666
Views
3
CrossRef citations to date
0
Altmetric
Review

Emerging therapies for human hearing loss

, ORCID Icon & ORCID Icon
Pages 689-705 | Received 10 Jan 2022, Accepted 27 Apr 2022, Published online: 11 May 2022

References

  • World Health Organisation. World report on hearing. 2021.
  • Haile LM, Kamenov K, Briant PS, et al. Hearing loss prevalence and years lived with disability, 1990–2019: findings from the global burden of disease study 2019. Lancet. 2021 Mar 13;397(10278):996–1009.
  • Chen Y, Zhang S, Chai R, et al. Hair cell regeneration. In: Li H, Chai Reditors. Hearing loss: mechanisms, prevention and cure. Advances in experimental medicine and biology. Singapore: Springer; 2019. p. 1–16.
  • Wrobel C, Zafeiriou M-P, Moser T. Understanding and treating paediatric hearing impairment. EBioMedicine. 2021 Jan 07;63.
  • Carlson ML. Cochlear implantation in adults. N Engl J Med. 2020 Apr 16;382(16):1531–1542.
  • Dazert S, Peter Thomas J, Loth A, et al. Cochlear implantation. Dtsch Arztebl Int. 2020;117(41):690–700. DOI:10.3238/arztebl.2020.0690.
  • Li C, Kuhlmey M, Kim AH. Electroacoustic stimulation. Otolaryngol Clin North Am. 2019 Apr;52(2):311–322.
  • Wazen JJ, Caruso M, Tjellstrom A. Long-term results with the titanium bone-anchored hearing aid: the U.S. experience. Am J Otol. 1998 Nov;19(6):737–741.
  • Ihler F, Volbers L, Blum J, et al. Preliminary functional results and quality of life after implantation of a new bone conduction hearing device in patients with conductive and mixed hearing loss. Otol Neurotol. 2014 Feb;35(2):211–215. DOI:10.1097/MAO.0000000000000208.
  • Butler CL, Thavaneswaran P, Lee IH. Efficacy of the active middle-ear implant in patients with sensorineural hearing loss. J Laryngol Otol. 2013 Jul;127(2):S8–16.
  • Ramsden RT, Freeman SR, Lloyd SK, et al. Auditory brainstem implantation in neurofibromatosis type 2: experience from the Manchester programme. Otol Neurotol. 2016 Oct;37(9):1267–1274. DOI:10.1097/MAO.0000000000001166.
  • Colletti V, Shannon R, Carner M, et al. Outcomes in nontumor adults fitted with the auditory brainstem implant: 10 years’ experience. Otol Neurotol. 2009 Aug;30(5):614–618. DOI:10.1097/MAO.0b013e3181a864f2.
  • Colletti V, Shannon RV. Open set speech perception with auditory brainstem implant? Laryngoscope. 2005 Nov;115(11):1974–1978.
  • Noij KS, Kozin ED, Sethi R, et al. Systematic review of nontumor pediatric auditory brainstem implant outcomes. Otolaryngol Head Neck Surg. 2015 Nov;153(5):739–750. DOI:10.1177/0194599815596929.
  • Colletti V, Carner M, Miorelli V, et al. Auditory brainstem implant (ABI): new frontiers in adults and children. Otolaryngol Head Neck Surg. 2005 Jul;133(1):126–138. DOI:10.1016/j.otohns.2005.03.022.
  • Moran M, Vandali A, Briggs RJS, et al. Speech perception outcomes for adult cochlear implant recipients using a lateral wall or perimodiolar array. Otol Neurotol. 2019 Jun;40(5):608–616. DOI:10.1097/MAO.0000000000002189.
  • Távora-Vieira D, Rajan GP, Van de Heyning P, et al. Evaluating the long-term hearing outcomes of cochlear implant users with single-sided deafness. Otol Neurotol. 2019 Jul;40(6):e575–e580. DOI:10.1097/MAO.0000000000002235.
  • Birman CS, Sanli H. Cochlear implant outcomes in patients with severe compared with profound hearing loss. Otol Neurotol. 2020 Apr;41(4):e458–e463.
  • Hinderink JB, Krabbe PF, Van Den Broek P. Development and application of a health-related quality-of-life instrument for adults with cochlear implants: the Nijmegen cochlear implant questionnaire. Otolaryngol Head Neck Surg. 2000 Dec;123(6):756–765.
  • Damen GWJA, Beynon AJ, Krabbe PFM, et al. Cochlear implantation and quality of life in postlingually deaf adults: long-term follow-up. Otolaryngol Head Neck Surg. 2007 Apr;136(4):597–604. DOI:10.1016/j.otohns.2006.11.044.
  • Klop WMC, Boermans PPBM, Ferrier MB, et al. Clinical relevance of quality of life outcome in cochlear implantation in postlingually deafened adults. Otol Neurotol. 2008 Aug;29(5):615–621. DOI:10.1097/MAO.0b013e318172cfac.
  • AFd S, Couto MIV, Martinho-Carvalho AC. Quality of life and cochlear implant: results in adults with postlingual hearing loss. Braz J Otorhinolaryngol. 2018 08 Jul;84(4):494–499. undefined doi: 10.1016/j.bjorl.2017.06.005
  • Friesen LM, Shannon RV, Baskent D, et al. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. J Acoust Soc Am. [2001 08 jan];110(2):1150–1163. DOI:10.1121/1.1381538.
  • Nelson PB, Jin S-H. Factors affecting speech understanding in gated interference: cochlear implant users and normal-hearing listeners.J Acoust Soc Am. 2004 May 01;115(5):2286–2294. DOI:10.1121/1.1703538.
  • Cullington HE, Zeng F-G. Speech recognition with varying numbers and types of competing talkers by normal-hearing, cochlear-implant, and implant simulation subjects.J Acoust Soc Am. 2008 Jan;123(1):450–461. DOI:10.1121/1.2805617.
  • Fuller CD, Gaudrain E, Clarke JN, et al. Gender categorization is abnormal in cochlear implant users. J Assoc Res Otolaryngol. 2014 Dec;15(6):1037–1048. DOI:10.1007/s10162-014-0483-7.
  • Gaudrain E, Başkent D. Discrimination of voice pitch and vocal-tract length in cochlear implant users. Ear Hear. undefined. 2018 04 Mar;392:226–237. DOI: 10.1097/AUD.0000000000000480.
  • Green T, Faulkner A, Rosen S, et al. Enhancement of temporal periodicity cues in cochlear implants: effects on prosodic perception and vowel identification. J Acoust Soc Am.[2005 jul];118(1):375–385. DOI:10.1121/1.1925827.
