  • Neely J, Von Scheven E. Autoimmune haemolytic anaemia and autoimmune thrombocytopenia in childhood-onset systemic lupus erythematosus: updates on pathogenesis and treatment. Curr Opin Rheumatol. 2018 Sep;30(5):498–505.
  • Fattal I, Shental N, Molad Y, et al. Epstein-Barr virus antibodies mark systemic lupus erythematosus and scleroderma patients negative for anti-DNA. Immunology. 2014 Feb;141(2):276–285.
  • Fanouriakis A, Kostopoulou M, Alunno A, et al. 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Ann Rheum Dis. 2019 Jun;78(6):736–745.
  • Wang Y, Hong J, Yu R, et al. Evaluation of left ventricular function by vector flow mapping in females with systemic lupus erythematosus. Clin Rheumatol. 2021 Apr 26;40. DOI:https://doi.org/10.1007/s10067-021-05747-y.
  • Gamad N, Kakkar AK, Pattanaik S. Efficacy of anifrolumab in systemic lupus erythematosus: a critical analysis of the TULIP trials. Lupus. 2020 Jul;29(8):1002–1003.
  • Morand EF, Furie R, Tanaka Y, et al. Trial of anifrolumab in active systemic Lupus Erythematosus. N Engl J Med. 2020 Jan 16;382(3):211–221.
  • Houssiau FA, Vasconcelos C, D’Cruz D, et al. Immunosuppressive therapy in lupus nephritis: the Euro-Lupus Nephritis Trial, a randomized trial of low-dose versus high-dose intravenous cyclophosphamide. Arthritis Rheum. 2002 Aug;46(8):2121–2131.
  • Barber MRW, Drenkard C, Falasinnu T, et al. Global epidemiology of systemic lupus erythematosus. Nat Rev Rheumatol. 2021 Sep;17(9):515–532.
  • Barnas JL, Looney RJ, Anolik JH. B cell targeted therapies in autoimmune disease. Curr Opin Immunol. 2019 Dec;61:92–99.
  • Rawlings DJ, Metzler G, Wray-Dutra M, et al. Altered B cell signalling in autoimmunity. Nat Rev Immunol. 2017 Jul;17(7):421–436.
  • Shlomchik MJ. Sites and stages of autoreactive B cell activation and regulation. Immunity. 2008 Jan;28(1):18–28.
  • Yap DYH, Chan TM. B cell abnormalities in systemic Lupus Erythematosus and Lupus Nephritis-Role in Pathogenesis and effect of immunosuppressive treatments. Int J Mol Sci. 2019 Dec 10;20(24). DOI:https://doi.org/10.3390/ijms20246231.
  • Murphy G, Isenberg DA. New therapies for systemic lupus erythematosus - past imperfect, future tense. Nat Rev Rheumatol. 2019 Jul;15(7):403–412.
  • Albach FN, Wagner F, Huser A, et al. Safety, pharmacokinetics and pharmacodynamics of single rising doses of BI 655064, an antagonistic anti-CD40 antibody in healthy subjects: a potential novel treatment for autoimmune diseases. Eur J Clin Pharmacol. 2018 Feb;74(2):161–169.
  • Rossi EA, Chang CH, Goldenberg DM. Anti-CD22/CD20 bispecific antibody with enhanced trogocytosis for treatment of Lupus. PLoS One. 2014;9(5):e98315.
  • O’Brien SM, Kantarjian H, Thomas DA, et al. Rituximab dose-escalation trial in chronic lymphocytic leukemia. J Clin Oncol. 2001 Apr 15;19(8):2165–2170.
  • Gomez Mendez LM, Cascino MD, Garg J, et al. peripheral blood B cell depletion after Rituximab and complete response in Lupus Nephritis. Clin J Am Soc Nephrol. 2018 Oct 8;13(10):1502–1509.
  • Merrill JT, Neuwelt CM, Wallace DJ, et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum. 2010 Jan;62(1):222–233.
  • Suarez-Fueyo A, Bradley SJ, Tsokos GC. T cells in systemic Lupus Erythematosus. Curr Opin Immunol. 2016 Dec;43:32–38.
  • Reddy V, Jayne D, Close D, et al. B-cell depletion in SLE: clinical and trial experience with rituximab and ocrelizumab and implications for study design. Arthritis Res Ther. 2013;15(Suppl 1):S2.
  • Ahuja A, Teichmann LL, Wang H, et al. An acquired defect in IgG-dependent phagocytosis explains the impairment in antibody-mediated cellular depletion in Lupus. J Immunol. 2011 Oct 1;187(7):3888–3894.
