347
Views
3
CrossRef citations to date
0
Altmetric
Review

Tumor-infiltrating lymphocyte therapy for lung cancer and its future paradigms

, ORCID Icon, , &
Pages 735-745 | Received 31 Oct 2021, Accepted 27 Apr 2022, Published online: 04 May 2022

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. J clin. 2021;71(3):209–249. DOI:10.3322/caac.21660
  • Malhotra J, Malvezzi M, Negri E, et al. Risk factors for lung cancer worldwide. Eur Respir J. 2016 Sep;48(3):889–902. DOI:10.1183/13993003.00359-2016.
  • Bade BC, Dela Cruz CS. Lung cancer 2020: epidemiology, etiology, and prevention. Clin Chest Med. 2020 Mar;41(1):1–24.
  • Hirsch FR, Scagliotti GV, Mulshine JL, et al. Lung cancer: current therapies and new targeted treatments. Lancet. 2017 Jan 21;389(10066):299–311.DOI: 10.1016/S0140-6736(16)30958-8
  • Vansteenkiste J, Crino L, Dooms C, et al. 2nd ESMO consensus conference on lung cancer: early-stage non-small-cell lung cancer consensus on diagnosis, treatment and follow-up. Ann Oncol. 2014 Aug;25(8):1462–1474. DOI:10.1093/annonc/mdu089.
  • Ben-Avi R, Farhi R, Ben-Nun A, et al., Establishment of adoptive cell therapy with tumor infiltrating lymphocytes for non-small cell lung cancer patients. Can Imm Imm. 2018 Aug;67(8): 1221–1230. doi:10.1007/s00262-018-2174-4.
  • Curran WJ Jr., Paulus R, Langer CJ, et al. Sequential vs. concurrent chemoradiation for stage III non-small cell lung cancer: randomized phase III trial RTOG 9410. J Natl Cancer Inst. 2011 Oct 5;103(19):1452–1460.DOI: 10.1093/jnci/djr325
  • Auperin A, Le Pechoux C, Rolland E, et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol. 2010 May 1;28(13):2181–2190.DOI: 10.1200/JCO.2009.26.2543
  • Vokes EE, Herndon JE, Kelley MJ, et al. Induction chemotherapy followed by chemoradiotherapy compared with chemoradiotherapy alone for regionally advanced unresectable stage III non-small-cell lung cancer: cancer and leukemia group B. J clin oncol. 2007 May 1;25(13):1698–1704.DOI: 10.1200/JCO.2006.07.3569
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. Ca-Cancer J Clin. 2019 Jan-Feb;69(1):7–34.
  • Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004 Aug;21(2):137–148.
  • Mittal D, Gubin MM, Schreiber RD, et al. New insights into cancer immunoediting and its three component phases–elimination, equilibrium and escape. Curr Opin Immunol. 2014 Apr;27:16–25.
  • Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011 Mar 25;331(6024):1565–1570.DOI: 10.1126/science.1203486
  • Carbone DP, Gandara DR, Antonia SJ, et al. Non-small-cell lung cancer: Role of the immune system and potential for immunotherapy. J Thorac Oncol. 2015 Jul;10(7):974–984. DOI:10.1097/JTO.0000000000000551.
  • Somasundaram A, Burns TF. The next generation of immunotherapy: keeping lung cancer in check. J Hematol Oncol. 2017 Apr 24;10(1):87.DOI: 10.1186/s13045-017-0456-5
  • Durgeau A, Virk Y, Corgnac S, et al. Recent advances in targeting CD8 T-cell immunity for more effective cancer immunotherapy. Front Immunol. 2018;9:14.