  • Peng S-C, Lu N, Chatterjee M. Effects of cooperating and conflicting cues on speech intonation recognition by cochlear implant users and normal hearing listeners. Audiol Neurootol. 2009;14(5):327–337.
  • Luo X, Fu Q-J, Galvin JJ. Cochlear implants special issue article: vocal emotion recognition by normal-hearing listeners and cochlear implant users.Trends Amplif. [2007 Dec];11(4):301–315. DOI:10.1177/1084713807305301.
  • Luo X, Chang Y-P, Lin C-Y, et al. Contribution of bimodal hearing to lexical tone normalization in Mandarin-speaking cochlear implant users. Hear Res. [2014 jun];312:1–8.
  • Looi V, Teo E-R, Loo J. Pitch and lexical tone perception of bilingual English-Mandarin-speaking cochlear implant recipients, hearing aid users, and normally hearing listeners.Cochlear Implants Int. [2015 sep];16(3):S91–S104. DOI:10.1179/1467010015Z.000000000263.
  • He A, Deroche ML, Doong J, et al. Mandarin tone identification in cochlear implant users using exaggerated pitch contours. Otol Neurotol. [2016 Apr];37(4):324–331. DOI:10.1097/MAO.0000000000000980.
  • Gfeller K, Christ A, Knutson JF, et al. Musical backgrounds, listening habits, and aesthetic enjoyment of adult cochlear implant recipients. J Am Acad Audiol. 2000 08 Jul;11(7):390–406. undefined doi: 10.1055/s-0042-1748126
  • Leal MC, Shin YJ, Laborde M-L, et al. Music perception in adult cochlear implant recipients. Acta Otolaryngol. [2003 Sep];123(7):826–835. DOI:10.1080/00016480310000386.
  • Mirza S, Douglas SA, Lindsey P, et al. Appreciation of music in adult patients with cochlear implants: a patient questionnaire. Cochlear Implants Int. [2003 Jun];4(2):85–95. DOI:10.1179/cim.2003.4.2.85.
  • Migirov L, Kronenberg J, Henkin Y. Self-reported listening habits and enjoyment of music among adult cochlear implant recipients.Ann Otol Rhinol Laryngol. [2009 May];118(5):350–355. DOI:10.1177/000348940911800506.
  • Kohlberg GD, Mancuso DM, Chari DA, et al. Music engineering as a novel strategy for enhancing music enjoyment in the cochlear implant recipient. Behav Neurol 2015 829680 doi: 10.1155/2015/829680
  • Incerti PV, Ching TY, Cowan R. A systematic review of electric-acoustic stimulation: device fitting ranges, outcomes, and clinical fitting practices. Trends Amplif. 2013 Mar;17(1):3–26.
  • Gfeller K, Turner C, Oleson J, et al. Accuracy of cochlear implant recipients on pitch perception, melody recognition, and speech reception in noise. Ear Hear. 2007 Jun;28(3):412–423. DOI:10.1097/AUD.0b013e3180479318.
  • Gfeller KE, Olszewski C, Turner C, et al. Music perception with cochlear implants and residual hearing. Audiol Neurootol. 2006;11 (1):12–15. DOI:10.1159/000095608.
  • Gantz BJ, Turner C, Gfeller KE, et al. Preservation of hearing in cochlear implant surgery: advantages of combined electrical and acoustical speech processing. Laryngoscope. 2005 May;115(5):796–802. DOI:10.1097/01.MLG.0000157695.07536.D2.
  • Berenstein CK, Mens LHM, Mulder JJS, et al. Current steering and current focusing in cochlear implants: comparison of monopolar, tripolar, and virtual channel electrode configurations. Ear & Hearing. 2008 Apr;29(2):250–260. DOI:10.1097/AUD.0b013e3181645336.
  • Bierer JA, Litvak L. Reducing channel interaction through cochlear implant programming may improve speech perception: current focusing and channel deactivation. Trends Hear. 2016 Jun 17; 20. doi: 10.1177/2331216516653389
  • Corwin JT, Cotanche DA. Regeneration of sensory hair cells after acoustic trauma. Science. 1988 Jun 24; 240(4860):1772–1774. doi: 10.1126/science.3381100
  • Ryals BM, Rubel EW. Hair cell regeneration after acoustic trauma in adult Coturnix quail. Science. 1988 Jun 24; 240(4860):1774–1776. doi: 10.1126/science.3381101
  • McLean WJ, McLean DT, Eatock RA, et al. Distinct capacity for differentiation to inner ear cell types by progenitor cells of the cochlea and vestibular organs. Development. 2016 Dec 01 143(23):4381–4393. doi: 10.1242/dev.139840
  • Chai R, Xia A, Wang T, et al. Dynamic expression of Lgr5, a Wnt target gene, in the developing and mature mouse cochlea. J Assoc Res Otolaryngol. 2011 Aug;12(4):455–469. DOI:10.1007/s10162-011-0267-2.
  • Shi F, Kempfle JS, Edge AS. Wnt-responsive Lgr5-expressing stem cells are hair cell progenitors in the cochlea. J Neurosci. 2012 Jul 11; 32(28):9639–9648. doi: 10.1523/JNEUROSCI.1064-12.2012
  • Crowson MG, Hertzano R, Tucci DL. Emerging therapies for sensorineural hearing loss. Otol Neurotol. 2017 Jul;38(6):792–803.
  • Ernfors P, Duan ML, ElShamy WM, et al. Protection of auditory neurons from aminoglycoside toxicity by neurotrophin-3. Nat Med. 1996 Apr;2(4):463–467. DOI:10.1038/nm0496-463.
  • Koehler KR, Mikosz AM, Molosh AI, et al. Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature. 2013 Aug 8 500(7461):217–221. doi: 10.1038/nature12298
  • Lopez-Juarez A, Lahlou H, Ripoll C, et al. Engraftment of human stem cell-derived otic progenitors in the damaged cochlea. Mol Ther. 2019 Jun 5 27(6):1101–1113. doi: 10.1016/j.ymthe.2019.03.018
  • Gunewardene N, Van Bergen N, Crombie D, et al. Directing human induced pluripotent stem cells into a neurosensory lineage for auditory neuron replacement. BioResearch. 2014;3(4):162–175. DOI: 10.1089/biores.2014.0019
  • Corrales CE, Pan L, Li H, et al. Engraftment and differentiation of embryonic stem cell–derived neural progenitor cells in the cochlear nerve trunk: growth of processes into the organ of corti. J Neurobiol. 2006;66(13):1489–1500. DOI:10.1002/neu.20310.
