766
Views
26
CrossRef citations to date
0
Altmetric
Review

Therapeutic monoclonal antibodies for COVID-19 management: an update

ORCID Icon, , , , , ORCID Icon, ORCID Icon, & show all
Pages 763-780 | Received 13 Dec 2021, Accepted 12 May 2022, Published online: 29 May 2022

References

  • Chavda VP, Patel AB, Vihol D, et al. Herbal remedies, nutraceuticals, and dietary supplements for COVID-19 management: an update. Clin Compl Med Pharmacol. 2022;2(1):100021.
  • Chavda VP, Kapadia C, Soni S, et al. A global picture: therapeutic perspectives for COVID-19. Immunotherapy. 2022 Feb 21;145:351–371. DOI:10.2217/imt-2021–0168
  • Sohrabi C, Alsafi Z, O’Neill N, et al. World health organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19). Int J Surg. 2020;76:71–76.
  • Chavda VP, Feehan J, Apostolopoulos V. A veterinary vaccine for SARS-CoV-2: the first COVID-19 vaccine for animals. Vaccines (Basel). 2021;9(6):631.
  • WHO. WHO COVID-19 Dashboard. 2021 [cited 2021 5 11 2022]. https://covid19.who.int/
  • Chavda VP, Apostolopoulos V. Global impact of delta plus variant and vaccination. Expert Rev Vaccines. 2022 Feb;19:null–null. DOI:10.1080/14760584.2022.2044800
  • Basu D, Chavda VP, Mehta AA. Therapeutics for COVID-19 and post COVID-19 complications: an update. Curr Res Pharmacol Drug Discovery. 2022 3;100086.
  • Díez J-M, Romero C, Gajardo R. Currently available intravenous immunoglobulin contains antibodies reacting against severe acute respiratory syndrome coronavirus 2 antigens. Immunotherapy. 2020;12(8):571–576.
  • Cao W, Liu X, Bai T, et al. High-dose intravenous immunoglobulin as a therapeutic option for deteriorating patients with coronavirus disease 2019. Open Forum Infect Dis. 2020;7(3):ofaa102.
  • Shao Z, Feng Y, Zhong L, et al. Clinical efficacy of intravenous immunoglobulin therapy in critical ill patients with COVID-19: a multicenter retrospective cohort study. Clin Transl Immunology. 2020;9(10):e1192.
  • Chavda VP, Vora LK, Pandya AK, et al. Intranasal vaccines for SARS-CoV-2: from challenges to potential in COVID-19 management. Drug Discov Today. 2021;26(11):2619–2636.
  • Chavda VP, Pandya R, Apostolopoulos V. DNA vaccines for SARS-CoV-2: towards third generation vaccination era. Expert Rev Vaccines. 2021 Sep;20(12):1549–1560.
  • Chavda VP, Apostolopoulos VM. An opportunistic infection in the aged immunocompromised individual: a reason for concern in COVID-19. Maturitas. 2021;154:58–61.
  • Chavda VP, Gajjar N, Shah N, et al. Darunavir ethanolate: repurposing an anti-HIV drug in COVID-19 treatment. Eur J Med Chem Rep. 2021;3:100013.
  • Xiaojie S, Yu L, lei Y, et al. Neutralizing antibodies targeting SARS-CoV-2 spike protein. Stem Cell Res. 2021;50:102125.
  • Winkler ES, Gilchuk P, Yu J, et al. Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection. Cell. 2021;184(7):1804–1820.e16.
  • Taylor PC, Adams AC, Hufford MM, et al. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat Rev Immunol. 2021;21(6):382–393.
  • Alape-Girón A, Moreira-Soto A, Arguedas M, et al. Heterologous hyperimmune polyclonal antibodies against SARS-CoV-2: a broad coverage, affordable, and scalable potential immunotherapy for COVID-19. Front Med (Lausanne). 2021;8:743325.
