285
Views
1
CrossRef citations to date
0
Altmetric
Special Report

Where do we stand with radioimmunotherapy for acute myeloid leukemia?

Pages 555-561 | Received 04 Jan 2022, Accepted 29 Mar 2022, Published online: 31 Mar 2022

References

  • Short NJ, Konopleva M, Kadia TM, et al. Advances in the treatment of acute myeloid leukemia: new drugs and new challenges. Cancer Discov. 10(4): 506–525. 2020.
  • Bazinet A, Assouline S. A review of FDA-approved acute myeloid leukemia therapies beyond ‘7 + 3.’ Expert Rev Hematol. 2021;14(2):185–197.
  • Döhner H, Wei AH, Löwenberg B. Towards precision medicine for AML. Nat Rev Clin Oncol. 2021;18(9):577–590.
  • Grossbard ML, Press OW, Appelbaum FR, et al. Monoclonal antibody-based therapies of leukemia and lymphoma. Blood. 80(4): 863–878. 1992.
  • Godwin CD, Gale RP, Walter RB. Gemtuzumab ozogamicin in acute myeloid leukemia. Leukemia. 2017;31(9):1855–1868.
  • Jen EY, Ko CW, Lee JE, et al. FDA approval: gemtuzumab ozogamicin for the treatment of adults with newly diagnosed CD33-positive acute myeloid leukemia. Clin Cancer Res. 2018;24(14):3242–3246.
  • Norsworthy KJ, Ko CW, Lee JE, et al. FDA approval summary: mylotarg for treatment of patients with relapsed or refractory CD33-positive acute myeloid leukemia. Oncologist. 2018;23(9):1103–1108.
  • Ali S, Dunmore HM, Karres D, et al. The EMA review of Mylotarg (gemtuzumab ozogamicin) for the treatment of acute myeloid leukemia. Oncologist. 2019;24(5):e171–e9.
  • Shallis RM, Gale RP, Lazarus HM, et al. Myeloid sarcoma, chloroma, or extramedullary acute myeloid leukemia tumor: a tale of misnomers, controversy and the unresolved. Blood Rev. 2021;47:100773.
  • Chak LY, Sapozink MD, Cox RS. Extramedullary lesions in non-lymphocytic leukemia: results of radiation therapy. Int J Radiat Oncol Biol Phys. 1983;9(8):1173–1176.
  • Clift RA, Buckner CD, Appelbaum FR, et al. Allogeneic marrow transplantation in patients with acute myeloid leukemia in first remission: a randomized trial of two irradiation regimens. Blood. 1990;76(9):1867–1871.
  • Clift RA, Buckner CD, Appelbaum FR, et al. Long-term follow-up of a randomized trial of two irradiation regimens for patients receiving allogeneic marrow transplants during first remission of acute myeloid leukemia. Blood. 1998;92(4):1455–1456.
  • Larson SM, Carrasquillo JA, Cheung NKV, et al. Radioimmunotherapy of human tumours. Nat Rev Cancer. 15(6): 347–360. 2015.
  • Green DJ, Press OW. Whither radioimmunotherapy: to be or not to be? Cancer Res. 2017;77(9):2191–2196.
  • Martins CD, Kramer-Marek G, Oyen WJG. Radioimmunotherapy for delivery of cytotoxic radioisotopes: current status and challenges. Expert Opin Drug Deliv. 2018;15(2):185–196.
  • Pandit-Taskar N. Targeted radioimmunotherapy and theranostics with alpha emitters. J Med Imaging Radiat Sci. 2019;50(Suppl 4):S41–S4.
  • Jurcic JG, Rosenblat TL. Targeted alpha-particle immunotherapy for acute myeloid leukemia. Am Soc Clin Oncol Educ Book. 2014;34:e126–31. https://doi.org/10.14694/EdBook_AM.2014.34.e126
  • Bodet-Milin C, Kraeber-Bodéré F, Eugène T, et al. Radioimmunotherapy for treatment of acute leukemia. Semin Nucl Med. 2016;46(2):135–146.
  • Jurcic JG. Targeted alpha-particle therapy for hematologic malignancies. J Med Imaging Radiat Sci. 2019;50(4 Suppl 1):S53–S7.
  • Eychenne R, Chérel M, Haddad F, et al. Overview of the most promising radionuclides for targeted alpha therapy: the “hopeful eight.” Pharmaceutics. 2021;13(6):906.