  • Ahrends T, Spanjaard A, Pilzecker B, et al. CD4(+) T cell help confers a cytotoxic T cell effector program including coinhibitory receptor downregulation and increased tissue invasiveness. Immunity. 2017 Nov 21;47(5):848–861 e5.DOI: 10.1016/j.immuni.2017.10.009
  • Kreiter S, Vormehr M, van de Roemer N, et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature. 2015 Apr 30;520(7549):692–696.DOI: 10.1038/nature14426
  • Wing K, Yamaguchi T, Sakaguchi S. Cell-autonomous and -non-autonomous roles of CTLA-4 in immune regulation. Trends Immunol. 2011 Sep;32(9):428–433.
  • Gun SY, Lee SWL, Sieow JL, et al. Targeting immune cells for cancer therapy. Redox Biol. 2019 Jul;25:101174.
  • Fang L, Ly D, Wang SS, et al. Targeting late-stage non-small cell lung cancer with a combination of DNT cellular therapy and PD-1 checkpoint blockade. J Exp Clin Cancer Res. 2019 Mar 11;38(1):123.DOI: 10.1186/s13046-019-1126-y.
  • Cristescu R, Mogg R, Ayers M, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science. 2018 Oct 12;362(6411).DOI: 10.1126/science.aar3593.
  • Rizvi NA, Hellmann MD, Snyder A, et al. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science. 2015;348(6230):124–128. DOI: 10.1126/science.aaa1348.
  • Maus MV, Fraietta JA, Levine BL, et al. Adoptive immunotherapy for cancer or viruses. Annu Rev Immunol. 2014;32(1):189–225. DOI:10.1146/annurev-immunol-032713-120136.
  • Lerret NM, Marzo AL. Adoptive T-cell transfer combined with a single low dose of total body irradiation eradicates breast tumors. Oncoimmunology. 2013 Feb 1;2(2):e22731. DOI:10.4161/onci.22731
  • Dudley ME, Wunderlich JR, Shelton TE, et al. Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J Immunother. 2003 Jul-Aug;26(4):332–342. DOI:10.1097/00002371-200307000-00005.
  • Redeker A, Arens R. Improving adoptive t cell therapy: the particular role of T cell costimulation, cytokines, and post-transfer vaccination [review]. Front Immunol. 2016 September 06;7:345.
  • Perica K, Varela JC, Oelke M, et al. Adoptive T cell immunotherapy for cancer. Rambam Maimonides Med J. 2015;6(1). DOI: 10.5041/RMMJ.10179.
  • June CH, Riddell SR, Schumacher TN. Adoptive cellular therapy: a race to the finish line. Sci Transl Med. 2015 Mar 25;7(280):2807. DOI:10.1126/scitranslmed.aaa3643
  • Chen D, Sha H, Hu T, et al. Cytokine-induced killer cells as a feasible adoptive immunotherapy for the treatment of lung cancer. Cell Death Dis. 2018 Mar 6;9(3):366.DOI: 10.1038/s41419-018-0404-5
  • Sheng SY, Gu Y, Lu CG, et al. the characteristics of naive-like T cells in tumor-infiltrating lymphocytes from human lung cancer. J Immunother. 2017 Jan;40(1):1–10. DOI:10.1097/CJI.0000000000000147.
  • Mantovani A, Allavena P, Sica A, et al. Cancer-related inflammation. Nature. 2008 Jul 24;454(7203):436–444.DOI: 10.1038/nature07205
  • Itzhaki O, Hovav E, Ziporen Y, et al. Establishment and large-scale expansion of minimally cultured “young” tumor infiltrating lymphocytes for adoptive transfer therapy. J Immunother. 2011 Mar;34(2):212–220. DOI:10.1097/CJI.0b013e318209c94c.
  • Kradin RL, Boyle LA, Preffer FI, et al., Tumor-derived interleukin-2-dependent lymphocytes in adoptive immunotherapy of lung cancer. Cancer Immunol Immunother. 1987;24(1): 76–85. . 10.1007/BF00199837.
  • Rosenberg SA, Packard BS, Aebersold PM, et al. Use of Tumor-Infiltrating Lymphocytes and Interleukin-2 in the Immunotherapy of Patients with Metastatic Melanoma - a Preliminary-Report. New Engl J Med. 1988 Dec 22;319(25):1676–1680. 10.1056/NEJM198812223192527.