  • Chavda VP, Patel AB, Vaghasiya DD. SARS-CoV-2 variants and vulnerability at the global level. J Med Virol. 2022;94(7):2986–3005.
  • Lloyd EC, Gandhi TN, Petty LA. Monoclonal antibodies for COVID-19. JAMA. 2021;325(10):1015.
  • Redwan EM. COVID-19 pandemic and vaccination build herd immunity. Eur Rev Med Pharmacol Sci. 2021;25(2):577–579.
  • Amanat F, Krammer F. SARS-CoV-2 vaccines: status report. Immunity. 2020;52(4):583–589.
  • Tsai J, Wilson M. COVID-19: a potential public health problem for homeless populations. Lancet Public Health. 2020;5(4):e186–e187.
  • Andersen KG, Rambaut A, Lipkin WI, et al. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450–452.
  • Kanne JP. Chest CT findings in 2019 novel coronavirus (2019-nCoV) infections from Wuhan, China: key points for the radiologist. Radiology. 2020;295(1):16–17.
  • Chan JF-W, KK-W T, Tse H, et al. Interspecies transmission and emergence of novel viruses: lessons from bats and birds. Trends Microbiol. 2013;21(10):544–555.
  • Pal M, Berhanu G, Desalegn C, et al. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): an update. Cureus. 2020. DOI:10.7759/cureus.7423
  • Dhar Chowdhury S, Oommen AM. Epidemiology of COVID-19. J Dig Endosc. 2020;11(1):3–7.
  • Xu X, Chen P, Wang J, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci. 2020;63(3):457–460.
  • Backer JA, Klinkenberg D, Wallinga J. Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China. Eurosurveillance. 2020;25(5):2000062.
  • Linton NM, Kobayashi T, Yang Y, et al. Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: a statistical analysis of publicly available case data. J Clin Med. 2020;9(2):538.
  • Cheung KS, Hung IFN, Chan PPY, et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a Hong Kong cohort: systematic review and meta-analysis. Gastroenterology. 2020;159(1):81–95.
  • Liu DX, Liang JQ, Fung TS. Human coronavirus-229E -OC43, -NL63, and -HKU1. In: DH CB, Zuckerman M, editors. Encyclopedia of virology (Elsevier). 2021. p. 428–440. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7204879/ 12 01 2022
  • Krammer F. SARS-CoV-2 vaccines in development. Nature. 2020;586(7830):516–527.
  • Chavda VP, Pandya R, Apostolopoulos V. DNA vaccines for SARS-CoV-2: toward third-generation vaccination era. Expert Rev Vaccines. 2021;20(12):1549–1560.
  • Lei J, Kusov Y, Hilgenfeld R. Nsp3 of coronaviruses: structures and functions of a large multi-domain protein. Antiviral Res. 2018;149:58–74.
  • Chan JF-W, Kok K-H, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020;9(1):221–236.
  • Ellis R. WHO says Indian COVID strain ‘a variant of concern.’ 2021 [cited 2022 Feb 22]. https://www.webmd.com/lung/news/20210510/who-says-indian-covid-strain-a-variant-of-concern
  • Chavda VP, Hossain MK, Beladiya J, et al. Nucleic acid vaccines for COVID-19: a paradigm shift in the vaccine development arena. Biologics. 2021;1(3):337–356.
  • Variant Technical Group (UK Health Security Agency). SARS-CoV-2 variants of concern and variants under investigation in England. 2021 25 01 2022. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1036501/Technical_Briefing_29_published_26_November_2021.pdf
  • Ferreira I, Datir R, Papa G SARS-CoV-2 B.1.617 emergence and sensitivity to vaccine-elicited antibodies , et al. mBio. bioRxiv. 2021.05.08.443253 2021. DOI:10.1101/2021.05.08.443253
  • Chavda VP, Bezbaruah R, Athalye M, et al. Replicating viral vector-based vaccines for COVID-19: potential avenue in vaccination arena. Viruses. 2022;14(4):759.
