1,432
Views
0
CrossRef citations to date
0
Altmetric
Review

Locked and loaded: engineering and arming oncolytic adenoviruses to enhance anti-tumor immune responses

&
Pages 1359-1378 | Received 19 Aug 2022, Accepted 20 Oct 2022, Published online: 09 Nov 2022

References

  • Cattaneo R, Miest T, Shashkova EV, et al. Reprogrammed viruses as cancer therapeutics: targeted, armed and shielded. Nat Rev Microbiol. 2008 Jul;6(7):529–540.
  • Kelly E, Russell SJ. History of oncolytic viruses: genesis to genetic engineering. Mol Ther. 2007 Apr;15(4):651–659.
  • Tian Y, Xie D, Yang L. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Signal Transduct Target Ther. 2022 Apr 6;7(1):117.
  • Davola ME, Mossman KL. Oncolytic viruses: how “lytic” must they be for therapeutic efficacy? Oncoimmunology. 2019;8(6):e1581528.
  • Greber UF, Flatt JW. Adenovirus entry: from infection to immunity. Annu Rev Virol. 2019 Sep 29; 6(1):177–197.
  • Reddy VS, Yu X, Barry MA. Refined capsid structure of human adenovirus D26 at 3.4 A resolution. Viruses. 2022 Feb 17; 14(2):414.
  • Lusky M. Good manufacturing practice production of adenoviral vectors for clinical trials. Hum Gene Ther. 2005 Mar;16(3):281–291.
  • Croyle MA, Cheng X, Sandhu A, et al. Development of novel formulations that enhance adenoviral-mediated gene expression in the lung in vitro and in vivo. Mol Ther. 2001 Jul;4(1):22–28.
  • Evans RK, Nawrocki DK, Isopi LA, et al. Development of stable liquid formulations for adenovirus-based vaccines. J Pharm Sci. 2004 Oct;93(10):2458–2475.
  • Bajrovic I, Schafer SC, Romanovicz DK, et al. Novel technology for storage and distribution of live vaccines and other biological medicines at ambient temperature. Sci Adv. 2020 Mar;6(10):eaau4819.
  • Kumru OS, Joshi SB, Smith DE, et al. Vaccine instability in the cold chain: mechanisms, analysis and formulation strategies. Biologicals. 2014 Sep;42(5):237–259.
  • Barefoot B, Thornburg NJ, Barouch DH, et al. Comparison of multiple vaccine vectors in a single heterologous prime-boost trial. Vaccine. 2008 Nov 11;26(48):6108–6118.
  • Davison AJ, Benko M, Harrach B. Genetic content and evolution of adenoviruses. J Gen Virol. 2003 Nov;84(Pt 11):2895–2908.
  • Nicklin SA, Wu E, Nemerow GR, et al. The influence of adenovirus fiber structure and function on vector development for gene therapy. Mol Ther. 2005 Sep;12(3):384–393.
  • Arnberg N. Adenovirus receptors: implications for tropism, treatment and targeting. Rev Med Virol. 2009 May;19(3):165–178.
  • Barry MA, Weaver EA, Chen CY. Mining the adenovirus “virome” for systemic oncolytics. Curr Pharm Biotechnol. 2012 Jul;13(9):1804–1808.
  • Parker AL, Waddington SN, Nicol CG, et al. Multiple vitamin K-dependent coagulation zymogens promote adenovirus-mediated gene delivery to hepatocytes. Blood. 2006 Oct 15;108(8):2554–2561.
  • Shayakhmetov DM, Gaggar A, Ni S, et al. Adenovirus binding to blood factors results in liver cell infection and hepatotoxicity. J Virol. 2005 Jun;79(12):7478–7491.
  • Xu Z, Tian J, Smith JS, et al. Clearance of adenovirus by Kupffer cells is mediated by scavenger receptors, natural antibodies, and complement. J Virol. 2008 Dec;82(23):11705–11713.
  • Xu Z, Qiu Q, Tian J, et al. Coagulation factor X shields adenovirus type 5 from attack by natural antibodies and complement. Nat Med. 2013 Apr;19(4):452–457.
  • Santra S, Sun Y, Korioth-Schmitz B, et al. Heterologous prime/boost immunizations of rhesus monkeys using chimpanzee adenovirus vectors. Vaccine. 2009 Sep 25;27(42):5837–5845.
  • Lemckert AA, Sumida SM, Holterman L, et al. Immunogenicity of heterologous prime-boost regimens involving recombinant adenovirus serotype 11 (Ad11) and Ad35 vaccine vectors in the presence of anti-ad5 immunity. J Virol. 2005 Aug;79(15):9694–9701.
  • Roberts DM, Nanda A, Havenga MJ, et al. Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity. Nature. 2006 May 11;441(7090):239–243.
  • Greber UF, Willetts M, Webster P, et al. Stepwise dismantling of adenovirus 2 during entry into cells. Cell. 1993 Nov 5;75(3):477–486.
  • Wickham TJ, Mathias P, Cheresh DA, et al. Integrins avb3 or avb5 promote adenovirus internalization but not virus attachment. Cell. 1993;73(2):309–319.
  • Huang S, Kamata T, Takada Y, et al. Adenovirus interaction with distinct integrins mediates separate events in cell entry and gene delivery to hematopoietic cells. J Virol. 1996;70(7):4502–4508.
  • Farley DC, Brown JL, Leppard KN. Activation of the early-late switch in adenovirus type 5 major late transcription unit expression by L4 gene products. J Virol. 2004 Feb;78(4):1782–1791.
  • Fessler SP, Young CS. Control of adenovirus early gene expression during the late phase of infection. J Virol. 1998 May;72(5):4049–4056.
  • Crisostomo L, Soriano AM, Mendez M, et al. Temporal dynamics of adenovirus 5 gene expression in normal human cells. PLoS One. 2019;14(1):e0211192.
  • Tormanen H, Backstrom E, Carlsson A, et al. L4-33K, an adenovirus-encoded alternative RNA splicing factor. J Biol Chem. 2006 Dec 1;281(48):36510–36517
  • Morris SJ, Scott GE, Leppard KN. Adenovirus late-phase infection is controlled by a novel L4 promoter. J Virol. 2010 Jul;84(14):7096–7104.
  • Turner MA, Middha S, Hofherr SE, et al. Comparison of the life cycles of genetically distant species C and species D human adenoviruses Ad6 and Ad26 in human cells. J Virol. 2015 Dec;89(24):12401–12417.
