321
Views
1
CrossRef citations to date
0
Altmetric
Perspective

Original antigen sin and COVID-19: implications for seasonal vaccination

Pages 1353-1358 | Received 10 Aug 2022, Accepted 14 Oct 2022, Published online: 18 Oct 2022

References

  • Zhang A, Stacey HD, Mullarkey CE, et al. Original antigenic sin: how first exposure shapes lifelong anti-influenza virus immune responses. J Immunol. 2019;202(2):335–340.
  • Haaheim LR. Original antigenic sin. A confounding issue? Dev Biol (Basel). 2003;115:49–53.
  • Taber LH, Paredes A, Glezen WP, et al. Infection with influenza A/Victoria virus in Houston families, 1976. J Hyg (Lond). 1981;86(3):303–313.
  • HILLEMAN MR, Flatley FJ, ANDERSON SA, et al. Distribution and significance of Asian and other influenza antibodies in the human population. N Engl J Med. 1958;258(20):969–974.
  • ORIGINAL antigenic sin. N Engl J Med. 1958;258(20):1016–1017. doi:10.1056/NEJM195805152582014.
  • Reina J. Possible effect of the “original antigenic sin” in vaccination against new variants of SARS-CoV-2. Rev Clin Esp (Barc). 2022;222(2):91–92.
  • Petráš M, Králová Lesná I. SARS-CoV-2 vaccination in the context of original antigenic sin. Hum Vaccin Immunother. 2022;18(1):1949953.
  • Reina J. Possible effect of the “original antigenic sin” in vaccination against new variants of SARS-CoV-2. Rev Clin Esp. 2022;222(2):91–92.
  • Davenport FM, Hennessy AV, FRANCIS T. Epidemiologic and immunologic significance of age distribution of antibody to antigenic variants of influenza virus. J Exp Med. 1953;98(6):641–656.
  • Wang G, Xiang Z, Wang W, et al. Seasonal coronaviruses and SARS-CoV-2: effects of preexisting immunity during the COVID-19 pandemic. J Zhejiang Univ Sci B. 2022;23(6):451–460.
  • van Zelm MC. Immune memory to SARS-CoV-2 omicron BA.1 breakthrough infections: to change the vaccine or not? Sci Immunol. 2022;7(74):eabq5901.
  • Deutsch S, Bussard AE. Original antigenic sin at the cellular level. I. Antibodies produced by individual cells against cross-reacting haptens. Eur J Immunol. 1972;2(4):374–378.
  • Ivanyi J. Recall of antibody synthesis to the primary antigen following successive immunization with heterologous albumins. A two-cell theory of the original antigenic sin. Eur J Immunol. 1972;2(4):354–359.
  • Seppälä I, Hurme M, Sarvas H, et al. The role of B-cell memory in secondary IgG and IgM responses. Scand J Immunol. 1976;5(3):213–219.
  • Virelizier JL, Allison AC, Schild GC. Antibody responses to antigenic determinants of influenza virus hemagglutinin. II. Original antigenic sin: a bone marrow-derived lymphocyte memory phenomenon modulated by thymus-derived lymphocytes. J Exp Med. 1974;140(6):1571–1578.
  • Webster RG. Original antigenic sin in ferrets: the response to sequential infections with influenza viruses. J Immunol. 1966;97(2):177–183.
  • Deutsch S, Vinit MA, Bussard AE. Original antigenic sin at the cellular level–III. Importance of protein carrier in the stimulation process. Immunochemistry. 1975;12(3):191–197.
  • Koshizuka T, Toriyabe K, Sato Y, et al. Congenital cytomegalovirus infection via a re-infected mother with original antigenic sin: a case report. Int J Infect Dis. 2018;77:87–89.
  • Tripp RA, Power UF. Original antigenic sin and respiratory syncytial virus vaccines. Vaccines (Basel). 2019;7(3). 10.3390/vaccines7030107
  • Lapp SA, Edara L VV, Lai A, et al. Original antigenic sin responses to betacoronavirus spike proteins are observed in a mouse model, but are not apparent in children following SARS-CoV-2 infection. PLoS One. 2021;16(8):e0256482.