  • Division of Viral Diseases. SARS-CoV-2 variant classifications and definitions. CDC science, national center for immunization and respiratory diseases (NCIRD), Division of Viral Diseases. 2021 [cited 2021 May 23]. https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html
  • Choi A, Koch M, Wu K, et al. Safety and immunogenicity of SARS-CoV-2 variant mRNA vaccine boosters in healthy adults: an interim analysis. Nat Med. 2021;27(11):2025–2031.
  • Liu C, Ginn HM, Dejnirattisai W, et al. Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. Cell. 2021;184(16):4220–4236.e13.
  • Deng X, Garcia-Knight MA, Khalid MM, et al. Transmission, infectivity, and antibody neutralization of an emerging SARS-CoV-2 variant in California carrying a L452R spike protein mutation. medRxiv : the Preprint Server for Health Sciences. 2021. DOI:10.1101/2021.03.07.21252647
  • Fact sheet for health care providers emergency use authorization (EUA) of bamlanivimab and etesevimab. USFDA. 2021 [cited 2021 Dec 22]. https://www.fda.gov/media/145802/download
  • US FDA. casirivimab with imdevimab - USFDA Factsheet. fda.gov. 2021 [cited 2022 Feb 22]. https://www.fda.gov/media/145612/download
  • Karim SSA, Karim QA. Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic. Lancet. 2021;398(10317):2126–2128.
  • Diseases TLI. Emerging SARS-CoV-2 variants: shooting the messenger. Lancet Infect Dis. 2021 Dec 12;10(1016/S1473–3099(21)00770–2). DOI:10.1016/S1473-3099(21)00770-2
  • Chavda VP, Apostolopoulos V. Is booster dose strategy sufficient for omicron variant of SARS-CoV-2? Vaccines (Basel). 2022;10(3):367.
  • Chavda VP, Apostolopoulos V. Omicron variant (B.1.1.529) of SARS-CoV-2: threat for the elderly? Maturitas. 2022 Feb 8;158:78–81.
  • Eyawo O, Viens AM. Rethinking the central role of equity in the global governance of pandemic response. J Bioeth Inq. 2020;17(4):549–553.
  • Chavda VP, Vora LK, Vihol DR. COVAX-19Ⓡ vaccine: completely blocks virus transmission to non-immune individuals. Clin Compl Med Pharmacol. 2021;1(1):100004.
  • Viana R, Moyo S, Amoako DG, et al. Rapid epidemic expansion of the SARS-CoV-2 omicron variant in Southern Africa. Nature. 2022;10.1038/s41586-022-04411–y. DOI:10.1038/s41586-022-04411-y
  • Matsuyama S, Nao N, Shirato K, et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2- expressing cells. Proc Natl Acad Sci U S A. 2020;117(13):7001–7003.
  • Thunders M, Delahunt B. Gene of the month: TMPRSS2 (transmembrane serine protease 2). J Clin Pathol. 2020;73(12):773–776.
  • Kaur N, Singh R, Dar Z, et al. Genetic comparison among various coronavirus strains for the identification of potential vaccine targets of SARS-CoV2. Infect Genet Evol. 2021;89:104490.
  • Yang L, Liu S, Liu J, et al. COVID-19: immunopathogenesis and immunotherapeutics. Signal Transduct Target Ther. 2020;5(1):1–8.
  • Liu Y, Sun W, Li J, et al. Clinical features and progression of acute respiratory distress syndrome in coronavirus disease 2019. medRxiv. 2020;20024166. DOI:10.1101/2020.02.17.20024166. 2020 February 17.
  • Perlman AD S. Immunopathogenesis of coronavirus infections: implications for SARS. Nat Rev Immunol. 2005;5(12):917–927.
  • Moon C. Fighting COVID-19 exhausts T cells. Nat Rev Immunol. 2020;20(5):277.
  • Tan L. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther. 2020;5:33.
  • Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol. 2020;20(5):269–270.