  • Jakobsson AW, Segerman B, Wallerman O, et al. The human Adenovirus 2 transcriptome: an amazing complexity of alternatively spliced mRNAs. J Virol. 2021;95(4):e01869–20. ** An important study demonstrating the complexity of mRNA splicing of adenoviruses by long-read next-generation sequencing.
  • Senac JS, Doronin K, Russell SJ, et al. Infection and killing of multiple myeloma by adenoviruses. Hum Gene Ther. 2010 Feb;21(2):179–190.
  • Zhao H, Granberg F, Pettersson U. How adenovirus strives to control cellular gene expression. Virology. 2007 Jul 5; 363(2):357–375.
  • Wu L, Zhou P, Ge X, et al. Deep RNA sequencing reveals complex transcriptional landscape of a bat adenovirus. J Virol. 2013 Jan;87(1):503–511.
  • Donovan-Banfield I, Turnell AS, Hiscox JA, et al. Deep splicing plasticity of the human adenovirus type 5 transcriptome drives virus evolution. Commun Biol. 2020 Mar 13;3(1):124.
  • Bett AJ, Prevec L, Graham FL. Packaging capacity and stability of human adenovirus type 5 vectors. J Virol. 1993 Oct;67(10):5911–5921.
  • Lichtenstein DL, Toth K, Doronin K, et al. Functions and mechanisms of action of the adenovirus E3 proteins. Int Rev Immunol. 2004 Jan-Apr;23(1–2):75–111.
  • Horwitz MS. Function of adenovirus E3 proteins and their interactions with immunoregulatory cell proteins. J Gene Med. 2004 Feb;6(1):S172–83.
  • Robinson CM, Singh G, Lee JY, et al. Molecular evolution of human adenoviruses. Sci Rep. 2013;3(1):1812.
  • Hawkins LK, Wold WSM. Wold WS. A 12,500 MW protein is coded by region E3 of adenovirus. Virology. 1992 Jun;188(2):486–494.
  • Moise AR, Grant JR, Vitalis TZ, et al. Adenovirus E3-6.7K maintains calcium homeostasis and prevents apoptosis and arachidonic acid release. J Virol. 2002 Feb;76(4):1578–1587.
  • Lichtenstein DL, Doronin K, Toth K, et al. Adenovirus E3-6.7K protein is required in conjunction with the E3-RID protein complex for the internalization and degradation of TRAIL receptor 2. J Virol. 2004 Nov;78(22):12297–12307.
  • Burgert HG, Maryanski JL, Kvist S. “E3/19K” protein of adenovirus type 2 inhibits lysis of cytolytic T lymphocytes by blocking cell-surface expression of histocompatibility class I antigens. Proc. Natl. Acad. Sci. USA. 1987;84(5):1356–1360.
  • Georgi F, Greber UF. The adenovirus death protein - a small membrane protein controls cell lysis and disease. FEBS Lett. 2020 Jun;594(12):1861–1878.
  • Robertson MG, Eidenschink BB, Iguchi E, et al. Cancer imaging and therapy utilizing a novel NIS-expressing adenovirus: the role of adenovirus death protein deletion. Mol Ther Oncolytics. 2021 Mar 26;20:659–668. 10.1016/j.omto.2021.03.002.
  • Shisler J, Yang C, Walter B, et al. The adenovirus E3-10.4K/14.5K complex mediates loss of cell surface Fas (CD95) and resistance to Fas-induced apoptosis. J Virol. 1997 Nov;71(11):8299–8306.
  • Tollefson AE, Hermiston TW, Lichtenstein DL, et al. Forced degradation of Fas inhibits apoptosis in adenovirus-infected cells. Nature. 1998 Apr 16;392(6677):726–730.
  • Lichtenstein DL, Krajcsi P, Esteban DJ, et al. Adenovirus RIDbeta subunit contains a tyrosine residue that is critical for RID-mediated receptor internalization and inhibition of Fas- and TRAIL-induced apoptosis. J Virol. 2002 Nov;76(22):11329–11342.
  • Horton TM, Ranheim TS, Aquino L, et al. Adenovirus E3 14.7K protein functions in the absence of other adenovirus proteins to protect transfected cells from tumor necrosis factor cytolysis. J Virol. 1991 May;65(5):2629–2639.
  • Schneider-Brachert W, Tchikov V, Merkel O, et al. Inhibition of TNF receptor 1 internalization by adenovirus 14.7K as a novel immune escape mechanism. J Clin Invest. 2006 Nov;116(11):2901–2913.
  • Tollefson AE, Ying B, Doronin K, et al. Identification of a new human adenovirus protein encoded by a novel late l-strand transcription unit. J Virol. 2007 Dec;81(23):12918–12926.
  • Wang Y, Hallden G, Hill R, et al. E3 gene manipulations affect oncolytic adenovirus activity in immunocompetent tumor models. Nat Biotechnol. 2003 Nov;21(11):1328–1335.
  • Bortolanza S, Bunuales M, Alzuguren P, et al. Deletion of the E3-6.7K/gp19K region reduces the persistence of wild-type adenovirus in a permissive tumor model in Syrian hamsters. Cancer Gene Ther. 2009 Sep;16(9):703–712.
  • Bos JL, Polder LJ, Bernards R, et al. The 2.2 kb E1b mRNA of human Ad12 and Ad5 codes for two tumor antigens starting at different AUG triplets. Cell. 1981 Nov;27(1 Pt 2):121–131.
  • Han J, Sabbatini P, Perez D, et al. The E1B 19K protein blocks apoptosis by interacting with and inhibiting the p53-inducible and death-promoting Bax protein. Genes Dev. 1996 Feb 15;10(4):461–477.
  • Hidalgo P, Ip WH, Dobner T, et al. The biology of the adenovirus E1B 55K protein. FEBS Lett. 2019 Dec;593(24):3504–3517.
  • Doloff JC, Waxman DJ, Jounaidi Y. Human telomerase reverse transcriptase promoter-driven oncolytic adenovirus with E1B-19 kDa and E1B-55 kDa Gene deletions. Hum Gene Ther. 2008 Dec;19(12):1383–1399.
  • Cheng PH, Wechman SL, McMasters KM, et al. Oncolytic replication of E1b-deleted adenoviruses. Viruses. 2015 Nov 6;7(11):5767–5779.
  • Sauthoff H, Heitner S, Rom WN, et al. Deletion of the adenoviral E1b-19kD gene enhances tumor cell killing of a replicating adenoviral vector. Hum Gene Ther. 2000 Feb 10;11(3):379–388.