  • Behr TM, Béhé M, Stabin MG, et al. High-linear energy transfer (LET) alpha versus low-LET beta emitters in radioimmunotherapy of solid tumors: therapeutic efficacy and dose-limiting toxicity of 213Bi- versus 90Y-labeled CO17-1A Fab’ fragments in a human colonic cancer model. Cancer Res. 1999;59(11):2635–2643.
  • Aghevlian S, Boyle AJ, Reilly RM. Radioimmunotherapy of cancer with high linear energy transfer (LET) radiation delivered by radionuclides emitting alpha-particles or Auger electrons. Adv Drug Deliv Rev. 2017;109:102–118.
  • Nikula TK, McDevitt MR, Finn RD, et al. Alpha-emitting bismuth cyclohexylbenzyl DTPA constructs of recombinant humanized anti-CD33 antibodies: pharmacokinetics, bioactivity, toxicity and chemistry. J Nucl Med. 1999;40(1):166–176.
  • Sawant SG, Randers-Pehrson G, Metting NF, et al. Adaptive response and the bystander effect induced by radiation in C3H 10T(1/2) cells in culture. Radiat Res. 2001;156(2):177–180.
  • Aurlien E, Kvinnsland Y, Larsen RH, et al. Radiation doses to non-Hodgkin’s lymphoma cells and normal bone marrow exposed in vitro. Comparison of an alpha-emitting radioimmunoconjugate and external gamma-irradiation. Int J Radiat Biol. 2002;78(2):133–142.
  • Dahle J, Borrebæk J, Jonasdottir TJ, et al. Targeted cancer therapy with a novel low-dose rate alpha-emitting radioimmunoconjugate. Blood. 2007;110(6):2049–2056.
  • Laszlo GS, Estey EH, Walter RB. The past and future of CD33 as therapeutic target in acute myeloid leukemia. Blood Rev. 2014;28(4):143–153.
  • Knapp DJHF, Hammond CA, Hui T, et al. Single-cell analysis identifies a CD33(+) subset of human cord blood cells with high regenerative potential. Nat Cell Biol. 2018;20(6):710–720.
  • Walter RB, Appelbaum FR, Estey EH, et al. Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood. 2012;119(26):6198–6208.
  • Dahlke MH, Larsen SR, Rasko JE, et al. The biology of CD45 and its use as a therapeutic target. Leuk Lymphoma. 2004;45(2):229–236.
  • Castiello MC, Bosticardo M, Sacchetti N, et al. Efficacy and safety of anti-CD45-saporin as conditioning agent for RAG deficiency. J Allergy Clin Immunol. 2021;147(1):309–20 e6.
  • Gao C, Schroeder JA, Xue F, et al. Nongenotoxic antibody-drug conjugate conditioning enables safe and effective platelet gene therapy of hemophilia A mice. Blood Adv. 2019;3(18):2700–2711.
  • Srikanthan MA, Humbert O, Haworth KG, et al. Effective multi-lineage engraftment in a mouse model of Fanconi anemia using non-genotoxic antibody-based conditioning. Mol Ther Methods Clin Dev. 2020;17:455–464.
  • Persaud SP, Ritchey JK, Kim S, et al. Antibody-drug conjugates plus janus kinase inhibitors enable MHC-mismatched allogeneic hematopoietic stem cell transplantation. J Clin Invest. 2021;131(24). https://doi.org/10.1172/JCI145501.
  • Press OW, Howell-Clark J, Anderson S, et al. Retention of B-cell-specific monoclonal antibodies by human lymphoma cells. Blood. 1994;83(5):1390–1397.
  • Becker W, Goldenberg DM, Wolf F. The use of monoclonal antibodies and antibody fragments in the imaging of infectious lesions. Semin Nucl Med. 1994;24(2):142–153.
  • Gray-Owen SD, Blumberg RS. CEACAM1: contact-dependent control of immunity. Nat Rev Immunol. 2006;6(6):433–446.
  • Testa U, Pelosi E, Castelli G. CD123 as a therapeutic target in the treatment of hematological malignancies. Cancers (Basel). 2019;11(9):1358.
  • Sugita M, Guzman ML. CD123 as a therapeutic target against malignant stem cells. Hematol Oncol Clin North Am. 2020;34(3):553–564.
  • El Achi H, Dupont E, Paul S, et al. CD123 as a biomarker in hematolymphoid malignancies: principles of detection and targeted therapies. Cancers (Basel). 2020;12(11):3087.