  • Malm M, Vesikari T, Blazevic V. Simultaneous immunization with multivalent norovirus VLPs induces better protective immune responses to norovirus than sequential immunization. Viruses. 2019;11(11):1018.
  • Monto AS, Malosh RE, Petrie JG, et al. The doctrine of original antigenic sin: separating good from evil. J Infect Dis. 2017;215(12):1782–1788.
  • Mao T, Israelow B, Suberi A, et al. Unadjuvanted intranasal spike vaccine booster elicits robust protective mucosal immunity against sarbecoviruses. bioRxiv. 2022;22:1945–1953.
  • Singh A. Eliciting B cell immunity against infectious diseases using nanovaccines. Nat Nanotechnol. 2021;16(1):16–24.
  • Arevalo CP, Le Sage V, Bolton MJ, et al. Original antigenic sin priming of influenza virus hemagglutinin stalk antibodies. Proc Natl Acad Sci U S A. 2020;117(29):17221–17227.
  • Brown EL, Essigmann HT, Pascual DW. Original antigenic sin: the downside of immunological memory and implications for COVID-19. mSphere. 2021;6(2). 10.1128/mSphere.00056-21
  • Chakradhar S. Updated, augmented vaccines compete with original antigenic sin. Nat Med. 2015;21(6):540–541.
  • Marine WM, Workman WM, Webster RG. Immunological interrelationships of Hong Kong, Asian and equi-2 influenza viruses in man. Bull World Health Organ. 1969;41(3):475–482.
  • Webster RG, Kasel JA, Couch RB, et al. Influenza virus subunit vaccines. II. Immunogenicity and original antigenic sin in humans. J Infect Dis. 1976;134(1):48–58.
  • Masurel N, Drescher J. Production of highly cross-reactive hemagglutination-inhibiting influenza antibodies in ferrets. Infect Immun. 1976;13(4):1023–1029.
  • Angelova LA, Shvartsman Ya S. Original antigenic sin to influenza in rats. Immunology. 1982;46(1):183–188.
  • Wang G, Zhang H, Cao X, et al. Using GARP to predict the range of Aedes aegypti in China. Southeast Asian J Trop Med Public Health. 2014;45(2):290–298.
  • Lupi O, Tyring SK. Tropical dermatology: viral tropical diseases. J Am Acad Dermatol. 2003;49(6):979–1000; quiz−2.
  • Cunha MS, de Moura Coletti T, Guerra JM, et al., A fatal case of dengue hemorrhagic fever associated with dengue virus 4 (DENV-4) in Brazil: genomic and histopathological findings. Braz J Microbiol. 2022;53(3): 1305–1312.
  • Rahim A, Hameed A, Ishaq U, et al. Cardiovascular sequelae of dengue fever: a systematic review. Expert Rev Cardiovasc Ther. 2022;47:1–15.
  • Trivedi S, Chakravarty A. Neurological complications of dengue fever. Curr Neurol Neurosci Rep. 2022;18:2214–2223.
  • Halstead SB, Rojanasuphot S, Sangkawibha N. Original antigenic sin in dengue. Am J Trop Med Hyg. 1983;32(1):154–156.
  • Crill WD, Hughes HR, Trainor NB, et al. Sculpting humoral immunity through dengue vaccination to enhance protective immunity. Front Immunol. 2012;3:334.
  • Weiskopf D, Sette A. T-cell immunity to infection with dengue virus in humans. Front Immunol. 2014;5:93.
  • Mongkolsapaya J, Dejnirattisai W, Xu XN, et al. Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat Med. 2003;9(7):921–927.
  • Mathew A, Rothman AL. Understanding the contribution of cellular immunity to dengue disease pathogenesis. Immunol Rev. 2008;225(1):300–313.
  • Gibbons RV. Dengue conundrums. Int J Antimicrob Agents. 2010;36(1):S36–9.
  • Midgley CM, Bajwa-Joseph M, Vasanawathana S, et al. An in-depth analysis of original antigenic sin in dengue virus infection. J Virol. 2011;85(1):410–421.
  • Priyamvada L, Cho A, Onlamoon N, et al. B cell responses during secondary dengue virus infection are dominated by highly cross-reactive, memory-derived plasmablasts. J Virol. 2016;90(12):5574–5585.