  • Besser MJ, Shapira-Frommer R, Itzhaki O, et al. Adoptive transfer of tumor-infiltrating lymphocytes in patients with metastatic melanoma: intent-to-treat analysis and efficacy after failure to prior immunotherapies. Clin Cancer Res. 2013 Sep 1;19(17):4792–4800.DOI: 10.1158/1078-0432.CCR-13-0380
  • Dudley ME, Gross CA, Somerville RP, et al. Randomized selection design trial evaluating CD8+-enriched versus unselected tumor-infiltrating lymphocytes for adoptive cell therapy for patients with melanoma. J Clin Oncol. 2013 Jun 10;31(17):2152–2159.DOI: 10.1200/JCO.2012.46.6441
  • Goff SL, Dudley ME, Citrin DE, et al. Randomized, prospective evaluation comparing intensity of lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma. J Clin Oncol. 2016 Jul 10;34(20):2389–2397.DOI: 10.1200/JCO.2016.66.7220
  • Andersen R, Donia M, Ellebaek E, et al. Long-lasting complete responses in patients with metastatic melanoma after adoptive cell therapy with tumor-infiltrating lymphocytes and an attenuated IL2 regimen. Clin Cancer Res. 2016 Aug 1;22(15):3734–3745. DOI:10.1158/1078-0432.CCR-15-1879
  • Aoki Y, Takakuwa K, Kodama S, et al. Use of adoptive transfer of tumor-infiltrating lymphocytes alone or in combination with cisplatin-containing chemotherapy in patients with epithelial ovarian cancer. Cancer Res. 1991 Apr 1;51(7):1934–1939.
  • Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013 Jul 11;499(7457):214–218.DOI:10.1038/nature12213
  • Hendry S, Salgado R, Gevaert T, et al. Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the international immunooncology biomarkers working group: part 1: assessing the host immune response, tils in invasive breast carcinoma and ductal carcinoma in situ, metastatic tumor deposits and areas for further research. Adv Anat Pathol. 2017 Sep;24(5):235–251.
  • Rooney MS, Shukla SA, Wu CJ, et al. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell. 2015 Jan 15;160(1–2):48–61.DOI:10.1016/j.cell.2014.12.033
  • Tran E, Robbins PF, SAJNi R. ‘Final common pathway’of human cancer immunotherapy: targeting random somatic mutations. Nature Immunology. 2017;18(3):255–262.
  • Radvanyi LG. Tumor-infiltrating lymphocyte therapy: Addressing prevailing questions. Cancer J. 2015 Nov-Dec;21(6):450–464.
  • Qin SS, Melucci AD, Chacon AC, et al. Adoptive T cell therapy for solid tumors: pathway to personalized standard of care. Cells. 2021 Apr 5; 10(4):808.DOI: 10.3390/cells10040808
  • Borch TH, Andersen R, Ellebaek E, et al. Future role for adoptive T-cell therapy in checkpoint inhibitor-resistant metastatic melanoma. Journal for Immunotherapy of Cancer. 2020;8(2):e000668. DOI:10.1136/jitc-2020-000668.
  • Magalhaes I, Carvalho-Queiroz C, Hartana CA, et al. Facing the future: challenges and opportunities in adoptive T cell therapy in cancer. Expert Opin Biol Ther. 2019 ;19(8):811–827. DOI:10.1080/14712598.2019.1608179.
  • Gros A, Parkhurst MR, Tran E, et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med. 2016 Apr;22(4):433–438. DOI:10.1038/nm.4051.
  • Geng Y, Shao Y, He W, et al. Prognostic role of tumor-infiltrating lymphocytes in lung cancer: a meta-analysis. Cell Physiol Biochem. 2015;37(4):1560–1571. DOI:10.1159/000438523.