  • Shi F, Corrales CE, Liberman MC, et al. BMP4 induction of sensory neurons from human embryonic stem cells and reinnervation of sensory epithelium. Eur J Neurosci. 2007 Dec;26(11):3016–3023. DOI:10.1111/j.1460-9568.2007.05909.x.
  • Chen W, Jongkamonwiwat N, Abbas L, et al. Restoration of auditory evoked responses by human ES-cell-derived otic progenitors. Nature. 2012 Oct11 490(7419):278–282. doi: 10.1038/nature11415
  • Coleman B, Hardman J, Coco A, et al. Fate of embryonic stem cells transplanted into the deafened mammalian cochlea [Article]. Cell Transplant. 2006;15(5):369–380. DOI:10.3727/000000006783981819.
  • Gunewardene N, Crombie D, Dottori M, et al. Innervation of cochlear hair cells by human induced pluripotent stem cell-derived neurons in vitro. Stem Cells Int 2016 1781202 doi: 10.1155/2016/1781202
  • Backhouse S, Coleman B, Shepherd R. Surgical access to the mammalian cochlea for cell-based therapies. Exp Neurol. 2008 Dec;214(2):193–200.
  • Coleman B, Backhouse S, Shepherd R, editors. A targeted delivery strategy for the transplantation of stem cells into Rosenthal’s canal. Proceedings of the Association for Research in Otolaryngology; 2007; Denver.
  • Gunewardene N, Dottori M, Nayagam BA. The convergence of cochlear implantation with induced pluripotent stem cell therapy. Stem Cell Rev. 2012 Sep;8(3):741–754.
  • Kelley MW. Regulation of cell fate in the sensory epithelia of the inner ear. Nat Rev Neurosci. 2006 Nov;7(11):837–849.
  • Daudet N, Lewis J. Two contrasting roles for Notch activity in chick inner ear development: specification of prosensory patches and lateral inhibition of hair-cell differentiation. Development. 2005 Feb;132(3):541–551.
  • Mizutari K, Fujioka M, Hosoya M, et al. Notch inhibition induces cochlear hair cell regeneration and recovery of hearing after acoustic trauma. Neuron. 2013 Jan 9 77(1):58–69. doi: 10.1016/j.neuron.2012.10.032
  • Lenz DR, Gunewardene N, Abdul-Aziz DE, et al. Applications of Lgr5-Positive cochlear progenitors (LCPS) to the study of hair cell differentiation. Front Cell Dev Biol. 2019;7:14.
  • McLean WJ, Yin X, Lu L, et al. Clonal expansion of Lgr5-Positive cells from mammalian cochlea and high-purity generation of sensory hair cells. Cell Rep. 2017 Feb 21 18(8):1917–1929. doi: 10.1016/j.celrep.2017.01.066
  • McLean WJ, Hinton AS, Herby JTJ, et al. Improved speech intelligibility in subjects with stable sensorineural hearing loss following intratympanic dosing of fx-322 in a phase 1b study. Otol Neurotol. 2021 Aug 1 42(7):e849–e857. doi: 10.1097/MAO.0000000000003120
  • Kastan N, Gnedeva K, Alisch T, et al. Small-molecule inhibition of lats kinases may promote yap-dependent proliferation in postmitotic mammalian tissues. Nat Commun. 2021 May 25 12(1):3100. doi: 10.1038/s41467-021-23395-3
  • Walters BJ, Coak E, Dearman J, et al. In vivo interplay between p27Kip1, GATA3, ATOH1, and POU4F3 converts non-sensory cells to hair cells in adult mice. Cell Rep. 2017 Apr 11 19(2):307–320. doi: 10.1016/j.celrep.2017.03.044
  • Walters BJ, Lin W, Diao S, et al. High-throughput screening reveals alsterpaullone, 2-cyanoethyl as a potent p27Kip1 transcriptional inhibitor. PLoS One. 2014;9(3):e91173. DOI:10.1371/journal.pone.0091173.
  • Gnedeva K, Wang X, McGovern MM, et al. Organ of corti size is governed By Yap/Tead-mediated progenitor self-renewal. Proc Natl Acad Sci U S A. 2020 Jun 16 117(24):13552–13561. doi: 10.1073/pnas.2000175117
  • Kujawa SG, Liberman MC. Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci. 2009 Nov 11; 29(45):14077–14085. doi: 10.1523/JNEUROSCI.2845-09.2009
  • Suzuki J, Corfas G, Liberman MC. Round-window delivery of neurotrophin 3 regenerates cochlear synapses after acoustic overexposure. Sci Rep. 2016 Apr 25; 6:24907.doi: 10.1038/srep24907
  • Hashimoto K, Hickman TT, Suzuki J, et al. Protection from noise-induced cochlear synaptopathy by virally mediated overexpression of NT3. Sci Rep. 2019 Oct 25 9(1):15362. doi: 10.1038/s41598-019-51724-6
  • Wan G, Gomez-Casati ME, Gigliello AR, et al. Neurotrophin-3 regulates ribbon synapse density in the cochlea and induces synapse regeneration after acoustic trauma. eLife. 2014;3:e03564.
  • Kempfle JS, Nguyen K, Hamadani C, et al. Bisphosphonate-linked trkb agonist: cochlea-targeted delivery of a neurotrophic agent as a strategy for the treatment of hearing loss. Bioconjug Chem. 2018 Apr 18 29(4):1240–1250. doi: 10.1021/acs.bioconjchem.8b00022
  • Kempfle JS, Duro MV, Zhang A, et al. A novel small molecule neurotrophin-3 analogue promotes inner ear neurite outgrowth and synaptogenesis in vitro. Front Cell Neurosci. 2021;15:666706.
  • Fernandez KA, Watabe T, Tong M, et al. Trk agonist drugs rescue noise-induced hidden hearing loss. JCI Insight. 2021 Feb 8;6(3). doi: 10.1172/jci.insight.142572.
  • Nevoux J, Alexandru M, Bellocq T, et al. An antibody to RGMa promotes regeneration of cochlear synapses after noise exposure. Sci Rep. 2021 Feb 3 11(1):2937. doi: 10.1038/s41598-021-81294-5
  • Wise AK, Tan J, Wang Y, et al. Improved auditory nerve survival with nanoengineered supraparticles for neurotrophin delivery into the deafened cochlea. PLoS One. 2016;11(10):e0164867. DOI:10.1371/journal.pone.0164867.
  • Lam P, Gunewardene N, Ma Y, et al. A radiolabeled drug tracing method to study neurotrophin-3 retention and distribution in the cochlea after nano-based local delivery. MethodsX. 2020;7:101078.