  • Li D. Immune dysfunction leads to mortality and organ injury in patients with COVID-19 in China: insights from ERS-COVID-19 study. Signal Transduct Target Ther. 2020;5(1):62.
  • Liu J, Li S, Liu J, et al. EBioMedicine WL-, 2020 U. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020;55:102763.
  • Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clinl Infect Dis. 2020;71(15):762–768.
  • Zhang B, Zhou X, Zhu C, et al. Immune phenotyping based on neutrophil-to-lymphocyte ratio and IgG predicts disease severity and outcome for patients with COVID-19. Front Mol Biosci. 2020;20035048. DOI:10.1101/2020.03.12.20035048. 2020 March 12.
  • Liu J, Li S, Liu J. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020;55:102763.
  • Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. Lancet. 2020;395(10223):497–506.
  • Chen N. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507–513.
  • Wan S, Yi Q, Fan S, et al. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP). medRxiv. 2020;1–5. DOI:10.1101/2020.02.10.20021832
  • Diao B, Wang C, Tan Y, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol. 2020;11:827.
  • Nicol T. Assessment of SARS-CoV-2 serological tests for the diagnosis of COVID-19 through the evaluation of three immunoassays: two automated immunoassays (Euroimmun and Abbott) and one rapid lateral flow immunoassay (NG biotech). J Clin Virol. 2020;129:104511.
  • de Almeida-Pititto B, Dualib PM, Zajdenverg L, et al. Severity and mortality of COVID 19 in patients with diabetes, hypertension and cardiovascular disease: a meta-analysis. Diabetol Metab Syndr. 2020;12(1):75.
  • Ni W, Yang X, Yang D, et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care. 2020;24(1):422.
  • Sardu C, Maggi P, Messina V, et al. Could anti-hypertensive drug therapy affect the clinical prognosis of hypertensive patients with covid-19 infection? Data from centers of southern Italy. J Am Heart Assoc. 2020;9(17). DOI:10.1161/JAHA.120.016948
  • Daniels LB, Ren J, Kumar K, et al. Relation of prior statin and anti-hypertensive use to severity of disease among patients hospitalized with COVID-19: findings from the American heart association’s COVID-19 cardiovascular disease registry. PLOS ONE. 2021;16(7):e0254635.
  • Berbudi A, Rahmadika N, Tjahjadi AI, et al. Type 2 diabetes and its impact on the immune system. Curr Diabetes Rev. 2020;16(5):442–449.
  • Landstra CP, de Koning EJP. COVID-19 and diabetes: understanding the interrelationship and risks for a severe course. Front Endocrinol (Lausanne). 2021;12(June):1–18.
  • Sardu C, Gargiulo G, Esposito G, et al. Impact of diabetes mellitus on clinical outcomes in patients affected by Covid-19. Cardiovasc Diabetol. 2020;19(1):76.
  • Balmeh N, Mahmoudi S, Mohammadi N, et al. Predicted therapeutic targets for COVID-19 disease by inhibiting SARS-CoV-2 and its related receptors. Inf Med Unlocked. 2020;20:100407.
  • Huang Y, Yang C, feng XX, et al. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin. 2020;41(9):1141–1149.
  • Azimi A. TMPRSS2 inhibitors, bromhexine, aprotinin, camostat and nafamostat as potential treatments for COVID-19. Frenxiv. 2020;19 May 2020. DOI:10.31226/osf.io/a3rvm.
  • Burkert FR, Lanser L. Coronavirus Disease 2019: Clinics, Treatment, and Prevention. Front Microbiol. 2021;12:761887. DOI:10.3389/fmicb.2021.761887.
  • Padhi A, Seal A, Tripathi T. How does arbidol inhibit the novel coronavirus SARS-CoV-2? atomistic insights from molecular dynamics simulations. Biol Med Chem. 2020;2:10.26434/chemrxiv.12464576.v1. DOI:10.26434/chemrxiv.12464576
  • Saxena A. Drug targets for COVID-19 therapeutics: ongoing global efforts. J Biosci. 2020;45(1). DOI:10.1007/s12038-020-00067-w
  • Cortegiani A, Ingoglia G, Ippolito M, et al. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care. 2020;57:279–283.