  • Chraa D, Naim A, Olive D, et al. T lymphocyte subsets in cancer immunity: Friends or foes. Journal of Leukocyte Biology. 2019;105(2):243–255. DOI:10.1002/JLB.MR0318-097R.
  • Wei X, Gu L, Heng W. T lymphocytes related biomarkers for predicting immunotherapy efficacy in nonsmall cell lung cancer (Review). Oncol Lett. 2021 ;21(2):89.
  • Fridman WH, Pages F, Sautes-Fridman C, et al. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012 Apr;12(4):298–306. DOI:10.1038/nrc3245.
  • Lanca T, Silva-Santos B. The split nature of tumor-infiltrating leukocytes Implications for cancer surveillance and immunotherapy. Oncoimmunology. 2012 Aug;1(5):717–725.
  • Shigematsu Y, Hanagiri T, Shiota H, et al. Immunosuppressive effect of regulatory T lymphocytes in lung cancer, with special reference to their effects on the induction of autologous tumor-specific cytotoxic T lymphocytes. Oncol Lett. 2012 Oct;4(4):625–630. DOI:10.3892/ol.2012.815.
  • Petersen RP, Campa MJ, Sperlazza J, et al. Tumor infiltrating Foxp3+ regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients. Cancer. 2006 Dec 15;107(12):2866–2872.DOI:10.1002/cncr.22282
  • Liu H, Zhang T, Ye J, et al. Tumor-infiltrating lymphocytes predict response to chemotherapy in patients with advance non-small cell lung cancer. Cancer Immunol Immunother. 2012 Oct;61(10):1849–1856. DOI:10.1007/s00262-012-1231-7.
  • Schneider T, Kimpfler S, Warth A, et al. Foxp3(+) regulatory T cells and natural killer cells distinctly infiltrate primary tumors and draining lymph nodes in pulmonary adenocarcinoma. J Thorac Oncol. 2011 Mar;6(3):432–438. DOI:10.1097/JTO.0b013e31820b80ca.
  • Tao H, Mimura Y, Aoe K, et al. Prognostic potential of FOXP3 expression in non-small cell lung cancer cells combined with tumor-infiltrating regulatory T cells. Lung Cancer. 2012 Jan;75(1):95–101. DOI:10.1016/j.lungcan.2011.06.002.
  • Domagala-Kulawik J, Osinska I, Hoser G. Mechanisms of immune response regulation in lung cancer. Transl Lung Cancer Res. 2014 Feb;3(1):15–22.
  • Zhang Y, Huang S, Gong D, et al. Programmed death-1 upregulation is correlated with dysfunction of tumor-infiltrating CD8+ T lymphocytes in human non-small cell lung cancer. Cell Mol Immunol. 2010 Sep;7(5):389–395. DOI:10.1038/cmi.2010.28.
  • Forde PM, Kelly RJ, Brahmer JR. New strategies in lung cancer: translating immunotherapy into clinical practice. Clin Cancer Res. 2014 Mar 1; 20(5):1067–1073.DOI: 10.1158/1078-0432.CCR-13-0731
  • Santegoets SJ, Turksma AW, Suhoski MM, et al. IL-21 promotes the expansion of CD27+ CD28+ tumor infiltrating lymphocytes with high cytotoxic potential and low collateral expansion of regulatory T cells. J Transl Med. 2013 Feb 12;11(1):37.DOI:10.1186/1479-5876-11-37
  • Rosenberg SA. Overcoming obstacles to the effective immunotherapy of human cancer. Proc Natl Acad Sci U S A. 2008 Sep 2; 105(35):12643–12644.DOI:10.1073/pnas.0806877105
  • Maynard A, McCoach CE, Rotow JK, et al. Therapy-Induced evolution of human lung cancer revealed by single-cell RNA sequencing. Cell. 2020 Sep 3;182(5):1232–1251 e22.DOI:10.1016/j.cell.2020.07.017
  • Leader AM, Grout JA, Maier BB, et al. Single-cell analysis of human non-small cell lung cancer lesions refines tumor classification and patient stratification. Cancer Cell. 2021 Dec 13;39(12):1594–1609 e12.DOI:10.1016/j.ccell.2021.10.009
  • Zheng L, Qin S, Si W, et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science. 2021;374(6574):abe6474. DOI:10.1126/science.abe6474
  • Leader AM, Grout JA, Chang C, et al. CITEseq analysis of non-small-cell lung cancer lesions reveals an axis of immune cell activation associated with tumor antigen load and TP53 mutations . bioRxiv. 2020. DOI:10.1101/2020.07.16.207605.