  • Gunewardene N, Lam P, Ma Y, et al. Pharmacokinetics and biodistribution of supraparticle-delivered neurotrophin 3 in the Guinea pig cochlea. J Control Release. 2022 Feb;342:295–307.
  • Nadol JB J. Patterns of neural degeneration in the human cochlea and auditory nerve: implications for cochlear implantation. Otolaryngol Head Neck Surg. 1997 Sep;117(3 Pt 1):220–228.
  • Nadol JB J, Shiao JY, Burgess BJ, et al. Histopathology of cochlear implants in humans. Ann Otol Rhinol Laryngol. 2001 Sep;110(9):883–891. DOI:10.1177/000348940111000914.
  • Kamakura T, Nadol JB J. Correlation between word recognition score and intracochlear new bone and fibrous tissue after cochlear implantation in the human. Hear Res. 2016 Sep;339:132–141.
  • Shepherd RK, Coco A, Epp SB. Neurotrophins and electrical stimulation for protection and repair of spiral ganglion neurons following sensorineural hearing loss. Hear Res. 2008 Aug;242(1–2):100–109.
  • Shepherd RK, Coco A, Epp SB, et al. Chronic depolarization enhances the trophic effects of brain-derived neurotrophic factor in rescuing auditory neurons following a sensorineural hearing loss. J Comp Neurol. 2005 May 30 486(2):145–158. doi: 10.1002/cne.20564
  • Wise AK, Richardson R, Hardman J, et al. Resprouting and survival of Guinea pig cochlear neurons in response to the administration of the neurotrophins brain-derived neurotrophic factor and neurotrophin-3. J Comp Neurol. 2005 Jun 27 487(2):147–165. doi: 10.1002/cne.20563
  • Richardson RT, Wise AK, Thompson BC, et al. Polypyrrole-coated electrodes for the delivery of charge and neurotrophins to cochlear neurons. Biomaterials. 2009 [28FEB];30:2614–2624.
  • Landry TG, Fallon JB, Wise AK, et al. Chronic neurotrophin delivery promotes ectopic neurite growth from the spiral ganglion of deafened cochleae without compromising the spatial selectivity of cochlear implants. J Comp Neurol. 2013 Feb 22 521(12):2818–2832. doi: 10.1002/cne.23318
  • Gillespie LN, Clark GM, Bartlett PF, et al. BDNF-induced survival of auditory neurons in vivo: cessation of treatment leads to accelerated loss of survival effects. J Neurosci Res. 2003 Mar 15 71(6):785–790. doi: 10.1002/jnr.10542
  • Eshraghi AA, Adil E, He J, et al. Local dexamethasone therapy conserves hearing in an animal model of electrode insertion trauma-induced hearing loss. Otol Neurotol. 2007 Sep;28(6):842–849. DOI:10.1097/MAO.0b013e31805778fc.
  • James DP, Eastwood H, Richardson RT, et al. Effects of round window dexamethasone on residual hearing in a Guinea pig model of cochlear implantation. Audiol Neurootol. 2008;13(2):86–96. DOI:10.1159/000111780.
  • Ye Q, Tillein J, Hartmann R, et al. Application of a corticosteroid (Triamcinolon) protects inner ear function after surgical intervention. Ear & Hearing. 2007 Jun;28(3):361–369. DOI:10.1097/01.aud.0000261655.30652.62.
  • Chang A, Eastwood H, Sly D, et al. Factors influencing the efficacy of round window dexamethasone protection of residual hearing post-cochlear implant surgery. Hear Res. 2009 Sep;255(1–2):67–72. DOI:10.1016/j.heares.2009.05.010.
  • Eastwood H, Chang A, Kel G, et al. Round window delivery of dexamethasone ameliorates local and remote hearing loss produced by cochlear implantation into the second turn of the Guinea pig cochlea. Hear Res. 2010 Jun 14 265(1–2):25–29. doi: 10.1016/j.heares.2010.03.006
  • Stathopoulos D, Chambers S, Enke YL, et al. Development of a safe dexamethasone-eluting electrode array for cochlear implantation. Cochlear Implants Int. 2014 Sep;15(5):254–263. DOI:10.1179/1754762813Y.0000000054.
  • Farhadi M, Jalessi M, Salehian P, et al. Dexamethasone eluting cochlear implant: histological study in animal model. Cochlear Implants Int. 2013 Jan;14(1):45–50. DOI:10.1179/1754762811Y.0000000024.
  • Farahmand Ghavi F, Mirzadeh H, Imani M, et al. Corticosteroid-releasing cochlear implant: a novel hybrid of biomaterial and drug delivery system. J Biomed Mater Res B Appl Biomater. 2010 Aug;94(2):388–398. DOI:10.1002/jbm.b.31666.
  • Lee J, Ismail H, Lee JH, et al. Effect of both local and systemically administered dexamethasone on long-term hearing and tissue response in a Guinea pig model of cochlear implantation. Audiol Neurootol. 2013;18(6):392–405. DOI:10.1159/000353582.
  • Shaul C, Venkatagiri PK, Lo J, et al. Glucocorticoid for hearing preservation after cochlear implantation: a systemic review and meta-analysis of animal studies. Otol Neurotol. 2019 Oct;40(9):1178–1185. DOI:10.1097/MAO.0000000000002383.
  • O’Leary SJ, Choi J, Brady K, et al. Systemic methylprednisolone for hearing preservation during cochlear implant surgery: a double blinded placebo-controlled trial. Hear Res. 2021 May;404:108224.
  • Nyberg S, Abbott NJ, Shi X, et al. Delivery of therapeutics to the inner ear: the challenge of the blood-labyrinth barrier. Sci Transl Med. 2019 Mar 6;11(482). doi: 10.1126/scitranslmed.aao0935.
  • Colella P, Ronzitti G, Mingozzi F. Emerging issues in AAV-mediated in vivo gene therapy. Mol Ther Methods Clin Dev. 2018 Mar 16; 8:87–104.doi: 10.1016/j.omtm.2017.11.007
  • Wise AK, Hume CR, Flynn BO, et al. Effects of localized neurotrophin gene expression on spiral ganglion neuron resprouting in the deafened cochlea. Mol Ther. 2010 Jun;18(6):1111–1122. DOI:10.1038/mt.2010.28.