  • Harrison D, Sauthoff H, Heitner S, et al. Wild-type adenovirus decreases tumor xenograft growth, but despite viral persistence complete tumor responses are rarely achieved–deletion of the viral E1b-19-kD gene increases the viral oncolytic effect. Hum Gene Ther. 2001 Jul 1;12(10):1323–1332.
  • Crosby CM, Barry MA. IIIa deleted adenovirus as a single-cycle genome replicating vector. Virology. 2014 Aug;462-463:158–165.
  • Crosby CM, Barry MA. Transgene expression and host cell responses to replication-defective, single-cycle, and replication-competent adenovirus vectors. Genes (Basel). 2017 Feb 18; 8(2):79.
  • Farrera-Sal M, Fillat C, Alemany R. Effect of transgene location, transcriptional control elements and transgene features in armed oncolytic adenoviruses. Cancers (Basel). 2020 Apr 23; 12(4):1034.
  • Kretschmer PJ, Jin F, Chartier C, et al. Development of a transposon-based approach for identifying novel transgene insertion sites within the replicating adenovirus. Mol Ther. 2005 Jul;12(1):118–127.
  • Jin F, Kretschmer PJ, Hermiston TW. Identification of novel insertion sites in the Ad5 genome that utilize the Ad splicing machinery for therapeutic gene expression. Mol Ther. 2005 Dec;12(6):1052–1063.
  • Wang M, Marin A. Characterization and prediction of alternative splice sites. Gene. 2006 Feb 1; 366(2):219–227.
  • Cartegni L, Wang J, Zhu Z, et al. ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res. 2003 Jul 1;31(13):3568–3571.
  • Hawkins LK, Hermiston T. Gene delivery from the E3 region of replicating human adenovirus: evaluation of the E3B region. Gene Ther. 2001 Aug;8(15):1142–1148.
  • Hawkins LK, Hermiston TW. Gene delivery from the E3 region of replicating human adenovirus: evaluation of the ADP region. Gene Ther. 2001 Aug;8(15):1132–1141.
  • Hawkins LK, Johnson L, Bauzon M, et al. Gene delivery from the E3 region of replicating human adenovirus: evaluation of the 6.7 K/gp19 K region. Gene Ther. 2001 Aug;8(15):1123–1131.
  • Bauzon M, Castro D, Karr M, et al. Multigene expression from a replicating adenovirus using native viral promoters. Mol Ther. 2003 Apr;7(4):526–534.
  • Shashkova EV, Spencer JF, Wold WS, et al. Targeting interferon-alpha increases antitumor efficacy and reduces hepatotoxicity of E1A-mutated spread-enhanced oncolytic adenovirus. Mol Ther. 2007 Mar;15(3):598–607.
  • Shaul O. How introns enhance gene expression. Int J Biochem Cell Biol. 2017 Oct;91(Pt B):145–155.
  • Martinez-Salas E, Francisco-Velilla R, Fernandez-Chamorro J, et al. Insights into structural and mechanistic features of viral IRES elements. Front Microbiol. 2017;8:2629.
  • Rivera AA, Wang M, Suzuki K, et al. Mode of transgene expression after fusion to early or late viral genes of a conditionally replicating adenovirus via an optimized internal ribosome entry site in vitro and in vivo. Virology. 2004 Mar 1;320(1):121–134.
  • Sharma P, Yan F, Doronina VA, et al. 2A peptides provide distinct solutions to driving stop-carry on translational recoding. Nucleic Acids Res. 2012 Apr;40(7):3143–3151.
  • Liu Z, Chen O, Wall JBJ, et al. Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Sci Rep. 2017 May 19;7(1):2193.
  • Funston GM, Kallioinen SE, de Felipe P, et al. Expression of heterologous genes in oncolytic adenoviruses using picornaviral 2A sequences that trigger ribosome skipping. J Gen Virol. 2008 Feb;89(Pt 2):389–396.
  • Quirin C, Rohmer S, Fernandez-Ulibarri I, et al. Selectivity and efficiency of late transgene expression by transcriptionally targeted oncolytic adenoviruses are dependent on the transgene insertion strategy. Hum Gene Ther. 2011 Apr;22(4):389–404.
  • Hagihara Y, Sakamoto A, Tokuda T, et al. Photoactivatable oncolytic adenovirus for optogenetic cancer therapy. Cell Death Dis. 2020 Jul 23;11(7):570.
  • Muhlemann O, Yue BG, Petersen-Mahrt S, et al. A novel type of splicing enhancer regulating adenovirus pre-mRNA splicing. Mol Cell Biol. 2000 Apr;20(7):2317–2325.
  • Carette JE, Graat HC, Schagen FH, et al. Replication-dependent transgene expression from a conditionally replicating adenovirus via alternative splicing to a heterologous splice-acceptor site. J Gene Med. 2005 Aug;7(8):1053–1062.
  • Fuerer C, Iggo R. 5-Fluorocytosine increases the toxicity of Wnt-targeting replicating adenoviruses that express cytosine deaminase as a late gene. Gene Ther. 2004 Jan;11(2):142–151.
  • Berg M, Difatta J, Hoiczyk E, et al. Viable adenovirus vaccine prototypes: high-level production of a papillomavirus capsid antigen from the major late transcriptional unit. Proc Natl Acad Sci USA. 2005 Mar 22;102(12):4590–4595.
  • Fernandez-Ulibarri I, Hammer K, Arndt MA, et al. Genetic delivery of an immunoRNase by an oncolytic adenovirus enhances anticancer activity. Int J Cancer. 2015 May 1;136(9):2228–2240.
  • Robinson M, Ge Y, Ko D, et al. Comparison of the E3 and L3 regions for arming oncolytic adenoviruses to achieve a high level of tumor-specific transgene expression [Comparative Study]. Cancer Gene Ther. 2008 Jan;15(1):9–17.
  • Farrera-Sal M, de Sostoa J, Nunez-Manchon E, et al. Arming oncolytic adenoviruses: effect of insertion site and splice acceptor on transgene expression and viral fitness. Int J Mol Sci. 2020 Jul 21;21(14):5158.
  • Philip M, Schietinger A. CD8(+) T cell differentiation and dysfunction in cancer. Nat Rev Immunol. 2022 Apr;22(4):209–223.
  • Wan PK, Ryan AJ, Seymour LW. Beyond cancer cells: targeting the tumor microenvironment with gene therapy and armed oncolytic virus. Mol Ther. 2021 May 5; 29(5):1668–1682.
  • Boagni DA, Ravirala D, Zhang SX. Current strategies in engaging oncolytic viruses with antitumor immunity. Mol Ther Oncolytics. 2021 Sep 24; 22:98–113.