  • Robertson J, Salm M, Mji-ot D. Adoptive cell therapy with tumour-infiltrating lymphocytes: the emerging importance of clonal neoantigen targets for next-generation products in non-small cell lung cancer. Immuno-Oncology Technology. 2019;3:1–7.
  • Galvano A, Gristina V, Malapelle U, et al. The prognostic impact of tumor mutational burden (TMB) in the first-line management of advanced non-oncogene addicted non-small-cell lung cancer (NSCLC): a systematic review and meta-analysis of randomized controlled trials. ESMO Open. 2021 Jun;6(3):100124. DOI:10.1016/j.esmoop.2021.100124.
  • Hellmann MD, Nathanson T, Rizvi H, et al. Genomic Features of Response to Combination Immunotherapy in Patients with Advanced Non-Small-Cell Lung Cancer. Cancer Cell. 2018 May 14;33(5):843–852 e4. DOI:10.1016/j.ccell.2018.03.018
  • Kradin RL, Kurnick JT, Lazarus DS, et al. Tumour-infiltrating lymphocytes and interleukin-2 in treatment of advanced cancer. Lancet. 1989 Mar 18;1(8638):577–580.DOI:10.1016/S0140-6736(89)91609-7.
  • Kataki A, Scheid P, Piet M, et al. Tumor infiltrating lymphocytes and macrophages have a potential dual role in lung cancer by supporting both host-defense and tumor progression. J Lab Clin Med. 2002 Nov;140(5):320–328. DOI:10.1067/mlc.2002.128317.
  • Kuo SH, Chang DB, Lee YC, et al. Tumour-infiltrating lymphocytes in non-small cell lung cancer are activated T lymphocytes. Respirology. 1998 Mar;3(1):55–59. DOI:10.1046/j.1440-1843.1998.d01-9.x.
  • Horne ZD, Jack R, Gray ZT, et al. increased levels of tumor-infiltrating lymphocytes are associated with improved recurrence-free survival in stage 1a non-small-cell lung cancer. J Surg Res. 2011 Nov;171(1):1–5. DOI:10.1016/j.jss.2011.03.068.
  • Ruffini E, Asioli S, Filosso PL, et al. Clinical significance of tumor-infiltrating lymphocytes in lung neoplasms. Ann Thorac Surg. 2009 Feb;872:365–371. discussion 371-2. DOI:10.1016/j.athoracsur.2008.10.067
  • Hiraoka K, Miyamoto M, Cho Y, et al. Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non-small-cell lung carcinoma. Br J Cancer. 2006 Jan 30;94(2):275–280.DOI:10.1038/sj.bjc.6602934
  • Zhuang X, Xia X, Wang C, et al. A high number of CD8+ T cells infiltrated in NSCLC tissues is associated with a favorable prognosis. Appl Immunohistochem Mol Morphol. 2010 Jan;18(1):24–28. DOI:10.1097/PAI.0b013e3181b6a741.
  • Al-Shibli K, Al-Saad S, Andersen S, et al. The prognostic value of intraepithelial and stromal CD3-, CD117- and CD138-positive cells in non-small cell lung carcinoma. APMIS. 2010 May;118(5):371–382. DOI:10.1111/j.1600-0463.2010.02609.x.