  • Ballana E, Wang J, Venail F, et al. Efficient and specific transduction of cochlear supporting cells by adeno-associated virus serotype 5. Neurosci Lett. 2008 Sep 12 442(2):134–139. doi: 10.1016/j.neulet.2008.06.060
  • Chang Q, Wang J, Li Q, et al. Virally mediated Kcnq1 gene replacement therapy in the immature scala media restores hearing in a mouse model of human jervell and lange-Nielsen deafness syndrome. EMBO Mol Med. 2015 Aug;7(8):1077–1086. DOI:10.15252/emmm.201404929.
  • Iizuka T, Kanzaki S, Mochizuki H, et al. Noninvasive in vivo delivery of transgene via adeno-associated virus into supporting cells of the neonatal mouse cochlea. Hum Gene Ther. 2008 Apr;19(4):384–390. DOI:10.1089/hum.2007.167.
  • Ishimoto S, Kawamoto K, Kanzaki S, et al. Gene transfer into supporting cells of the organ of Corti. Hear Res. 2002 Nov;173(1–2):187–197. DOI:10.1016/S0378-5955(02)00579-8.
  • Kilpatrick LA, Li Q, Yang J, et al. Adeno-associated virus-mediated gene delivery into the scala media of the normal and deafened adult mouse ear. Gene Ther. 2011 Jun;18(6):569–578. DOI:10.1038/gt.2010.175.
  • Yu Q, Wang Y, Chang Q, et al. Virally expressed connexin26 restores gap junction function in the cochlea of conditional Gjb2 knockout mice. Gene Ther. 2014 Jan;21(1):71–80. DOI:10.1038/gt.2013.59.
  • Akil O, Rouse SL, Chan DK, et al. Surgical method for virally mediated gene delivery to the mouse inner ear through the round window membrane. J Vis Exp. 2015(97). doi:10.3791/52187.
  • Shibata SB, Di Pasquale G, Cortez SR, et al. Gene transfer using bovine adeno-associated virus in the Guinea pig cochlea. Gene Ther. 2009 May 21;doi: 10.1038/gt.2009.57
  • Chien WW, Isgrig K, Roy S, et al. Gene therapy restores hair cell stereocilia morphology in inner ears of deaf Whirler mice. Mol Ther. 2016 Feb;24(1):17–25. DOI:10.1038/mt.2015.150.
  • Gyorgy B, Meijer EJ, Ivanchenko MV, et al. Gene transfer with aav9-php.b rescues hearing in a mouse model of usher syndrome 3A and transduces hair cells in a non-human primate. Mol Ther Methods Clin Dev. 2019 Jun 14;13:1–13. doi: 10.1016/j.omtm.2018.11.003.
  • Landegger LD, Pan B, Askew C, et al. A synthetic AAV vector enables safe and efficient gene transfer to the mammalian inner ear. Nat Biotechnol. 2017 Mar;35(3):280–284. DOI:10.1038/nbt.3781.
  • Askew C, Rochat C, Pan B, et al. Tmc gene therapy restores auditory function in deaf mice. Sci Transl Med. 2015 Jul 8 7(295):295ra108. doi: 10.1126/scitranslmed.aab1996
  • Suzuki J, Hashimoto K, Xiao R, et al. Cochlear gene therapy with ancestral AAV in adult mice: complete transduction of inner hair cells without cochlear dysfunction. Sci Rep. 2017 Apr 3;7:45524. doi: 10.1038/srep45524.
  • Kawamoto K, Oh SH, Kanzaki S, et al. The functional and structural outcome of inner ear gene transfer via the vestibular and cochlear fluids in mice. Mol Ther. 2001 Dec;4(6):575–585. DOI:10.1006/mthe.2001.0490.
  • Guo JY, Liu YY, Qu TF, et al. Cochleovestibular gene transfer in neonatal mice by canalostomy. Neuroreport. 2017 Aug 2;28(11):682–688. doi: 10.1097/WNR.0000000000000827
  • Isgrig K, Chien WW. Posterior semicircular canal approach for inner ear gene delivery in neonatal mouse. J Vis Exp. 2018 Mar;133(2018):e56648.
  • Lee J, Nist-Lund C, Solanes P, et al. Efficient viral transduction in mouse inner ear hair cells with utricle injection and AAV9-PHP.B. Hear Res. 2020 Sep 1;394:107882. doi: 10.1016/j.heares.2020.107882.
  • Chien WW, McDougald DS, Roy S, et al. Cochlear gene transfer mediated by adeno-associated virus: comparison of two surgical approaches. Laryngoscope. 2015 Nov;125(11):2557–2564. DOI:10.1002/lary.25317.
  • Akil O, Seal RP, Burke K, et al. Restoration of hearing in the VGLUT3 knockout mouse using virally mediated gene therapy [research support, non-U.S. gov’t]. Neuron. 2012 Jul 26 75(2):283–293. doi: 10.1016/j.neuron.2012.05.019
  • Tang F, Chen X, Jia L, et al. Differential gene expression patterns between apical and basal inner hair cells revealed by RNA-seq. Front Mol Neurosci. 2019;12:332.
  • Beisel KW, Nelson NC, Delimont DC, et al. Longitudinal gradients of KCNQ4 expression in spiral ganglion and cochlear hair cells correlate with progressive hearing loss in DFNA2. Brain Res Mol Brain Res. 2000 Oct 20 82(1–2):137–149. doi: 10.1016/S0169-328X(00)00204-7
  • Adamson CL, Reid MA, Mo ZL, et al. Firing features and potassium channel content of murine spiral ganglion neurons vary with cochlear location. J Comp Neurol. [2002 06 Oct];447(4):331–350. DOI:10.1002/cne.10244.
  • Salt AN, Hirose K. Communication pathways to and from the inner ear and their contributions to drug delivery. Hear Res. 2018 May;362:25–37.
  • Yoshimura H, Shibata SB, Ranum PT, et al. Enhanced viral-mediated cochlear gene delivery in adult mice by combining canal fenestration with round window membrane inoculation. Sci Rep. 2018 Feb 14 8(1):2980. doi: 10.1038/s41598-018-21233-z
  • Shibata SB, Yoshimura H, Ranum PT, et al. Intravenous rAAV2/9 injection for murine cochlear gene delivery. Sci Rep. 2017;7. DOI:10.1038/s41598-017-09805-x.
  • Rahim AA, Wong AMS, Hoefer K, et al. Intravenous administration of AAV2/9 to the fetal and neonatal mouse leads to differential targeting of CNS cell types and extensive transduction of the nervous system. FASEB J. 2011;25(10):3505–3518. DOI:10.1096/fj.11-182311.
  • Dufour BD, Smith CA, Clark RL, et al. Intrajugular vein delivery of AAV9-RNAi prevents neuropathological changes and weight loss in huntington’s disease mice. Mol Ther. [2014 Apr];22(4):797–810. DOI:10.1038/mt.2013.289.