  • Wondmkun YT, Mohammed OA. A review on novel drug targets and future directions for COVID-19 treatment. Biol targ ther. 2020;14:77–82.
  • Alexpandi R, De Mesquita JF, Pandian SK, et al. Quinolines-based SARS-CoV-2 3CLpro and RdRp inhibitors and spike-RBD-ACE2 inhibitor for drug-repurposing against COVID-19: an in silico analysis. Front Microbiol. 2020;11(2020):1–21.
  • Nur SM, Hasan MA, Amin M, et al. Design of potential RNAi (miRNA and siRNA) molecules for middle east respiratory syndrome coronavirus (MERS-CoV) gene silencing by computational method. Interdiscip Sci. 2015;7(3):257–265.
  • Silva Júnior Ml de M, de SLMA, Remc D, et al. Review on therapeutic targets for COVID-19: insights from cytokine storm. Postgraduate Medical Journal.2020;1–27. DOI: 10.1136/postgradmedj-2020-138791.
  • Hashizume M. Outlook of IL-6 signaling blockade for COVID-19 pneumonia. Inflamm Regen. 2020;40(1):1–34.
  • Stebbing J, Phelan A, Griffin I, et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020;20(4):400–402.
  • Balkrishna A, Thakur P, Singh S, et al. Glucose antimetabolite 2-Deoxy-D-Glucose and its derivative as promising candidates for tackling COVID-19: insights derived from in silico docking and molecular simulations. Authorea. 2020;1–15. DOI:10.22541/au.158567174.40895611
  • Krumm ZA, Lloyd GM, Francis CP, et al. Precision therapeutic targets for COVID-19. Virol J. 2021;18(1):66.
  • Kifle ZD, Ayele AG, Enyew EF. Drug Repurposing Approach, Potential Drugs, and Novel Drug Targets for COVID-19 Treatment. J Environ Public Health. 2021;2021:6631721. DOI:10.1155/2021/6631721.
  • An EUA for sotrovimab for treatment of COVID-19. Med Lett Drugs Ther. 2021;63(1627):97–xx98. Available from: https://pubmed.ncbi.nlm.nih.gov/34181630/
  • An EUA for bamlanivimab and etesevimab for COVID-19. Med Lett Drugs Ther. 2021;63(1621):49–50. Available from: https://pubmed.ncbi.nlm.nih.gov/34181630/
  • An EUA for casirivimab and imdevimab for COVID-19. Med Lett Drugs Ther. 2020;62(1614):201–202. Available from: https://pubmed.ncbi.nlm.nih.gov/34181630/
  • Anderson TS, O’Donoghue AL, Dechen T, et al. Uptake of outpatient monoclonal antibody treatments for COVID-19 in the United States: a cross-sectional analysis. J Gen Intern Med. 2021;36(12):3922–3924.
  • Boggiano C, Eisinger RW, Lerner AM, et al. Update on and future directions for use of anti-SARS-CoV-2. Antibodies: National Institutes of Health Summit on Treatment and Prevention of COVID-19. Annals of Internal Medicine. Nov 2021. DOI:10.7326/M21-3669
  • Siemieniuk RA, Bartoszko JJ, Díaz Martinez JP, et al. Antibody and cellular therapies for treatment of covid-19: a living systematic review and network meta-analysis. BMJ. 2021;374:n2231.
  • Hwang Y-C, R-M L, S-C S, et al. Monoclonal antibodies for COVID-19 therapy and SARS-CoV-2 detection. J Biomed Sci. 2022;29(1):1.
  • Casadevall A, Joyner MJ, Pirofski L-A. SARS-CoV-2 viral load and antibody responses: the case for convalescent plasma therapy. J Clin Invest. 2020;130(10):5112–5114.