  • Kilic A, Landreneau RJ, Luketich JD, et al. Density of tumor-infiltrating lymphocytes correlates with disease recurrence and survival in patients with large non-small-cell lung cancer tumors. J Surg Res. 2011 May 15;167(2):207–210.DOI:10.1016/j.jss.2009.08.029
  • Shimizu K, Nakata M, Hirami Y, et al. Tumor-infiltrating Foxp3+ regulatory T cells are correlated with cyclooxygenase-2 expression and are associated with recurrence in resected non-small cell lung cancer. J Thorac Oncol. 2010 May;5(5):585–590. DOI:10.1097/JTO.0b013e3181d60fd7.
  • Creelan BC, Wang C, Teer JK, et al. Tumor-infiltrating lymphocyte treatment for anti-PD-1-resistant metastatic lung cancer: a phase 1 trial. Nat Med. 2021 Aug;27(8):1410–1418. DOI:10.1038/s41591-021-01462-y.
  • Ratto GB, Zino P, Mirabelli S, et al. A randomized trial of adoptive immunotherapy with tumor-infiltrating lymphocytes and interleukin-2 versus standard therapy in the postoperative treatment of resected nonsmall cell lung carcinoma. Cancer. 1996 Jul 15;78(2):244–251.DOI:10.1002/(SICI)1097-0142(19960715)78:2<244::AID-CNCR9>3.0.CO;2-L.
  • Melioli G, Ratto G, Guastella M, et al. Isolation and in vitro expansion of lymphocytes infiltrating non-small cell lung carcinoma: functional and molecular characterisation for their use in adoptive immunotherapy. Eur J Cancer. 1994;30A(1):97–102.DOI:10.1016/S0959-8049(05)80027-9.
  • Ratto GB, Melioli G, Zino P, et al. Immunotherapy with the use of tumor-infiltrating lymphocytes and interleukin-2 as adjuvant treatment in stage III non-small-cell lung cancer. A pilot study. J Thorac Cardiovasc Surg. 1995 Jun;109(6):1212–1217.DOI:10.1016/S0022-5223(95)70205-9.
  • Ku CC, Murakami M, Sakamoto A, et al. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science. 2000 Apr 28;288(5466):675–678.DOI:10.1126/science.288.5466.675
  • Ahmadzadeh M, Rosenberg SA. IL-2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood. 2006 Mar 15;107(6):2409–2414.DOI:10.1182/blood-2005-06-2399
  • Cesana GC, DeRaffele G, Cohen S, et al. Characterization of CD4+CD25+ regulatory T cells in patients treated with high-dose interleukin-2 for metastatic melanoma or renal cell carcinoma. J Clin Oncol. 2006 Mar 1;24(7):1169–1177.DOI:10.1200/JCO.2005.03.6830
  • Tran KQ, Zhou J, Durflinger KH, et al. Minimally cultured tumor-infiltrating lymphocytes display optimal characteristics for adoptive cell therapy. J Immunother. 2008 Oct;31(8):742–751. DOI:10.1097/CJI.0b013e31818403d5.
  • SA FL, Lotze M, Ritthipichai K, et al. The T-cell growth factor cocktail il-2/il-15/il-21 enhances expansion and effector function of tumor-infiltrating t cells in a novel process developed by iovance. Milwaukee, WI: Society for Immunotherapy of Cancer; 2017.
  • Merims S, Li X, Joe B, et al. Anti-leukemia effect of ex vivo expanded DNT cells from AML patients: a potential novel autologous T-cell adoptive immunotherapy. Leukemia. 2011 Sep;25(9):1415–1422. DOI:10.1038/leu.2011.99.