  • Rahman MM, McFadden G. Oncolytic viruses: newest frontier for cancer immunotherapy. Cancers (Basel). 2021 Oct 29; 13(21):5452.
  • Xing Y, Hogquist KA. T-cell tolerance: central and peripheral. Cold Spring Harb Perspect Biol. 2012 Jun 1; 4(6):a006957.
  • Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019 Jul 16; 51(1):27–41.
  • Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer immune evasion through loss of MHC class I antigen presentation. Front Immunol. 2021;12:636568.
  • Wolf Y, Samuels Y. Intratumor heterogeneity and antitumor immunity shape one another bidirectionally. Clin Cancer Res. 2022 Jul 15; 28(14):2994–3001.
  • Archilla-Ortega A, Domuro C, Martin-Liberal J, et al. Blockade of novel immune checkpoints and new therapeutic combinations to boost antitumor immunity. J Exp Clin Cancer Res. 2022 Feb 14;41(1):62.
  • Lubbers J, Rodriguez E, van Kooyk Y. Modulation of immune tolerance via siglec-sialic acid interactions. Front Immunol. 2018;9:2807.
  • Follain G, Herrmann D, Harlepp S, et al. Fluids and their mechanics in tumour transit: shaping metastasis. Nat Rev Cancer. 2020 Feb;20(2):107–124.
  • Simsek H, Klotzsch E. The solid tumor microenvironment-breaking the barrier for T cells: how the solid tumor microenvironment influences T cells: how the solid tumor microenvironment influences T cells. Bioessays. 2022 Jun;44(6):e2100285.
  • Turley SJ, Cremasco V, Astarita JL. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol. 2015 Nov;15(11):669–682.
  • Sackstein R, Schatton T, Barthel SR. T-lymphocyte homing: an underappreciated yet critical hurdle for successful cancer immunotherapy. Lab Invest. 2017 Jun;97(6):669–697.
  • Anderson NM, Simon MC. The tumor microenvironment. Curr Biol. 2020 Aug 17; 30(16):R921–R925.
  • DePeaux K, Delgoffe GM. Metabolic barriers to cancer immunotherapy. Nat Rev Immunol. 2021 Dec;21(12):785–797.
  • Watson MJ, Delgoffe GM. Fighting in a wasteland: deleterious metabolites and antitumor immunity. J Clin Invest. 2022 Jan 18; 132(2):e148549.
  • Aldhamen YA, Appledorn DM, Seregin SS, et al. Expression of the SLAM family of receptors adapter EAT-2 as a novel strategy for enhancing beneficial immune responses to vaccine antigens. J Immunol. 2011 Jan 15;186(2):722–732.
  • O’Connell P, Blake MK, Pepelyayeva Y, et al. Adenoviral delivery of an immunomodulatory protein to the tumor microenvironment controls tumor growth. Mol Ther Oncolytics. 2022 Mar 17;24:180–193.
  • Ramachandran M, Yu D, Wanders A, et al. An infection-enhanced oncolytic adenovirus secreting H. pylori neutrophil-activating protein with therapeutic effects on neuroendocrine tumors. Mol Ther. 2013 Nov;21(11):2008–2018.
  • Liikanen I, Basnet S, Quixabeira DCA, et al. Oncolytic adenovirus decreases the proportion of TIM-3(+) subset of tumor-infiltrating CD8(+) T cells with correlation to improved survival in patients with cancer. J Immunother Cancer. 2022 Feb;10(2):e003490.
  • Raman SS, Hecht JR, Chan E. Talimogene laherparepvec: review of its mechanism of action and clinical efficacy and safety. Immunotherapy. 2019 Jun;11(8):705–723.
  • Kumar A, Taghi Khani A, Sanchez Ortiz A, et al. GM-CSF: a double-edged sword in cancer immunotherapy. Front Immunol. 2022;13:901277.
  • Mandai M, Hamanishi J, Abiko K, et al. Dual Faces of IFNgamma in cancer progression: a role of PD-L1 induction in the determination of pro- and antitumor immunity. Clin Cancer Res. 2016 May 15;22(10):2329–2334.
  • Ge Y, Wang H, Ren J, et al. Oncolytic vaccinia virus delivering tethered IL-12 enhances antitumor effects with improved safety. J Immunother Cancer. 2020 Mar;8(1):e000710.
  • Blair TC, Bambina S, Alice AF, et al. Dendritic cell maturation defines immunological responsiveness of tumors to radiation therapy. J Immunol. 2020 Jun 15;204(12):3416–3424.
  • Patente TA, Pinho MP, Oliveira AA, et al. Human dendritic cells: their heterogeneity and clinical application potential in cancer immunotherapy. Front Immunol. 2018;9:3176.
  • Diaconu I, Cerullo V, Hirvinen ML, et al. Immune response is an important aspect of the antitumor effect produced by a CD40L-encoding oncolytic adenovirus. Cancer Res. 2012 May 1;72(9):2327–2338.
  • Pesonen S, Diaconu I, Kangasniemi L, et al. Oncolytic immunotherapy of advanced solid tumors with a CD40L-expressing replicating adenovirus: assessment of safety and immunologic responses in patients. Cancer Res. 2012 Apr 1;72(7):1621–1631.
  • Yang YF, Xue SY, Lu ZZ, et al. Antitumor effects of oncolytic adenovirus armed with PSA-IZ-CD40L fusion gene against prostate cancer. Gene Ther. 2014 Aug;21(8):723–731.
  • Eriksson E, Moreno R, Milenova I, et al. Activation of myeloid and endothelial cells by CD40L gene therapy supports T-cell expansion and migration into the tumor microenvironment. Gene Ther. 2017 Feb;24(2):92–103.
  • Hirvinen M, Rajecki M, Kapanen M, et al. Immunological effects of a tumor necrosis factor alpha-armed oncolytic adenovirus. Hum Gene Ther. 2015 Mar;26(3):134–144.
  • LaRocca CJ, Han J, Gavrikova T, et al. Oncolytic adenovirus expressing interferon alpha in a syngeneic Syrian hamster model for the treatment of pancreatic cancer. Surgery. 2015 May;157(5):888–898.
  • LaRocca CJ, Salzwedel AO, Sato-Dahlman M, et al. Interferon alpha-expressing oncolytic adenovirus for treatment of esophageal adenocarcinoma. Ann Surg Oncol. 2021 Dec;28(13):8556–8564.
  • Burke JM, Lamm DL, Meng MV, et al. A first in human phase 1 study of CG0070, a GM-CSF expressing oncolytic adenovirus, for the treatment of nonmuscle invasive bladder cancer. J Urol. 2012 Dec;188(6):2391–2397.