  • Pelosi E, Castelli G, Testa U. Targeting LSCs through membrane antigens selectively or preferentially expressed on these cells. Blood Cells Mol Dis. 2015;55(4):336–346.
  • Leyton JV, Gao C, Williams B, et al. A radiolabeled antibody targeting CD123(+) leukemia stem cells - initial radioimmunotherapy studies in NOD/SCID mice engrafted with primary human AML. Leuk Res Rep. 2015;4(2):55–59.
  • Gao C, Leyton JV, Schimmer AD, et al. Auger electron-emitting (111)In-DTPA-NLS-CSL360 radioimmunoconjugates are cytotoxic to human acute myeloid leukemia (AML) cells displaying the CD123(+)/CD131(-) phenotype of leukemia stem cells. Appl Radiat Isot. 2016;110:1–7.
  • Bergstrom D, Leyton JV, Zereshkian A, et al. Paradoxical effects of auger electron-emitting (111)In-DTPA-NLS-CSL360 radioimmunoconjugates on hCD45(+) cells in the bone marrow and spleen of leukemia-engrafted NOD/SCID or NRG mice. Nucl Med Biol. 2016;43(10):635–641.
  • Laszlo GS, Orozco JJ, Kehret AR, et al. Development of astatine-211 (211At)-based anti-CD123 radioimmunotherapy for acute leukemias and other CD123+ hematologic malignancies [abstract]. Blood. 2021;138(Suppl 1):3341.
  • Oriuchi N, Aoki M, Ukon N, et al. Possibility of cancer-stem-cell-targeted radioimmunotherapy for acute myelogenous leukemia using (211)At-CXCR4 monoclonal antibody. Sci Rep. 2020;10(1):6810.
  • Ali AM, Dehdashti F, DiPersio JF, et al. Radioimmunotherapy-based conditioning for hematopoietic stem cell transplantation: another step forward. Blood Rev. 2016;30(5):389–399.
  • Pagel JM, Appelbaum FR, Eary JF, et al. 131I-anti-CD45 antibody plus busulfan and cyclophosphamide before allogeneic hematopoietic cell transplantation for treatment of acute myeloid leukemia in first remission. Blood. 2006;107(5):2184–2191.
  • Pagel JM, Gooley TA, Rajendran J, et al. Allogeneic hematopoietic cell transplantation after conditioning with 131I-anti-CD45 antibody plus fludarabine and low-dose total body irradiation for elderly patients with advanced acute myeloid leukemia or high-risk myelodysplastic syndrome. Blood. 2009;114(27):5444–5453.
  • Gyurkocza B, Nath R, Seropian S, et al. Clinical experience in the randomized phase 3 Sierra trial: anti-CD45 iodine (131I) apamistamab [Iomab-B] conditioning enables hematopoietic cell transplantation with successful engraftment and acceptable safety in patients with active, relapsed/refractory AML not responding to targeted therapies [abstract]. Blood. 2021;138(Suppl 1):1791.
  • Sandmaier BM, Bethge WA, Wilbur DS, et al. Bismuth 213-labeled anti-CD45 radioimmunoconjugate to condition dogs for nonmyeloablative allogeneic marrow grafts. Blood. 2002;100(1):318–326.
  • Bethge WA, Wilbur DS, Storb R, et al. Radioimmunotherapy with bismuth-213 as conditioning for nonmyeloablative allogeneic hematopoietic cell transplantation in dogs: a dose deescalation study. Transplantation. 2004;78(3):352–359.
  • Nakamae H, Wilbur DS, Hamlin DK, et al. Biodistributions, myelosuppression, and toxicities in mice treated with an anti-CD45 antibody labeled with the alpha-emitting radionuclides bismuth-213 or astatine-211. Cancer Res. 2009;69(6):2408–2415.
  • Orozco JJ, Bäck T, Kenoyer A, et al. Anti-CD45 radioimmunotherapy using (211)at with bone marrow transplantation prolongs survival in a disseminated murine leukemia model. Blood. 2013;121(18):3759–3767.
  • Green DJ, Shadman M, Jones JC, et al. Astatine-211 conjugated to an anti-CD20 monoclonal antibody eradicates disseminated B-cell lymphoma in a mouse model. Blood. 2015;125(13):2111–2119.
  • O’Steen S, Comstock ML, Orozco JJ, et al. The alpha emitter astatine-211 targeted to CD38 can eradicate multiple myeloma in minimal residual disease models [abstract]. Blood. 2018;132(Supplement 1):1941.