  • Casadevall A, Pirofski L-A, Joyner MJ. The principles of antibody therapy for infectious diseases with relevance for COVID-19. mBio. 2021;12(2). DOI:10.1128/mBio.03372-20
  • Yamin R, Jones AT, Hoffmann -H-H, et al. Fc-engineered antibody therapeutics with improved anti-SARS-CoV-2 efficacy. Nature. 2021;599(7885):465–470.
  • Bournazos S, Wang TT, Dahan R, et al. Signaling by antibodies: recent progress. Annu Rev Immunol. 2017;35(1):285–311.
  • Branstetter E, Duff RJ, Kuhns S, et al. Fc glycan sialylation of biotherapeutic monoclonal antibodies has limited impact on antibody-dependent cellular cytotoxicity. FEBS Open Bio. 2021;11(11):2943–2949.
  • Tang J, Lee Y, Ravichandran S, et al. Epitope diversity of SARS-CoV-2 hyperimmune intravenous human immunoglobulins and neutralization of variants of concern. iScience. 2021;24(9):103006.
  • Hastie KM, Li H, Bedinger D, et al. Defining variant-resistant epitopes targeted by SARS-CoV-2 antibodies: a global consortium study. Science. 2021;374(6566):472–478.
  • Flemming A. Epitope mapping of spike identifies variant-resistant antibodies. Nat Rev Immunol. 2021;21(11):693.
  • Chen RE, Zhang X, Case JB, et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat Med. 2021;27(4):717–726.
  • Copin R, Baum A, Wloga E, et al. The monoclonal antibody combination REGEN-COV protects against SARS-CoV-2 mutational escape in preclinical and human studies. Cell. 2021;184(15):3949–3961.e11.
  • Falcone M, Tiseo G, Valoriani B, et al. Efficacy of bamlanivimab/etesevimab and casirivimab/imdevimab in preventing progression to severe COVID-19 and role of variants of concern. Infect Dis Ther. 2021;10(4):2479–2488.
  • Gupta A, Gonzalez-Rojas Y, Juarez E, et al. Early treatment for covid-19 with SARS-CoV-2 neutralizing antibody sotrovimab. N Engl J Med. 2021;385(21):1941–1950.
  • US Food and Drug Administration. Fact sheet for health care providers: emergency use authorization for evusheld (tixagevimab co-packaged with cilgavimab). cited February 22, 2022. https://bit.ly/3IWpQjg
  • Tixagevimab and cilgavimab (Evusheld) for pre-exposure prophylaxis of COVID-19. JAMA. 2022;327(4):384–385.
  • Takashita E, Kinoshita N, Yamayoshi S, et al. Efficacy of antibodies and antiviral drugs against covid-19 omicron variant. N Engl J Med. 2022;386(10):995–998.
  • EMA. EMA recommends use of Celltrion’s regdanvimab for covid-19 treatment. 2021 [cited Feb 25 2022]. https://www.ema.europa.eu/en/news/ema-issues-advice-use-regdanvimab-treating-covid-19
  • Lee JY, Lee JY, Ko J-H, et al. Effectiveness of regdanvimab treatment in high-risk COVID-19 patients to prevent progression to severe disease. Front Immunol. 2021:12. [cited 25 Feb 2022]. Available from: https://www.frontiersin.org/article/10.3389/fimmu.2021.772320
  • Syed YY. Regdanvimab: first approval. Drugs. 2021;81(18):2133–2137.
  • GSK and vir biotechnology announce the start of the EMA rolling review of VIR-7831 (sotrovimab) for the early treatment of COVID-19. GSK. 2021. [cited 25 Feb 2022]. Available from: https://www.gsk.com/en-gb/media/press-releases/gsk-and-vir-biotechnology-announce-the-start-of-the-ema-rolling-review-of-vir-7831-sotrovimab-for-the-early-treatment-of-covid-19/
  • Dolgin E. “Super-antibodies” could curb COVID-19 and help avert future pandemics. Nat Biotechnol. 2021;39(7):783–785.