  • Bekar KW, Owen T, Dunn R, et al. Prolonged effects of short-term anti-CD20 B cell depletion therapy in murine systemic lupus erythematosus. Arthritis Rheum. 2010 Aug;62(8):2443–2457.
  • Awwad S, Angkawinitwong U. Overview of antibody drug delivery. Pharmaceutics. 2018 Jul 4;10(3). DOI:https://doi.org/10.3390/pharmaceutics10030083.
  • Saunders KO. Conceptual approaches to modulating antibody effector functions and circulation half-life. Front Immunol. 2019;10:1296.
  • Wang W, Erbe AK, Hank JA, et al. NK Cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Front Immunol. 2015;6:368.
  • Gelderman KA, Tomlinson S, Ross GD, et al. Complement function in mAb-mediated cancer immunotherapy. Trends Immunol. 2004 Mar;25(3):158–164.
  • June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med. 2018 Jul 5; 379(1):64–73.
  • Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A. 1989 Dec;86(24):10024–10028.
  • Eshhar Z, Waks T, Gross G, et al. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):720–724.
  • Mitsuyasu RT, Anton PA, Deeks SG, et al. Prolonged survival and tissue trafficking following adoptive transfer of CD4zeta gene-modified autologous CD4(+) and CD8(+) T cells in human immunodeficiency virus-infected subjects. Blood. 2000 Aug 1;96(3):785–793.
  • Finney HM, Lawson AD, Bebbington CR, et al. Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. J Immunol. 1998 Sep 15;161(6):2791–2797.
  • Imai C, Mihara K, Andreansky M, et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia. 2004 Apr;18(4):676–684.
  • Brentjens RJ, Santos E, Nikhamin Y, et al. Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clin Cancer Res. 2007 Sep 15;13(18 Pt 1):5426–5435.
  • Milone MC, Fish JD, Carpenito C, et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther. 2009 Aug;17(8):1453–1464.
  • Zhao Y, Wang QJ, Yang S, et al. A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J Immunol. 2009 Nov 1;183(9):5563–5574.
  • Kalos M, Levine BL, Porter DL, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011 Aug 10;3(95):95ra73.
  • Porter DL, Levine BL, Kalos M, et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011 Aug 25;365(8):725–733.
  • Savoldo B, Ramos CA, Liu E, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest. 2011 May;121(5):1822–1826.
  • Davila ML, Riviere I, Wang X, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014 Feb 19;6(224):224ra25.
  • Sadelain M. CAR therapy: the CD19 paradigm. J Clin Invest. 2015 Sep;125(9):3392–3400.
  • Kochenderfer JN, Yu Z, Frasheri D, et al. Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells. Blood. [2010 Nov 11];116(19):3875–3886.
  • Forsthuber TG, Cimbora DM, Ratchford JN, et al. B cell-based therapies in CNS autoimmunity: differentiating CD19 and CD20 as therapeutic targets. Ther Adv Neurol Disord. 2018;11:1756286418761697.
  • Feucht J, Sun J, Eyquem J, et al. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat Med. 2019 Jan;25(1):82–88.
  • Guedan S, Madar A, Casado-Medrano V, et al. Single residue in CD28-costimulated CAR-T cells limits long-term persistence and antitumor durability. J Clin Invest. 2020 Jun 1;130(6):3087–3097.
  • Xue L, Yi Y, Xu Q, et al. Chimeric antigen receptor T cells self-neutralizing IL6 storm in patients with hematologic malignancy. Cell Discov. 2021 Sep 14;7(1):84.
  • Jyothi MD, Flavell RA, Geiger TL. Targeting autoantigen-specific T cells and suppression of autoimmune encephalomyelitis with receptor-modified T lymphocytes. Nat Biotechnol. 2002 Dec;20(12):1215–1220.
  • Whittington KB, Prislovsky A, Beaty J, et al. CD8(+) T cells expressing an HLA-DR1 chimeric antigen receptor target autoimmune CD4(+) T cells in an antigen-specific manner and inhibit the development of autoimmune arthritis. J Immunol. 2021 Nov 24;208: DOI:https://doi.org/10.4049/jimmunol.2100643.
  • Zhang L, Sosinowski T, Cox AR, et al. Chimeric antigen receptor (CAR) T cells targeting a pathogenic MHC class II:peptide complex modulate the progression of autoimmune diabetes. J Autoimmun. 2019 Jan;96:50–58.
  • Elinav E, Adam N, Waks T, et al. Amelioration of colitis by genetically engineered murine regulatory T cells redirected by antigen-specific chimeric receptor. Gastroenterology. 2009 May;136(5):1721–1731.