  • Kanerva A, Nokisalmi P, Diaconu I, et al. Antiviral and antitumor T-cell immunity in patients treated with GM-CSF-coding oncolytic adenovirus. Clin Cancer Res. 2013 May 15;19(10):2734–2744.
  • Du T, Shi G, Li YM, et al. Tumor-specific oncolytic adenoviruses expressing granulocyte macrophage colony-stimulating factor or anti-CTLA4 antibody for the treatment of cancers. Cancer Gene Ther. 2014 Aug;21(8):340–348.
  • Dobbins GC, Ugai H, Curiel DT, et al. A multi targeting conditionally replicating adenovirus displays enhanced oncolysis while maintaining expression of Immunotherapeutic agents. PLoS One. 2015;10(12):e0145272.
  • Vassilev L, Ranki T, Joensuu T, et al. Repeated intratumoral administration of ONCOS-102 leads to systemic antitumor CD8(+) T-cell response and robust cellular and transcriptional immune activation at tumor site in a patient with ovarian cancer. Oncoimmunology. 2015 Jul;4(7):e1017702.
  • Wang L, Zheng J, He Q, et al. TOA02, a recombinant adenovirus with tumor-specific granulocyte macrophage colony-stimulating factor expression, has limited biodistribution and low toxicity in rhesus monkeys. Hum Gene Ther Methods. 2015 Apr;26(2):62–70.
  • Bramante S, Koski A, Liikanen I, et al. Oncolytic virotherapy for treatment of breast cancer, including triple-negative breast cancer. Oncoimmunology. 2016 Feb;5(2):e1078057.
  • Moesta AK, Cooke K, Piasecki J, et al. Local Delivery of OncoVEX(mGM-CSF) generates systemic antitumor immune responses enhanced by cytotoxic T-lymphocyte-associated protein blockade. Clin Cancer Res. 2017 Oct 15;23(20):6190–6202.
  • Kuryk L, Moller AW, Garofalo M, et al. Antitumor-specific T-cell responses induced by oncolytic adenovirus ONCOS-102 (AdV5/3-D24-GM-CSF) in peritoneal mesothelioma mouse model. J Med Virol. 2018 Oct;90(10):1669–1673.
  • Su Y, Li J, Ji W, et al. Triple-serotype chimeric oncolytic adenovirus exerts multiple synergistic mechanisms against solid tumors. J Immunother Cancer. 2022 May;10(5):e004691.
  • Ramachandran M, Jin C, Yu D, et al. Vector-encoded Helicobacter pylori neutrophil-activating protein promotes maturation of dendritic cells with Th1 polarization and improved migration. J Immunol. 2014 Sep 1;193(5):2287–2296.
  • Kober J, Leitner J, Klauser C, et al. The capacity of the TNF family members 4-1BBL, OX40L, CD70, GITRL, CD30L and LIGHT to costimulate human T cells. Eur J Immunol. 2008 Oct;38(10):2678–2688.
  • Martinez-Perez AG, Perez-Trujillo JJ, Garza-Morales R, et al. An oncolytic adenovirus encoding SA-4-1BBL adjuvant fused to HPV-16 E7 antigen produces a specific antitumor effect in a cancer mouse Model. Vaccines (Basel). 2021 Feb 12;9(2):149.
  • Laspidea V, Puigdelloses M, Labiano S, et al. Exploiting 4-1BB immune checkpoint to enhance the efficacy of oncolytic virotherapy for diffuse intrinsic pontine gliomas. JCI Insight. 2022 Apr 8;7(7):e154812.
  • Martinez-Velez N, Laspidea V, Zalacain M, et al. Local treatment of a pediatric osteosarcoma model with a 4-1BBL armed oncolytic adenovirus results in an antitumor effect and leads to immune memory. Mol Cancer Ther. 2022 Mar 1;21(3):471–480.
  • Jiang H, Rivera-Molina Y, Gomez-Manzano C, et al. Oncolytic adenovirus and tumor-targeting immune modulatory therapy improve autologous cancer vaccination. Cancer Res. 2017 Jul 15;77(14):3894–3907.
  • Andarini S, Kikuchi T, Nukiwa M, et al. Adenovirus vector-mediated in vivo gene transfer of OX40 ligand to tumor cells enhances antitumor immunity of tumor-bearing hosts. Cancer Res. 2004 May 1;64(9):3281–3287.
  • Rivera-Molina Y, Jiang H, Fueyo J, et al. GITRL-armed Delta-24-RGD oncolytic adenovirus prolongs survival and induces anti-glioma immune memory. Neurooncol Adv. 2019 May-Dec;1(1):vdz009.
  • Dai S, Lv Y, Xu W, et al. Oncolytic adenovirus encoding LIGHT (TNFSF14) inhibits tumor growth via activating anti-tumor immune responses in 4T1 mouse mammary tumor model in immune competent syngeneic mice. Cancer Gene Ther. 2020 Dec;27(12):923–933.
  • Garofalo M, Bertinato L, Staniszewska M, et al. Combination therapy of novel oncolytic adenovirus with anti-PD1 resulted in enhanced anti-cancer effect in syngeneic immunocompetent melanoma mouse model. Pharmaceutics. 2021 Apr 14;13(4):547.
  • Schluns KS, Lefrancois L. Cytokine control of memory T-cell development and survival. Nat Rev Immunol. 2003 Apr;3(4):269–279.
  • Yoshimoto T, Takeda K, Tanaka T, et al. IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: synergism with IL-18 for IFN-gamma production. J Immunol. [1998 Oct 1];161(7):3400–3407.
  • Santos JM, Havunen R, Siurala M, et al. Adenoviral production of interleukin-2 at the tumor site removes the need for systemic postconditioning in adoptive cell therapy. Int J Cancer. 2017 Oct 1;141(7):1458–1468.
  • Quixabeira DCA, Zafar S, Santos JM, et al. Oncolytic adenovirus coding for a variant interleukin 2 (vIL-2) cytokine re-programs the tumor microenvironment and confers enhanced tumor control. Front Immunol. 2021;12:674400.
  • Huang J, Zheng M, Zhang Z, et al. Interleukin-7-loaded oncolytic adenovirus improves CAR-T cell therapy for glioblastoma. Cancer Immunol Immunother. 2021 Sep;70(9):2453–2465.
  • Poutou J, Bunuales M, Gonzalez-Aparicio M, et al. Safety and antitumor effect of oncolytic and helper-dependent adenoviruses expressing interleukin-12 variants in a hamster pancreatic cancer model. Gene Ther. 2015 Sep;22(9):696–706.