  • Chen B, Lee JB, Kang H, et al. Targeting chemotherapy-resistant leukemia by combining DNT cellular therapy with conventional chemotherapy. J Exp Clin Cancer Res. 2018 Apr 24; 37(1):88.DOI: 10.1186/s13046-018-0756-9
  • Lee J, Minden MD, Chen WC, et al. Allogeneic Human double negative t cells as a novel immunotherapy for acute myeloid leukemia and its underlying mechanisms. Clin Cancer Res. 2018 Jan 15;24(2):370–382.DOI:10.1158/1078-0432.CCR-17-2228
  • Yao J, Ly D, Dervovic D, et al. Human double negative T cells target lung cancer via ligand-dependent mechanisms that can be enhanced by IL-15. J Immunother Cancer. 2019 Jan 22; 7(1):17.DOI:10.1186/s40425-019-0507-2
  • Meng Q, Liu Z, Rangelova E, et al. Expansion of tumor-reactive t cells from patients with pancreatic cancer. J Immunother. 2016 Feb-Mar;39(2):81–89. DOI:10.1097/CJI.0000000000000111.
  • Liu Z, Meng Q, Bartek J Jr., et al. Tumor-infiltrating lymphocytes (TILs) from patients with glioma. Oncoimmunology. 2017;6(2):e1252894. DOI:10.1080/2162402X.2016.1252894.
  • Verbeek S, Izon D, Hofhuis F, et al. An HMG-box-containing T-cell factor required for thymocyte differentiation. Nature. 1995 Mar 2;374(6517):70–74.DOI:10.1038/374070a0
  • Staal FJ, Meeldijk J, Moerer P, et al. Wnt signaling is required for thymocyte development and activates Tcf-1 mediated transcription. Eur J Immunol. 2001 Jan;31(1):285–293. DOI:10.1002/1521-4141(200101)31:1<285::AID-IMMU285>3.0.CO;2-D.
  • Weber BN, Chi AW, Chavez A, et al. A critical role for TCF-1 in T-lineage specification and differentiation. Nature. 2011 Aug 3;476(7358):63–68.DOI:10.1038/nature10279
  • Gattinoni L, Zhong XS, Palmer DC, et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med. 2009 Jul;15(7):808–813. DOI:10.1038/nm.1982.
  • Muralidharan S, Hanley PJ, Liu E, et al. Activation of Wnt signaling arrests effector differentiation in human peripheral and cord blood-derived T lymphocytes. J Immunol. 2011 Nov 15;187(10):5221–5232.DOI:10.4049/jimmunol.1101585
  • Tang YY, Sheng SY, Lu CG, et al. Effects of glycogen synthase kinase-3beta inhibitor TWS119 on proliferation and cytokine production of Tils from human lung cancer. J Immunother. 2018 Sep;41(7):319–328. DOI:10.1097/CJI.0000000000000234.
  • Kuerten S, Nowacki TM, Kleen TO, et al. Dissociated production of perforin, granzyme B, and IFN-gamma by HIV-specific CD8(+) cells in HIV infection. AIDS Res Hum Retroviruses. 2008 Jan;24(1):62–71. DOI:10.1089/aid.2007.0125.
  • Romero P, Zippelius A, Kurth I, et al. Four functionally distinct populations of human effector-memory CD8+ T lymphocytes. J Immunol. 2007 Apr 1;178(7):4112–4119.DOI:10.4049/jimmunol.178.7.4112
  • Takata H, Takiguchi M. Three memory subsets of human CD8+ T cells differently expressing three cytolytic effector molecules. J Immunol. 2006 Oct 1;177(7):4330–4340.DOI:10.4049/jimmunol.177.7.4330
  • Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015 Apr 3;348(6230):62–68.DOI:10.1126/science.aaa4967
  • Zhou X, Yu S, Zhao DM, et al. Differentiation and persistence of memory CD8(+) T cells depend on T cell factor 1. Immunity. 2010 Aug 27;33(2):229–240.DOI:10.1016/j.immuni.2010.08.002
  • Yu S, Xue HH. TCF-1 mediates repression of Notch pathway in T lineage-committed early thymocytes. Blood. 2013 May 9;121(19):4008–4009. DOI:10.1182/blood-2013-01-477349
  • Staal FJ, Luis TC, Tiemessen MM. WNT signalling in the immune system: WNT is spreading its wings. Nat Rev Immunol. 2008 Aug;8(8):581–593.