  • Fransson M, Piras E, Burman J, et al. CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery. J Neuroinflammation. 2012 May 30;9:112.
  • MacDonald KG, Hoeppli RE, Huang Q, et al. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J Clin Invest. 2016 Apr 1;126(4):1413–1424.
  • Imura Y, Ando M, Kondo T, et al. CD19-targeted CAR regulatory T cells suppress B cell pathology without GvHD. JCI Insight. 2020 Jul 23;5(14). https://doi.org/10.1172/jci.insight.136185.
  • Kasperkiewicz M, Ellebrecht CT, Takahashi H, et al. Pemphigus. Nat Rev Dis Primers. 2017 May 11;3:17026.
  • Ellebrecht CT, Bhoj VG, Nace A, et al. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science. 2016 Jul 8;353(6295):179–184.
  • Lee J, Lundgren DK, Mao X, et al. Antigen-specific B cell depletion for precision therapy of mucosal pemphigus vulgaris. J Clin Invest. 2020 Dec 1;130(12):6317–6324.
  • Morrissey MA, Williamson AP, Steinbach AM, et al. Chimeric antigen receptors that trigger phagocytosis. Elife. 2018 Jun 4;7: DOI:https://doi.org/10.7554/eLife.36688.
  • Kochenderfer JN, Dudley ME, Kassim SH, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015 Feb 20;33(6):540–549.
  • Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene Ciloleucel CAR T-cell therapy in refractory large B-cell Lymphoma. N Engl J Med. 2017 Dec 28;377(26):2531–2544.
  • Kansal R, Richardson N, Neeli I, et al. Sustained B cell depletion by CD19-targeted CAR T cells is a highly effective treatment for murine lupus. Sci Transl Med. 2019;Mar 6;11482:eaav1648.
  • Jin X, Xu Q, Pu C, et al. Therapeutic efficacy of anti-CD19 CAR-T cells in a mouse model of systemic lupus erythematosus. Cell Mol Immunol. 2021 Aug;18(8):1896–1903.
  • Mougiakakos D, Kronke G, Volkl S, et al. CD19-targeted CAR T cells in refractory systemic Lupus Erythematosus. N Engl J Med. 2021 Aug 5;385(6):567–569.
  • Bhoj VG, Arhontoulis D, Wertheim G, et al. Persistence of long-lived plasma cells and humoral immunity in individuals responding to CD19-directed CAR T-cell therapy. Blood. 2016 Jul 21;128(3):360–370.
  • Jenks SA, Cashman KS, Zumaquero E, et al. Distinct effector B cells induced by unregulated toll-like receptor 7 contribute to pathogenic responses in systemic Lupus Erythematosus. Immunity. 2020 Jan 14;52(1):203.
  • Chakravarti D, Wong WW. Synthetic biology in cell-based cancer immunotherapy. Trends Biotechnol. 2015 Aug;33(8):449–461.
  • Globerson Levin A, Riviere I, Eshhar Z, et al. CAR T cells: building on the CD19 paradigm. Eur J Immunol. 2021 Sep;51(9):2151–2163.
  • Depil S, Duchateau P, Grupp SA, et al. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat Rev Drug Discov. 2020 Mar;19(3):185–199.
  • Ran NA, Payne AS. Rituximab therapy in pemphigus and other autoantibody-mediated diseases. F1000Res. 2017;6:83.
  • Meng J, Wu X, Sun Z, et al. Efficacy and safety of CAR-T cell products Axicabtagene Ciloleucel, Tisagenlecleucel, and Lisocabtagene Maraleucel for the Treatment of Hematologic Malignancies: a systematic review and meta-analysis. Front Oncol. 2021;11:698607.
  • Masciopinto P, Dell’Olio G, De Robertis R, et al. The role of autoimmune diseases in the prognosis of Lymphoma. J Clin Med. 2020 Oct 23;9(11). https://doi.org/10.3390/jcm9113403.
  • Gemenetzi K, Agathangelidis A, Zaragoza-Infante L, et al. B cell receptor immunogenetics in B cell Lymphomas: Immunoglobulin genes as key to ontogeny and clinical decision making. Front Oncol. 2020;10:67.
  • Barcellini W, Giannotta JA, Fattizzo B. Autoimmune complications in Hematologic Neoplasms. Cancers (Basel). 2021 Mar 26;137. DOI:https://doi.org/10.3390/cancers13071532.
  • Schmelz JL, Navsaria L, Goswamy R, et al. Chimeric antigen receptor T-cell therapy’s role in antiphospholipid syndrome: a case report. Br J Haematol. 2020 Feb;188(3):e5–e8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.