  • Rosewell Shaw A, Porter CE, Watanabe N, et al. Adenovirotherapy delivering cytokine and checkpoint inhibitor augments CAR T cells against metastatic head and neck cancer. Mol Ther. 2017 Nov 1;25(11):2440–2451.
  • Wang P, Li X, Wang J, et al. Re-designing Interleukin-12 to enhance its safety and potential as an anti-tumor immunotherapeutic agent. Nat Commun. 2017 Nov 9;8(1):1395.
  • Zhang Z, Zhang C, Miao J, et al. A tumor-targeted replicating oncolytic adenovirus ad-TD-nsIL12 as a promising therapeutic agent for human esophageal squamous cell carcinoma. Cells. 2020 Nov 10;9(11):2438.
  • Zalacain M, Bunuales M, Marrodan L, et al. Local administration of IL-12 with an HC vector results in local and metastatic tumor control in pediatric osteosarcoma. Mol Ther Oncolytics. 2021 Mar 26;20:23–33.
  • Yan Y, Li S, Jia T, et al. Combined therapy with CTL cells and oncolytic adenovirus expressing IL-15-induced enhanced antitumor activity. Tumour Biol. 2015 Jun;36(6):4535–4543.
  • Zhang Q, Zhang J, Tian Y, et al. Efficacy of a novel double-controlled oncolytic adenovirus driven by the Ki67 core promoter and armed with IL-15 against glioblastoma cells. Cell Biosci. 2020;10(1):124.
  • Choi IK, Lee JS, Zhang SN, et al. Oncolytic adenovirus co-expressing IL-12 and IL-18 improves tumor-specific immunity via differentiation of T cells expressing IL-12Rbeta2 or IL-18Ralpha. Gene Ther. 2011 Sep;18(9):898–909.
  • Bunuales M, Ballesteros-Briones MC, Gonzalez-Aparicio M, et al. Adenovirus-mediated inducible expression of a PD-L1 blocking antibody in combination with macrophage depletion improves survival in a mouse model of peritoneal carcinomatosis. Int J Mol Sci. 2021 Apr 17;22(8):4176.
  • Hamdan F, Ylosmaki E, Chiaro J, et al. Novel oncolytic adenovirus expressing enhanced cross-hybrid IgGA Fc PD-L1 inhibitor activates multiple immune effector populations leading to enhanced tumor killing in vitro, in vivo and with patient-derived tumor organoids. J Immunother Cancer. 2021 Aug;9(8):e003000.
  • Rosewell Shaw A, Porter CE, Yip T, et al. Oncolytic adeno-immunotherapy modulates the immune system enabling CAR T-cells to cure pancreatic tumors. Commun Biol. 2021 Mar 19;4(1):368.
  • Zhang H, Zhang Y, Dong J, et al. Recombinant adenovirus expressing the fusion protein PD1PVR improves CD8(+) T cell-mediated antitumor efficacy with long-term tumor-specific immune surveillance in hepatocellular carcinoma. Cell Oncol (Dordr). 2021 Dec;44(6):1243–1255.
  • Vitale M, Scialo F, Passariello M, et al. Oncolytic adenoviral vector-mediated expression of an anti-PD-L1-scFv improves anti-tumoral efficacy in a melanoma mouse model. Front Oncol. 2022;12:902190.
  • Zhou P, Wang X, Xing M, et al. Intratumoral delivery of a novel oncolytic adenovirus encoding human antibody against PD-1 elicits enhanced antitumor efficacy. Mol Ther Oncolytics. 2022 Jun 16;25:236–248. 10.1016/j.omto.2022.04.007.
  • Tanoue K, Rosewell Shaw A, Watanabe N, et al. Armed oncolytic adenovirus-expressing PD-L1 mini-body enhances antitumor effects of chimeric antigen receptor T cells in solid tumors. Cancer Res. 2017 Apr 15;77(8):2040–2051.
  • Huang Y, Lv SQ, Liu PY, et al. A SIRPalpha-Fc fusion protein enhances the antitumor effect of oncolytic adenovirus against ovarian cancer. Mol Oncol. 2020 Mar;14(3):657–668.
  • Zhang B, Shu Y, Hu S, et al. In situ tumor vaccine expressing anti-CD47 antibody enhances antitumor immunity. Front Oncol. 2022;12:897561.
  • Takimoto CH, Chao MP, Gibbs C, et al. The macrophage ‘do not eat me’ signal, CD47, is a clinically validated cancer immunotherapy target. Ann Oncol. 2019 Mar 1;30(3):486–489.
  • Choi IK, Lee YS, Yoo JY, et al. Effect of decorin on overcoming the extracellular matrix barrier for oncolytic virotherapy. Gene Ther. 2010 Feb;17(2):190–201.
  • Xu W, Neill T, Yang Y, et al. The systemic delivery of an oncolytic adenovirus expressing decorin inhibits bone metastasis in a mouse model of human prostate cancer. Gene Ther. 2015 Mar;22(3):247–256.
  • Li Y, Hong J, Oh JE, et al. Potent antitumor effect of tumor microenvironment-targeted oncolytic adenovirus against desmoplastic pancreatic cancer. Int J Cancer. 2018 Jan 15;142(2):392–413.
  • Kim JH, Lee YS, Kim H, et al. Relaxin expression from tumor-targeting adenoviruses and its intratumoral spread, apoptosis induction, and efficacy. J Natl Cancer Inst. 2006 Oct 18;98(20):1482–1493.
  • Jung BK, Ko HY, Kang H, et al. Relaxin-expressing oncolytic adenovirus induces remodeling of physical and immunological aspects of cold tumor to potentiate PD-1 blockade. J Immunother Cancer. 2020 Aug;8(2):e000763.
  • Cheng J, Sauthoff H, Huang Y, et al. Human matrix metalloproteinase-8 gene delivery increases the oncolytic activity of a replicating adenovirus. Mol Ther. 2007 Nov;15(11):1982–1990.
  • Garantziotis S, Savani RC. Hyaluronan biology: a complex balancing act of structure, function, location and context. Matrix Biol. 2019 May;78-79:1–10.
  • Rodriguez-Garcia A, Gimenez-Alejandre M, Rojas JJ, et al. Safety and efficacy of VCN-01, an oncolytic adenovirus combining fiber HSG-binding domain replacement with RGD and hyaluronidase expression. Clin Cancer Res. 2015 Mar 15;21(6):1406–1418.
  • Bazan-Peregrino M, Garcia-Carbonero R, Laquente B, et al. VCN-01 disrupts pancreatic cancer stroma and exerts antitumor effects. J Immunother Cancer. 2021 Nov;9(11):e003254.