  • Sandmaier BM, Wilbur DS, Hamlin DK, et al. A phase I trial of first-in-human alpha-emitter astatine- 211-labeled anti-CD45 antibody (211At-BC8-B10) in combination with fludarabine and TBI as conditioning for allogeneic hematopoietic cell transplantation (HCT) for patients with refractory/relapsed leukemia or high-risk myelodysplastic syndrome (MDS): preliminary results of dose escalation [abstract]. 2021;27(Suppl 3):S54.Transplant Cell Ther
  • Jurcic JG, Larson SM, Sgouros G, et al. Targeted alpha particle immunotherapy for myeloid leukemia. Blood. 2002;100(4):1233–1239.
  • Jurcic JG, Rosenblat TL, McDevitt MR, et al. Phase I trial of the targeted-particle nano-generator actinium 225 (225Ac)-lintuzumab (anti-CD33; HuM195) in acute myeloid leukemia (AML) [abstract]. Blood. 2011;118(21):768.
  • Finn LE, Levy M, Orozco JJ, et al. A phase 2 study of actinium-225 (225Ac)-lintuzumab in older patients with previously untreated acute myeloid leukemia (AML) unfit for intensive chemotherapy [abstract]. Blood. 2017;130(Suppl 1):2638.
  • Atallah EL, Orozco JJ, Craig M, et al. A phase 2 study of actinium-225 (225Ac)-lintuzumab in older patients with untreated acute myeloid leukemia (AML) - interim analysis of 1.5 µCi/kg/dose [abstract]. Blood. 2018;132(Suppl 1):1457.
  • Abedin S, Guru Murthy GS, Hamadani M, et al. Lintuzumab-Ac225 in combination with CLAG-M yields high MRD (-) responses in R/R AML with adverse features: interim results of a phase I study [abstract]. Blood. 2021;138(Suppl 1):3414.
  • Halpern AB, Othus M, Huebner EM, et al. Phase I/II trial of cladribine, high-dose cytarabine, mitoxantrone, and G-CSF with dose-escalated mitoxantrone for relapsed/refractory acute myeloid leukemia and other high-grade myeloid neoplasms. Haematologica. 2019;104(4):e143–e6.
  • Mushtaq MU, Harrington AM, Chaudhary SG, et al. Comparison of salvage chemotherapy regimens and prognostic significance of minimal residual disease in relapsed/refractory acute myeloid leukemia. Leuk Lymphoma. 2021;62(1):158–166.
  • Garg R, Allen KJH, Dawicki W, et al. 225Ac-labeled CD33-targeting antibody reverses resistance to Bcl-2 inhibitor venetoclax in acute myeloid leukemia models. Cancer Med. 2021;10(3):1128–1140.
  • Schiller GJ, Finn L, Roboz GJ, et al. Early clinical evaluation of potential synergy of targeted radiotherapy with lintuzumab-Ac225 and venetoclax in relapsed/refractory AML [abstract]. Blood. 2021;138(Suppl 1):3412.
  • Lin Y, Pagel JM, Axworthy D, et al. A genetically engineered anti-CD45 single-chain antibody-streptavidin fusion protein for pretargeted radioimmunotherapy of hematologic malignancies. Cancer Res. 2006;66(7):3884–3892.
  • Pagel JM, Hedin N, Drouet L, et al. Eradication of disseminated leukemia in a syngeneic murine leukemia model using pretargeted anti-CD45 radioimmunotherapy. Blood. 2008;111(4):2261–2268.
  • Pagel JM, Matthews DC, Kenoyer A, et al. Pretargeted radioimmunotherapy using anti-CD45 monoclonal antibodies to deliver radiation to murine hematolymphoid tissues and human myeloid leukemia. Cancer Res. 2009;69(1):185–192.
  • Green DJ, Pagel JM, Nemecek ER, et al. Pretargeting CD45 enhances the selective delivery of radiation to hematolymphoid tissues in nonhuman primates. Blood. 2009;114(6):1226–1235.
  • Pagel JM, Kenoyer AL, Bäck T, et al. Anti-CD45 pretargeted radioimmunotherapy using bismuth-213: high rates of complete remission and long-term survival in a mouse myeloid leukemia xenograft model. Blood. 2011;118(3):703–711.
  • Orozco JJ, Kenoyer AL, Lin Y, et al. Therapy of myeloid leukemia using novel bispecific fusion proteins targeting CD45 and (90)Y-DOTA. Mol Cancer Ther. 2020;19(12):2575–2584.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.