  • Roose J, Huls G, van Beest M, et al. Synergy between tumor suppressor APC and the beta-catenin-Tcf4 target Tcf1. Science. 1999 Sep 17;285(5435):1923–1926.DOI:10.1126/science.285.5435.1923
  • Hovanes K, Li TW, Munguia JE, et al. Beta-catenin-sensitive isoforms of lymphoid enhancer factor-1 are selectively expressed in colon cancer. Nat Genet. 2001 May;28(1):53–57. DOI:10.1038/ng0501-53.
  • Ding S, Wu TY, Brinker A, et al. Synthetic small molecules that control stem cell fate. Proc Natl Acad Sci U S A. 2003 Jun 24; 100(13):7632–7637.DOI: 10.1073/pnas.0732087100
  • Wang S, Sun J, Chen K, et al. Perspectives of tumor-infiltrating lymphocyte treatment in solid tumors. BMC Med. 2021 Jun 11;19(1):140.DOI:10.1186/s12916-021-02006-4
  • Heemskerk B, Liu K, Dudley ME, et al. Adoptive cell therapy for patients with melanoma, using tumor-infiltrating lymphocytes genetically engineered to secrete interleukin-2. Hum Gene Ther. 2008 May;19(5):496–510. DOI:10.1089/hum.2007.0171.
  • Forget MA, Tavera RJ, Haymaker C, et al. A novel method to generate and expand clinical-grade, genetically modified, tumor-infiltrating lymphocytes. Front Immunol. 2017;8:908.
  • Spear TT, Nagato K, Nishimura MI. Strategies to genetically engineer T cells for cancer immunotherapy. Cancer Immunol Immunother. 2016 Jun;65(6):631–649.
  • Horvath L, Thienpont B, Zhao L, et al. Overcoming immunotherapy resistance in non-small cell lung cancer (NSCLC) - novel approaches and future outlook. Mol Cancer. 2020 Sep 11;19(1):141.DOI: 10.1186/s12943-020-01260-z
  • Hashemi S, Fransen MF, Niemeijer A, et al. Surprising impact of stromal TIL’s on immunotherapy efficacy in a real-world lung cancer study. Lung Cancer. 2021 Mar;153:81–89.
  • Schoenfeld A, Lee S, Paz-Ares L, et al. 458 First phase 2 results of autologous tumor-infiltrating lymphocyte (TIL; LN-145) monotherapy in patients with advanced, immune checkpoint inhibitor-treated, non-small cell lung cancer (NSCLC). J Immunother Cancer. 2021;9(Suppl 2):A486. DOI:10.1136/jitc-2021-SITC2021.458.
  • Wang S, Sun J, Chen K, et al. Perspectives of tumor-infiltrating lymphocyte treatment in solid tumors. BMC Med. 2021 ;19(1):140.
  • Klampatsa A, Albelda SM. Current advances in CAR t cell therapy for malignant mesothelioma. J Cell Immunol. 2020;2(4):192–200.
  • Watson HA, Durairaj RRP, Ohme J, et al. L-Selectin Enhanced T cells improve the efficacy of cancer immunotherapy. Front Immunol. 2019;10:1321.
  • Idorn M, Skadborg SK, Kellermann L, et al. Chemokine receptor engineering of T cells with CXCR2 improves homing towards subcutaneous human melanomas in xenograft mouse model. Oncoimmunology. 2018;7(8):e1450715. DOI:10.1080/2162402X.2018.1450715.
  • Thanarajasingam U, Sanz L, Diaz R, et al. Delivery of CCL21 to metastatic disease improves the efficacy of adoptive T-cell therapy. Cancer Res. 2007 Jan 1;67(1):300–308. DOI:10.1158/0008-5472.CAN-06-1017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.