  • Farrera-Sal M, Moreno R, Mato-Berciano A, et al. Hyaluronidase expression within tumors increases virotherapy efficacy and T cell accumulation. Mol Ther Oncolytics. 2021 Sep 24;22:27–35. 10.1016/j.omto.2021.05.009.
  • Kiyokawa J, Kawamura Y, Ghouse SM, et al. Modification of extracellular matrix enhances oncolytic adenovirus immunotherapy in glioblastoma. Clin Cancer Res. 2021 Feb 1;27(3):889–902.
  • Mato-Berciano A, Morgado S, Maliandi MV, et al. Oncolytic adenovirus with hyaluronidase activity that evades neutralizing antibodies: VCN-11. J Control Release. 2021 Apr 10;332:517–528. 10.1016/j.jconrel.2021.02.035.
  • Yumul R, Richter M, Lu ZZ, et al. Epithelial junction opener improves oncolytic adenovirus therapy in mouse tumor models. Hum Gene Ther. 2016 Apr;27(4):325–337.
  • Tedcastle A, Illingworth S, Brown A, et al. Actin-resistant DNAse I expression from oncolytic adenovirus enadenotucirev enhances its intratumoral Spread and reduces tumor growth. Mol Ther. 2016 Apr;24(4):796–804.
  • Li J, Liu H, Li L, et al. The combination of an oxygen-dependent degradation domain-regulated adenovirus expressing the chemokine RANTES/CCL5 and NK-92 cells exerts enhanced antitumor activity in hepatocellular carcinoma. Oncol Rep. 2013 Mar;29(3):895–902.
  • Rizvi S, Gores GJ, Corey KE. The two faces of relaxin in cancer: antitumor or protumor? Hepatology. 2020 Mar;71(3):1117–1119.
  • Ahn HM, Hong J, Yun CO. Oncolytic adenovirus coexpressing interleukin-12 and shVEGF restores antitumor immune function and enhances antitumor efficacy. Oncotarget. 2016 Dec 20; 7(51):84965–84980.
  • Kim BG, Malek E, Choi SH, et al. Novel therapies emerging in oncology to target the TGF-beta pathway. J Hematol Oncol. 2021 Apr 6;14(1):55.
  • Hu Z, Zhang Z, Guise T, et al. Systemic delivery of an oncolytic adenovirus expressing soluble transforming growth factor-beta receptor II-Fc fusion protein can inhibit breast cancer bone metastasis in a mouse model. Hum Gene Ther. 2010 Nov;21(11):1623–1629.
  • Larson C, Oronsky B, Abrouk NE, et al. Toxicology and biodistribution of AdAPT-001, a replication-competent type 5 adenovirus with a trap for the immunosuppressive cytokine, TGF-beta. Am J Cancer Res. 2021;11(10):5184–5189.
  • Liu Z, Yang Y, Zhang X, et al. An Oncolytic adenovirus encoding decorin and granulocyte macrophage colony stimulating factor inhibits tumor growth in a colorectal tumor model by targeting pro-tumorigenic signals and via immune activation. Hum Gene Ther. 2017 Aug;28(8):667–680.
  • Kim SY, Kang D, Choi HJ, et al. Prime-boost immunization by both DNA vaccine and oncolytic adenovirus expressing GM-CSF and shRNA of TGF-beta2 induces anti-tumor immune activation. Oncotarget. 2017 Feb 28;8(9):15858–15877.
  • Freedman JD, Duffy MR, Lei-Rossmann J, et al. An oncolytic virus expressing a T-cell engager simultaneously targets cancer and immunosuppressive stromal cells. Cancer Res. 2018 Dec 15;78(24):6852–6865.
  • Scott EM, Jacobus EJ, Lyons B, et al. Bi- and tri-valent T cell engagers deplete tumour-associated macrophages in cancer patient samples. J Immunother Cancer. 2019 Nov 21;7(1):320.
  • Shin SP, Goh AR, Ju JM, et al. Local adenoviral delivery of soluble CD200R-Ig enhances antitumor immunity by inhibiting CD200-beta-catenin-driven M2 macrophage. Mol Ther Oncolytics. 2021 Dec 17;23:138–150.
  • Kennedy BE, Sadek M, Gujar SA. Targeted metabolic reprogramming to improve the efficacy of oncolytic virus therapy. Mol Ther. 2020 Jun 3; 28(6):1417–1421.
  • Rivadeneira DB, DePeaux K, Wang Y, et al. Oncolytic viruses engineered to enforce leptin expression reprogram tumor-infiltrating T cell metabolism and promote tumor clearance. Immunity. 2019 Sep 17;51(3):548–560 e4.
  • Morsy MA, Gu M, Motzel S , et al. An adenoviral vector deleted for all viral coding sequences results in enhanced safety and extended expression of a leptin transgene. Proc. Natl. Acad. Sci. USA. 1998 Jul 7;95(14):7866–7871.
  • Eriksson E, Milenova I, Wenthe J, et al. Shaping the tumor stroma and sparking immune activation by CD40 and 4-1BB signaling induced by an armed oncolytic virus. Clin Cancer Res. 2017 Oct 1;23(19):5846–5857.
  • Lu SC, Hansen MJ, Hemsath JR, et al. Modulating oncolytic adenovirus immunotherapy by driving two axes of the immune system by expressing 4-1BBL and CD40L. Hum Gene Ther. 2022 Mar;33(5–6):250–261.
  • Ylosmaki E, Ylosmaki L, Fusciello M, et al. Characterization of a novel OX40 ligand and CD40 ligand-expressing oncolytic adenovirus used in the PeptiCRAd cancer vaccine platform. Mol Ther Oncolytics. 2021 Mar 26;20:459–469.
  • Choi IK, Li Y, Oh E, et al. Oncolytic adenovirus expressing IL-23 and p35 elicits IFN-gamma- and TNF-alpha-co-producing T cell-mediated antitumor immunity. PLoS One. 2013;8(7):e67512.
  • Du YN, Wei Q, Zhao LJ, et al. Hydrogel-based co-delivery of CIK cells and oncolytic adenovirus armed with IL12 and IL15 for cancer immunotherapy. Biomed Pharmacother. 2022 Jul;151:113110.
  • Zhang Y, Zhang H, Wei M, et al. Recombinant adenovirus expressing a soluble fusion protein PD-1/CD137L subverts the suppression of CD8(+) T cells in HCC. Mol Ther. 2019 Nov 6;27(11):1906–1918.