  • GSK. GSK and vir biotechnology announce the start of the EMA rolling review of VIR-7831 (sotrovimab) for the early treatment of COVID-19 - Google search. Press Release. 2021 [cited 2022 Feb 22]. https://www.gsk.com/en-gb/media/press-releases/gsk-and-vir-biotechnology-announce-the-start-of-the-ema-rolling-review-of-vir-7831-sotrovimab-for-the-early-treatment-of-covid-19/
  • Hoffmann M, Krüger N, Schulz S, et al. The omicron variant is highly resistant against antibody-mediated neutralization: implications for control of the COVID-19 pandemic. Cell. 2021;185(3):447–456.
  • Yang L, Liu W, Yu X, et al. COVID-19 antibody therapeutics tracker: a global online database of antibody therapeutics for the prevention and treatment of COVID-19. Antib Therap. 2020;3(3):205–212.
  • Yinjuan L, Lu Q, Haihong B, et al. Safety, tolerability, pharmacokinetics, and immunogenicity of a monoclonal antibody (SCTA01) targeting SARS-CoV-2 in healthy adults: a randomized, double-blind, placebo-controlled, phase I study. Antimicrob Agents Chemother. 2021;65(11):e01063–21.
  • Flaherty L. Department of health and human services. J Emerg Nurs. 2000;26(3):242–246.
  • Dougan M, Nirula A, Azizad M, et al. Bamlanivimab plus etesevimab in mild or moderate covid-19. N Engl J Med. 2021 July;14:38515 DOI:10.1056/NEJMoa2102685
  • Kovacech B, Fialova L, Filipcik P, et al. Monoclonal antibodies targeting two immunodominant epitopes on the spike protein neutralize emerging SARS-CoV-2 variants of concern. eBioMedicine. 2022;76:103818.
  • Hansen J, Baum A, Pascal KE, et al. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science. 2020;369(6506):1010–1014.
  • Wilhelm A, Widera M, Grikscheit K, et al. Reduced neutralization of SARS-CoV-2 omicron variant by vaccine sera and monoclonal antibodies. medRxiv. 2021 December 07;21267432. http://medrxiv.org/content/early/2021/12/13/2021.12.07.21267432.abstract
  • Zhao S, Zhang H, Yang X, et al. Identification of potent human neutralizing antibodies against SARS-CoV-2 implications for development of therapeutics and prophylactics. Nat Commun. 2021;12(1):4887.
  • Cha Y, Erez T, Reynolds IJ, et al. Drug repurposing from the perspective of pharmaceutical companies. Br J Pharmacol. 2018;175(2):168–180.
  • Dey G. An overview of drug repurposing: review article. J Med Sci Clin Res. 2019;7(2):3–5.
  • WHO. Repurposed antiviral drugs for covid-19 — interim WHO solidarity trial results. N Engl J Med. 2020;384(6): 497–511.
  • Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Nat Acad Sci. 2020;117(20):10970–10975.
  • Gupta S, Wang W, Hayek SS, et al. Association between early treatment with tocilizumab and mortality among critically Ill patients with COVID-19. JAMA Intern Med. 2021;181(1):41–51.
  • Hermine O, Mariette X, Tharaux P-L, et al., Group C-19 C. Effect of tocilizumab vs usual care in adults hospitalized with COVID-19 and moderate or severe pneumonia: a randomized clinical trial. JAMA Intern Med. 2021;181(1):32–40.
  • Rosas IO, Bräu N, Waters M, et al. Tocilizumab in hospitalized patients with severe covid-19 pneumonia. N Engl J Med. 2021;384(16):1503–1516.
  • Mariette X, Hermine O, Tharaux P-L, et al. Effectiveness of tocilizumab in patients hospitalized with COVID-19: a follow-up of the CORIMUNO-TOCI-1 randomized clinical trial. JAMA Intern Med. 2021 May;181(9):1241.