  • Hordeaux J, Wang Q, Katz N, et al. The neurotropic properties of aav-php.b are limited to c57bl/6j mice. Mol Ther. 2018 ;26(3):664–668. DOI:10.1016/j.ymthe.2018.01.018.
  • Farr SA, Erickson MA, Niehoff ML, et al. Central and peripheral administration of antisense oligonucleotide targeting amyloid-beta protein precursor improves learning and memory and reduces neuroinflammatory cytokines in Tg2576 (AbetaPPswe) mice. J Alzheimers Dis. [2018 Mar 07];40(4):1005–1016. DOI:10.3233/JAD-131883.
  • Juliano RL. The delivery of therapeutic oligonucleotides. Nucleic Acids Res. 2016 Aug 19; 44(14):6518–6548. doi: 10.1093/nar/gkw236
  • Lentz JJ, Jodelka FM, Hinrich AJ, et al. Rescue of hearing and vestibular function by antisense oligonucleotides in a mouse model of human deafness. Nat Med. online. 2013 02Apr;19:345. doi: 10.1038/nm.3106.
  • Vijayakumar S, Depreux FF, Jodelka FM, et al. Rescue of peripheral vestibular function in Usher syndrome mice using a splice-switching antisense oligonucleotide. Hum Mol Genet. 2017 Sep 15 26(18):3482–3494. doi: 10.1093/hmg/ddx234
  • Ponnath A, Depreux FF, Jodelka FM, et al. Rescue of outer hair cells with antisense oligonucleotides in Usher mice is dependent on age of treatment. J Assoc Res Otolaryngol. 2018 Feb;19(1):1–16. DOI:10.1007/s10162-017-0640-x.
  • Isgrig K, Shteamer JW, Belyantseva IA, et al. Gene therapy restores balance and auditory functions in a mouse model of usher syndrome. Mol Ther. 2017 Mar 1 25(3):780–791. doi: 10.1016/j.ymthe.2017.01.007
  • Pan B, Askew C, Galvin A, et al. Gene therapy restores auditory and vestibular function in a mouse model of Usher syndrome type 1c. Nat Biotechnol. 2017 Mar;35(3):264–272. DOI:10.1038/nbt.3801.
  • Nist-Lund CA, Pan B, Patterson A, et al. Improved TMC1 gene therapy restores hearing and balance in mice with genetic inner ear disorders. Nat Commun. 2019 Jan 22 10(1):236. doi: 10.1038/s41467-018-08264-w
  • Shubina-Oleinik O, Nist-Lund C, French C, et al. Dual-vector gene therapy restores cochlear amplification and auditory sensitivity in a mouse model of DFNB16 hearing loss. Sci Adv. 2021 Dec 17 7(51):eabi7629. doi: 10.1126/sciadv.abi7629
  • Richardson RT, Gunewardene N. Gene therapy approaches for cochlear repair. 22020:Reference Module in Neuroscience and Biobehavioral Psychology.962–984.
  • Bankoti K, Generotti C, Hwa T, et al. Advances and challenges in adeno-associated viral inner-ear gene therapy for sensorineural hearing loss. Mol Ther Methods Clin Dev. 2021 Jun 11;21:209–236. doi: 10.1016/j.omtm.2021.03.005.
  • Bermingham NA, Hassan BA, Price SD, et al. Math1: an essential gene for the generation of inner ear hair cells. Science. 1999 Jun 11 284(5421):1837–1841. doi: 10.1126/science.284.5421.1837
  • Izumikawa M, Minoda R, Kawamoto K, et al. Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals [research support, non-u.s. gov’t research support, u.s. gov’t, p.H.S.]. Nat Med. 2005 Mar;11(3):271–276. DOI:10.1038/nm1193.
  • Kawamoto K, Ishimoto S, Minoda R, et al. Math1 gene transfer generates new cochlear hair cells in mature Guinea pigs in vivo. J Neurosci. 2003 Jun 1 23(11):4395–4400. doi: 10.1523/JNEUROSCI.23-11-04395.2003
  • Liu Z, Dearman JA, Cox BC, et al. Age-dependent in vivo conversion of mouse cochlear pillar and deiters’ cells to immature hair cells by Atoh1 ectopic expression [comparative study research support, n.i.h., extramural research support, non-u.s. gov’t]. J Neurosci. 2012 May 9 32(19):6600–6610. doi: 10.1523/JNEUROSCI.0818-12.2012
  • Wise AK, Flynn BO, Atkinson PJ, et al. Regeneration of cochlear hair cells with Atoh1 gene therapy after noise-induced hearing loss. Journal of Regenerative Medicine. 2015;4(1).
  • Atkinson PJ, Wise AK, Flynn BO, et al. Hair cell regeneration after ATOH1 gene therapy in the cochlea of profoundly deaf adult Guinea pigs. PLoS One. 2014;9(7):e102077. DOI:10.1371/journal.pone.0102077.
  • Ahmed M, Wong EY, Sun J, et al. Eya1-Six1 interaction is sufficient to induce hair cell fate in the cochlea by activating Atoh1 expression in cooperation with Sox2. Dev Cell. 2012 Feb 14 22(2):377–390. doi: 10.1016/j.devcel.2011.12.006
  • Ikeda R, Pak K, Chavez E, et al. Transcription factors with conserved binding sites near ATOH1 on the POU4F3 gene enhance the induction of cochlear hair cells. Mol Neurobiol. 2015 Apr;51(2):672–684. DOI:10.1007/s12035-014-8801-y.
  • Costa A, Sanchez-Guardado L, Juniat S, et al. Generation of sensory hair cells by genetic programming with a combination of transcription factors. Development. 2015 Jun 1 142(11):1948–1959. doi: 10.1242/dev.119149
  • Masuda M, Pak K, Chavez E, et al. TFE2 and GATA3 enhance induction of POU4F3 and myosin VIIa positive cells in nonsensory cochlear epithelium by ATOH1. Dev Biol. 2012 Dec 1 372(1):68–80. doi: 10.1016/j.ydbio.2012.09.002
  • Lu Y, Brommer B, Tian X, et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature. 2020 Dec;588(7836):124–129. DOI:10.1038/s41586-020-2975-4.
  • Shibata SB, Cortez SR, Beyer LA, et al. Transgenic BDNF induces nerve fiber regrowth into the auditory epithelium in deaf cochleae. Exp Neurol. 2010 Jun;223(2):464–472. DOI:10.1016/j.expneurol.2010.01.011.