  • Abrokwa SK, Müller SA, Méndez-Brito A, et al. Recurrent SARS-CoV-2 infections and their potential risk to public health - a systematic review. PLoS One. 2021;16(12):e0261221.
  • Rothman AL. Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat Rev Immunol. 2011;11(8):532–543.
  • Altarawneh HN, Chemaitelly H, Ayoub HH, et al. Effects of previous infection and vaccination on symptomatic omicron infections. N Engl J Med. 2022;387(1):21–34.
  • Busch MP, Stramer SL, Stone M, et al. Population-weighted seroprevalence from SARS-CoV-2 infection, vaccination, and hybrid immunity among U.S. Blood donations from January-December 2021. Clin Infect Dis. 2022;75(Supplement_2):S254–S263.
  • Cervantes-Luevano K, Espino-Vazquez AN, Flores-Acosta G, et al. Neutralizing antibodies levels are increased in individuals with heterologous vaccination and hybrid immunity with Ad5-nCoV in the north of Mexico. PLoS One. 2022;17(6):e0269032.
  • Wratil PR, Stern M, Priller A, et al. Three exposures to the spike protein of SARS-CoV-2 by either infection or vaccination elicit superior neutralizing immunity to all variants of concern. Nat Med. 2022;28(3):496–503.
  • Bekerman E, Einav S. Infectious disease. Combating emerging viral threats. Science. 2015;348(6232):282–283.
  • Elong Ngono A, Chen H-W, Tang WW, et al. Protective role of cross-reactive CD8 T cells against dengue virus infection. EBioMedicine. 2016;13:284–293.
  • Halstead SB. Licensed dengue vaccine: public health conundrum and scientific challenge. Am J Trop Med Hyg. 2016;95(4):741–745.
  • Oxford JS, Frezza P, Race E. Challenges and strategies for AIDS vaccine development. Vaccine. 1993;11(6):612–614.
  • Haynes BF, Moody MA, Heinley CS, et al. HIV type 1 V3 region primer-induced antibody suppression is overcome by administration of C4-V3 peptides as a polyvalent immunogen. AIDS Res Hum Retroviruses. 1995;11(2):211–221.
  • Larke N, Im EJ, Wagner R, et al. Combined single-clade candidate HIV-1 vaccines induce T cell responses limited by multiple forms of in vivo immune interference. Eur J Immunol. 2007;37(2):566–577.
  • Liu XS, Xu Y, Hardy L, et al. IL-10 mediates suppression of the CD8 T cell IFN-gamma response to a novel viral epitope in a primed host. J Immunol. 2003;171(9):4765–4772.
  • Klenerman P, Zinkernagel RM. Original antigenic sin impairs cytotoxic T lymphocyte responses to viruses bearing variant epitopes. Nature. 1998;394(6692):482–485.
  • Kundu SK, Dupuis M, Sette A, et al. Role of preimmunization virus sequences in cellular immunity in HIV-infected patients during HIV type 1 MN recombinant gp160 immunization. AIDS Res Hum Retroviruses. 1998;14(18):1669–1678.
  • Varela M, Verschoor E, Lai RP, et al. Genetic imprint of vaccination on simian/human immunodeficiency virus type 1 transmitted viral genomes in rhesus macaques. PLoS One. 2013;8(8):e70814.
  • Williams WB, Han Q, Haynes BF. Cross-reactivity of HIV vaccine responses and the microbiome. Curr Opin HIV AIDS. 2018;13(1):9–14.
  • Kohler H, Nara P. A novel hypothesis for original antigenic sin in the severe disease of sars-cov-2 infection. Monoclon Antib Immunodiagn Immunother. 2020;39(4):107–111.
  • de St Groth F. New criteria for the selection of influenza vaccine strains. Bull World Health Organ. 1969;41(3):651–657.
  • Reynolds CJ, Pade C, Gibbons JM, et al. Immune boosting by B.1.1.529. Science. 2022;377(6603):eabq1841.
  • Röltgen K, Nielsen SCA, Silva O, et al., Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell. 2022;185(6): 1025–40.e14.