  • Marfella R, Paolisso P, Sardu C, et al. Negative impact of hyperglycaemia on tocilizumab therapy in Covid-19 patients. Diabetes Metab. 2020;46(5):403–405.
  • Muramatsu K-I, Ishikawa K, Komatsu A, et al. Severe COVID-19 pneumonia treated by intensive immune suppression therapy with a combination of steroid pulse and tocilizumab followed by a tapering dose of steroid therapy during the Delta (B.1.617.2) variant outbreak: a successfully treated case. Cureus. 2021;13(11):e19340.
  • Anti-IL-6R levilimab registered as COVID-19 treatment in Russia. Antibody Society.
  • Lomakin NV, Bakirov BA, Protsenko DN, et al. The efficacy and safety of levilimab in severely ill COVID-19 patients not requiring mechanical ventilation: results of a multicenter randomized double-blind placebo-controlled phase III Corona clinical study. Inflamm Res. 2021;70(10–12):1233–1246.
  • Emadi A, Chua JV, Talwani R, et al. Safety and efficacy of imatinib for hospitalized adults with COVID-19: a structured summary of a study protocol for a randomised controlled trial. Trials. 2020;21(1):897.
  • Vlaar APJ, de Bruin S, Busch M, et al. Anti-C5a antibody IFX-1 (vilobelimab) treatment versus best supportive care for patients with severe COVID-19 (PANAMO): an exploratory, open-label, phase 2 randomised controlled trial. Lancet Rheumatol. 2020;2(12): e764–e773.
  • Kaplon H, Reichert JM. Antibodies to watch in 2021. mAbs. 2021;13(1). DOI:10.1080/19420862.2020.1860476
  • Bauer M, Weyland A, Marx G, et al. Efficacy and safety of vilobelimab (IFX-1), a novel monoclonal anti-C5a antibody, in patients with early severe sepsis or septic shock-A randomized, placebo-controlled, double-blind, multicenter, phase IIa trial (SCIENS study). Critic Care Explorat. 2021;3(11):e0577.
  • Vlaar APJ, Lim EHT, de Bruin S, et al. The anti-C5a antibody vilobelimab efficiently inhibits C5a in patients with severe COVID-19. Clin Transl Sci. 2022 Jan;15(4):854–858.
  • Jiao X, Wang M, Zhang Z, et al. Leronlimab, a humanized monoclonal antibody to CCR5, blocks breast cancer cellular metastasis and enhances cell death induced by DNA damaging chemotherapy. Breast Cancer Res. 2021;23(1):11.
  • Yang B, Fulcher JA, Ahn J, et al. Clinical characteristics and outcomes of coronavirus disease 2019 patients who received compassionate-use leronlimab. Clinl Infect Dis. 2020;90095(August):1–8.
  • Bjork S, Minkin R. Leronlimab and the role of CCR5 supression in covid-19 treatment. Chest. 2021;160(4):A452–A452.
  • Yang B, Fulcher JA, Ahn J, et al. Clinical characteristics and outcomes of coronavirus disease 2019 patients who received compassionate-use leronlimab. Clin Infect Dis. 2021;73(11):e4082–e4089.
  • Agresti N, Lalezari JP, Amodeo PP, et al. Disruption of CCR5 signaling to treat COVID-19-associated cytokine storm: case series of four critically ill patients treated with leronlimab. J Trans Autoimmun. 2021;4:100083. DOI:10.1016/j.jtauto.2021.100083
  • Marovich M, Mascola JR, Cohen MS. Monoclonal antibodies for prevention and treatment of COVID-19. JAMA. 2020;324(2):131–132.
  • Deb P, Molla MMA, Saif-Ur-Rahman KM. An update to monoclonal antibody as therapeutic option against COVID-19. Biosaf Health. 2021;3(2):87–91.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.