  • Atkinson PJ, Wise AK, Flynn BO, et al. Neurotrophin gene therapy for sustained neural preservation after deafness. PLoS One. 2012;7(12):e52338. DOI:10.1371/journal.pone.0052338.
  • Pinyon JL, Tadros SF, Froud KE, et al. Close-field electroporation gene delivery using the cochlear implant electrode array enhances the bionic ear. Sci Transl Med. 2014 Apr 23 6(233):233ra54. doi: 10.1126/scitranslmed.3008177
  • Lee MY, Kurioka T, Nelson MM, et al. Viral-mediated Ntf3 overexpression disrupts innervation and hearing in nondeafened Guinea pig cochleae. Mol Ther Methods Clin Dev. 2016;3:16052.
  • Dai C, Lehar M, Sun DQ, et al. Rhesus cochlear and vestibular functions are preserved after inner ear injection of saline volume sufficient for gene therapy delivery. J Assoc Res Otolaryngol. 2017 Aug;18(4):601–617. DOI:10.1007/s10162-017-0628-6.
  • Andres-Mateos E, Landegger LD, Unzu C, et al. Choice of vector and surgical approach enables efficient cochlear gene transfer in nonhuman primate. Nat Commun. 2022 Mar 15 13(1):1359. doi: 10.1038/s41467-022-28969-3
  • Ivanchenko MV, Hanlon KS, Devine MK, et al. Preclinical testing of AAV9-PHP.B for transgene expression in the non-human primate cochlea. Hear Res. 2020 Sep 1;394:107930. doi: 10.1016/j.heares.2020.107930.
  • Ivanchenko MV, Hanlon KS, Hathaway DM, et al. AAV-S: a versatile capsid variant for transduction of mouse and primate inner ear. Mol Ther Methods Clin Dev. 2021 Jun 11;21:382–398. doi: 10.1016/j.omtm.2021.03.019.
  • Zuris JA, Thompson DB, Shu Y, et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol. 2015 Jan;33(1):73–80. DOI:10.1038/nbt.3081.
  • Yeh WH, Chiang H, Rees HA, et al. In vivo base editing of post-mitotic sensory cells. Nat Commun. 2018 Jun 5 9(1):2184. doi: 10.1038/s41467-018-04580-3
  • Gao X, Tao Y, Lamas V, et al. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature. 2018 Jan 11 553(7687):217–221. doi: 10.1038/nature25164
  • Gyorgy B, Nist-Lund C, Pan B, et al. Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss. Nat Med. 2019 Jul;25(7):1123–1130. DOI:10.1038/s41591-019-0500-9.
  • Yeh WH, Shubina-Oleinik O, Levy JM, et al. In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness. Sci Transl Med. 2020 Jun 3;12(546). doi: 10.1126/scitranslmed.aay9101.
  • Wu J, Solanes P, Nist-Lund C, et al. Single and dual vector gene therapy with aav9-php.b rescues hearing in tmc1 mutant mice. Mol Ther. 2021 Mar 3 29(3):973–988. doi: 10.1016/j.ymthe.2020.11.016
  • Gu X, Wang D, Xu Z, et al. Prevention of acquired sensorineural hearing loss in mice by in vivo Htra2 gene editing. Genome Biol. 2021 Mar 22 22(1):86. doi: 10.1186/s13059-021-02311-4
  • Wells J, Kao C, Mariappan K, et al. Optical stimulation of neural tissue in vivo. Opt Lett, OL. 2005 01 Mar;30(5):504–506. doi: 10.1364/OL.30.000504.
  • Izzo AD, Richter C-P, Jansen ED, et al. Laser stimulation of the auditory nerve. Lasers Surg Med. 2006;38(8):745–753. DOI:10.1002/lsm.20358.
  • Klapoetke NC, Murata Y, Kim SS, et al. Independent optical excitation of distinct neural populations. Nat Methods.[2014 Mar];11(3):338–346. DOI:10.1038/nmeth.2836.
  • Mager T, Lopez de la Morena D, Senn V, et al. High frequency neural spiking and auditory signaling by ultrafast red-shifted optogenetics. Nat Commun. [2018 01 May];9(1):1750. DOI:10.1038/s41467-018-04146-3.
  • Hernandez VH, Gehrt A, Reuter K, et al. Optogenetic stimulation of the auditory pathway. J Clin Invest. 2014 03 Mar.;124(3):1114–1129. doi: 10.1172/JCI69050.
  • Dieter A, Duque-Afonso CJ, Rankovic V, et al. Near physiological spectral selectivity of cochlear optogenetics. Nat Commun. [2019 29 Apr];10(1):1962. DOI:10.1038/s41467-019-09980-7.
  • Wrobel C, Dieter A, Huet A, et al. Optogenetic stimulation of cochlear neurons activates the auditory pathway and restores auditory-driven behavior in deaf adult gerbils. Sci Transl Med. 2018;10(449):eaao0540. DOI:10.1126/scitranslmed.aao0540.
  • Thompson A, Wise AK, Hart W, et al. Hybrid optogenetic and electrical stimulation for greater spatial resolution and temporal fidelity of cochlear activation. J Neural Eng. 2020 ;17(5):056046.
  • Keppeler D, Schwaerzle M, Harczos T, et al. Multichannel optogenetic stimulation of the auditory pathway using microfabricated LED cochlear implants in rodents. Sci Transl Med. [2020 22 jul];12(553). Doi:10.1126/scitranslmed.abb8086.
  • Klein E, Gossler C, Paul O, et al. High-density μLED-based optical cochlear implant with improved thermomechanical behavior. Front Neurosci. [2018 01 Oct];12. DOI:10.3389/fnins.2018.00012
  • Dieter A, Klein E, Keppeler D, et al. μLED-based optical cochlear implants for spectrally selective activation of the auditory nerve. EMBO Mol Med. 2020 08 jul;12(8):e12387. doi: 10.15252/emmm.202012387.
  • Schwaerzle M, Elmlinger P, Paul O, et al. Miniaturized tool for optogenetics based on an LED and an optical fiber interfaced by a silicon housing. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:5252–5255.
  • Schwaerzle M, Paul O, Ruther P. Compact silicon-based optrode with integrated laser diode chips, SU-8 waveguides and platinum electrodes for optogenetic applications.J Micromech Microeng.[2017 Apr];27(6):065004. DOI:10.1088/1361-6439/aa6ad4.
  • Shepherd RK, Javel E. Electrical stimulation of the auditory nerve. I. Correlation of physiological responses with cochlear status.Hear Res. [199706jan];108(1):112–144. DOI:10.1016/S0378-5955(97)00046-4.