  • Gagne M, Moliva JI, Foulds KE, et al. or mRNA-Omicron boost in vaccinated macaques elicits similar B cell expansion, neutralizing responses, and protection from omicron. Cell. 2022;185(9):1556–71.e18.
  • Offit PA. Covid-19 boosters - where from here? N Engl J Med. 2022;386(17):1661–1662.
  • Pillai S. SARS-CoV-2 vaccination washes away original antigenic sin. Trends Immunol. 2022;43(4):271–273.
  • Bednarski E, Del Rio Estrada PM, DaSilva J, et al. Antibody and memory B-cell immunity in a heterogeneously SARS-CoV-2-infected and -vaccinated population. mBio. 2022;13(4):e0084022.
  • Donadeu L, Tiraboschi JM, Scévola S, et al. Long-lasting adaptive immune memory specific to SARS-CoV-2 in convalescent coronavirus disease 2019 stable people with HIV. AIDS. 2022;36(10):1373–1382.
  • Muller S. Avoiding deceptive imprinting of the immune response to HIV-1 infection in vaccine development. Int Rev Immunol. 2004;23(5–6):423–436.
  • Anderson DE, Carlos MP, Nguyen L, et al. Overcoming original (antigenic) sin. Clin Immunol. 2001;101(2):152–157.
  • Noori M, Nejadghaderi SA, Rezaei N. Original antigenic sin”: a potential threat beyond the development of booster vaccination against novel SARS-CoV-2 variants. Infect Control Hosp Epidemiol. 2021;41:1–2.
  • Vatti A, Monsalve DM, Pacheco Y, et al. Original antigenic sin: a comprehensive review. J Autoimmun. 2017;83:12–21.
  • Fierz W, Walz B. Antibody dependent enhancement due to original antigenic sin and the development of SARS. Front Immunol. 2020;11:1120.
  • de St Groth F, Webster RG. Disquisitions of original antigenic sin. I. evidence in man. J Exp Med. 1966;124(3):331–345.
  • Marine WM, Thomas JE. Antigenic memory to influenza A viruses in man determined by monovalent vaccines. Postgrad Med J. 1979;55(640):98–104.
  • East IJ, Todd PE, Leach SJ. Original antigenic sin: experiments with a defined antigen. Mol Immunol. 1980;17(12):1539–1544.
  • Mohapatra RK, Kandi V, Sarangi AK, et al. The recently emerged BA.4 and BA.5 lineages of omicron and their global health concerns amid the ongoing wave of COVID-19 pandemic – correspondence. Int J Surg. 2022;103:106698.
  • Cao Y, Yisimayi A, Jian F, et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by omicron infection. Nature. 2022.
  • Cao L, Lou J, Chan SY, et al. Rapid evaluation of COVID-19 vaccine effectiveness against symptomatic infection with SARS-CoV-2 variants by analysis of genetic distance. Nat Med. 2022;28(8):1715–1722.
  • Carlin AF, Clark AE, Chaillon A, et al. Virologic and immunologic characterization of COVID-19 recrudescence after nirmatrelvir/ritonavir treatment. Res Sq. 2022. DOI:10.21203/rs.3.rs-1662783/v1.
  • Bar-On YM, Goldberg Y, Milo R. Protection by a fourth dose of BNT162b2 against omicron in Israel. N Engl J Med. 2022;386(25):2441–2442.
  • Brosh-Nissimov T, Hussein K, Wiener-Well Y, et al. Hospitalized patients with severe COVID-19 during the omicron wave in Israel - benefits of a fourth vaccine dose. Clin Infect Dis. 2022;28:3103–3111.
  • Kaku CI, Starr TN, Zhou P, et al. Evolution of antibody immunity following omicron BA.1 breakthrough infection. bioRxiv. 2022.
  • Webb WR, Thapa G, Tirnoveanu A, et al. Single vs replicate real-time PCR SARS-CoV-2 testing: lessons learned for effective pandemic management. PLoS One. 2022;17(7):e0269883.
  • Anneser E, Riseberg E, Brooks YM, et al. Modeling the relationship between SARS-CoV-2 RNA in wastewater or sludge and COVID-19 cases in three New England regions. J Water Health. 2022;20(5):816–828.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.