  • Keppeler D, Merino RM, Lopez de la Morena D, et al. Ultrafast optogenetic stimulation of the auditory pathway by targeting‐optimized Chronos. EMBO J 2018 14 Dec 2018 3724 doi: 10.15252/embj.201899649
  • Bali B, Lopez de la Morena D, Mittring A, et al. Utility of red-light ultrafast optogenetic stimulation of the auditory pathway. EMBO Mol Med. [2021 06 jul];13(6):e13391. DOI:10.15252/emmm.202013391.
  • Duarte MJ, Kanumuri VV, Landegger LD, et al. Ancestral adeno-associated virus vector delivery of opsins to spiral ganglion neurons: implications for optogenetic cochlear implants. Mol Ther. 2018 1 Aug 26(8):1931–1939. doi: 10.1016/j.ymthe.2018.05.023
  • Tan F, Chu C, Qi J, et al. AAV-ie enables safe and efficient gene transfer to inner ear cells. Nat Commun. 2019 19 Aug 10(1):3733. doi: 10.1038/s41467-019-11687-8
  • Richardson RT, Thompson AC, Wise AK, et al. Viral-mediated transduction of auditory neurons with opsins for optical and hybrid activation. Sci Rep. 2021 27 May 11(1):11229. doi: 10.1038/s41598-021-90764-9
  • Huet AT, Dombrowski T, Rankovic V, et al. developing fast, red-light optogenetic stimulation of spiral ganglion neurons for future optical cochlear implants. Front Mol Neurosci. 2021;14:635897.
  • Meng X, Murali S, Cheng Y, et al. Increasing the expression level of chr2 enhances the optogenetic excitability of cochlear neurons. J Neurophysiol. 2019 18 Sep;doi: 10.1152/jn.00828.2018
  • Bi A, Cui J, Ma YP, et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron. 2006 6 Apr 50(1):23–33. doi: 10.1016/j.neuron.2006.02.026
  • Lagali PS, Balya D, Awatramani GB, et al. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci. 2008 Jun;11(6):667–675. DOI:10.1038/nn.2117.
  • Busskamp V, Duebel J, Balya D, et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science. 2010 23 Jul 329(5990):413–417. doi: 10.1126/science.1190897
  • Lin B, Koizumi A, Tanaka N, et al. Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc Natl Acad Sci U S A. 2008 14 Oct 105(41):16009–16014. doi: 10.1073/pnas.0806114105
  • Caporale N, Kolstad KD, Lee T, et al. LiGluR restores visual responses in rodent models of inherited blindness. Mol Ther. 2011 Jul;19(7):1212–1219. DOI:10.1038/mt.2011.103.
  • Doroudchi MM, Greenberg KP, Liu J, et al. Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol Ther. 2011 Jul;19(7):1220–1229. DOI:10.1038/mt.2011.69.
  • Sengupta A, Chaffiol A, Mace E, et al. Red-shifted channelrhodopsin stimulation restores light responses in blind mice, macaque retina, and human retina. EMBO Mol Med. 2016 Nov;8(11):1248–1264. DOI:10.15252/emmm.201505699.
  • Zhang Y, Ivanova E, Bi A, et al. Ectopic expression of multiple microbial rhodopsins restores ON and OFF light responses in retinas with photoreceptor degeneration. J Neurosci. 2009 22 Jul 29(29):9186–9196. doi: 10.1523/JNEUROSCI.0184-09.2009
  • Thyagarajan S, van Wyk M, Lehmann K, et al. Visual function in mice with photoreceptor degeneration and transgenic expression of channelrhodopsin 2 in ganglion cells. J Neurosci. 2010 30 Jun 30(26):8745–8758. doi: 10.1523/JNEUROSCI.4417-09.2010
  • Cehajic-Kapetanovic J, Eleftheriou C, Allen AE, et al. Restoration of vision with ectopic expression of human rod opsin. Curr Biol. 2015 17 Aug 25(16):2111–2122. doi: 10.1016/j.cub.2015.07.029
  • Gaub BM, Berry MH, Holt AE, et al. Optogenetic vision restoration using rhodopsin for enhanced sensitivity. Mol Ther. 2015 Oct;23(10):1562–1571. DOI:10.1038/mt.2015.121.
  • De Silva SR, Barnard AR, Hughes S, et al. Long-term restoration of visual function in end-stage retinal degeneration using subretinal human melanopsin gene therapy. Proc Natl Acad Sci U S A. 2017 17 Oct 114(42):11211–11216. doi: 10.1073/pnas.1701589114
  • Gaub BM, Berry MH, Visel M, et al. Optogenetic Retinal Gene Therapy With The Light Gated GPCR vertebrate rhodopsin. Methods Mol Biol. 2018;1715:177–189.
  • Berry MH, Holt A, Salari A, et al. Restoration of high-sensitivity and adapting vision with a cone opsin. Nat Commun. 2019 15 Mar 10(1):1221. doi: 10.1038/s41467-019-09124-x
  • Chaffiol A, Caplette R, Jaillard C, et al. A new promoter allows optogenetic vision restoration with enhanced sensitivity in macaque retina. Mol Ther. 2017 1 Nov 25(11):2546–2560. doi: 10.1016/j.ymthe.2017.07.011
  • Sahel JA, Boulanger-Scemama E, Pagot C, et al. Partial recovery of visual function in a blind patient after optogenetic therapy. Nat Med. 2021 Jul;27(7):1223–1229. DOI:10.1038/s41591-021-01351-4.
  • Bedrosian JC, Gratton MA, Brigande JV, et al. In vivo delivery of recombinant viruses to the fetal murine cochlea: transduction characteristics and long-term effects on auditory function. Mol Ther. 2006 Sep;14(3):328–335. DOI:10.1016/j.ymthe.2006.04.003.
  • Depreux FF, Wang L, Jiang H, et al. Antisense oligonucleotides delivered to the amniotic cavity in utero modulate gene expression in the postnatal mouse. Nucleic Acids Res. 2016 16 Nov 44(20):9519–9529. doi: 10.1093/nar/gkw867
  • Akil O, Dyka F, Calvet C, et al. Dual AAV-mediated gene therapy restores hearing in a DFNB9 mouse model. Proc Natl Acad Sci U S A. 2019 19 Feb;doi: 10.1073/pnas.1817537116
  • Al-Moyed H, Cepeda AP, Jung S, et al. A dual-AAV approach restores fast exocytosis and partially rescues auditory function in deaf otoferlin knock-out mice. EMBO Mol Med. 2019 Jan;11(1). doi:10.15252/emmm.201809396.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.