  • Porter CE, Rosewell Shaw A, Jung Y, et al. Oncolytic adenovirus armed with bite, cytokine, and checkpoint inhibitor enables CAR T cells to control the growth of heterogeneous tumors. Mol Ther. 2020 May 6;28(5):1251–1262.
  • Eriksson E, Milenova I, Wenthe J, et al. IL-6 Signaling blockade during CD40-mediated immune activation favors antitumor factors by reducing TGF-beta, collagen type I, and PD-L1/PD-1. J Immunol. 2019 Feb 1;202(3):787–798.
  • Oh E, Choi IK, Hong J, et al. Oncolytic adenovirus coexpressing interleukin-12 and decorin overcomes Treg-mediated immunosuppression inducing potent antitumor effects in a weakly immunogenic tumor model. Oncotarget. 2017 Jan 17;8(3):4730–4746.
  • Nishio N, Diaconu I, Liu H, et al. Armed oncolytic virus enhances immune functions of chimeric antigen receptor-modified T cells in solid tumors. Cancer Res. 2014 Sep 15;74(18):5195–5205.
  • Cervera-Carrascon V, Siurala M, Santos JM, et al. TNFa and IL-2 armed adenoviruses enable complete responses by anti-PD-1 checkpoint blockade. Oncoimmunology. 2018;7(5):e1412902.
  • Havunen R, Siurala M, Sorsa S, et al. Oncolytic adenoviruses armed with tumor necrosis factor alpha and Interleukin-2 enable successful adoptive cell therapy. Mol Ther Oncolytics. 2017 Mar 17;4:77–86.
  • Quixabeira DCA, Cervera-Carrascon V, Santos JM, et al. Local therapy with an engineered oncolytic adenovirus enables antitumor response in non-injected melanoma tumors in mice treated with aPD-1. Oncoimmunology. 2022;11(1):2028960.
  • Kim W, Seong J, Oh HJ, et al. A novel combination treatment of armed oncolytic adenovirus expressing IL-12 and GM-CSF with radiotherapy in murine hepatocarcinoma. J Radiat Res. 2011;52(5):646–654.
  • Parks RJ, Chen L, Anton M, et al. A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc Natl Acad Sci USA. 1996;93(24):13565–13570.
  • Morral N, Parks RJ, Zhou H, et al. High doses of a helper-dependent adenoviral vector yield supraphysiological levels of α 1 -antitrypsin with Negligible toxicity. Hum Gene Ther. 1998;9(18):2709–2716.
  • Brunetti-Pierri N, Ng T, Iannitti D, et al. Transgene expression up to 7 years in nonhuman primates following hepatic transduction with helper-dependent adenoviral vectors. Hum Gene Ther. 2013 Aug;24(8):761–765.
  • Weaver EA, Nehete PN, Buchl SS, et al. Comparison of replication-competent, first generation, and helper-dependent adenoviral vaccines. PloS one. 2009;4(3):e5059.
  • Weaver EA, Nehete PN, Nehete BP, et al. Comparison of systemic and mucosal immunization with helper-dependent adenoviruses for vaccination against mucosal challenge with SHIV. PLoS One. 2013;8(7):e67574.
  • Harui A, Roth MD, Kiertscher SM, et al. Vaccination with helper-dependent adenovirus enhances the generation of transgene-specific CTL. Gene Ther. 2004 Nov;11(22):1617–1626.
  • Fu YH, He JS, Zheng XX, et al. Intranasal vaccination with a helper-dependent adenoviral vector enhances transgene-specific immune responses in BALB/c mice. Biochem Biophys Res Commun. 2010 Jan 1;391(1):857–861.
  • Rosewell Shaw A, Porter C, Biegert G, et al. HydrAd: a helper-dependent adenovirus targeting multiple immune pathways for cancer immunotherapy. Cancers (Basel). 2022 Jun 2;14(11):2769.
  • Valadi H, Ekstrom K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007 Jun;9(6):654–659.
  • Pandey MS, Wang C, Umlauf S, et al. Simultaneous inhibition of PD-1 and stimulation of CD40 signaling pathways by anti-PD-L1/CD40L bispecific fusion protein synergistically activate target and effector Cells. Int J Mol Sci. 2021 Oct 21;22(21):11302.
  • de Silva S, Fromm G, Shuptrine CW, et al. CD40 enhances type I interferon responses downstream of CD47 blockade, bridging innate and adaptive immunity. Cancer Immunol Res. 2020 Feb;8(2):230–245.
  • Fromm G, de Silva S, Johannes K, et al. Agonist redirected checkpoint, PD1-Fc-OX40L, for cancer immunotherapy. J Immunother Cancer. 2018 Dec 18;6(1):149.
  • Guedan S, Alemany R. CAR-T cells and oncolytic viruses: joining forces to overcome the solid tumor challenge. Front Immunol. 2018;9:2460.
  • Kuryk L, Moller AW, Jaderberg M. Combination of immunogenic oncolytic adenovirus ONCOS-102 with anti-PD-1 pembrolizumab exhibits synergistic antitumor effect in humanized A2058 melanoma huNOG mouse model. Oncoimmunology. 2019;8(2):e1532763.
  • Yang Y, Xu W, Peng D, et al. An oncolytic adenovirus targeting transforming growth factor beta inhibits protumorigenic signals and produces immune activation: a novel approach to enhance anti-PD-1 and anti-CTLA-4 therapy. Hum Gene Ther. 2019 Sep;30(9):1117–1132.
  • Hu HJ, Liang X, Li HL, et al. Enhanced anti-melanoma efficacy through a combination of the armed oncolytic adenovirus ZD55-IL-24 and immune checkpoint blockade in B16-bearing immunocompetent mouse model. Cancer Immunol Immunother. 2021 Dec;70(12):3541–3555.
  • Wenthe J, Naseri S, Hellstrom AC, et al. Immune priming using DC- and T cell-targeting gene therapy sensitizes both treated and distant B16 tumors to checkpoint inhibition. Mol Ther Oncolytics. 2022 Mar 17;24:429–442.
  • Zhang H, Xie W, Zhang Y, et al. Oncolytic adenoviruses synergistically enhance anti-PD-L1 and anti-CTLA-4 immunotherapy by modulating the tumour microenvironment in a 4T1 orthotopic mouse model. Cancer Gene Ther. 2022 May;29(5):456–465.
  • Farrera-Sal M, Moya-Borrego L, Bazan-Peregrino M, et al. Evolving status of clinical immunotherapy with oncolytic adenovirus. Clin Cancer Res. 2021 Jun 1;27(11):2979–2988.
  • Mantwill K, Klein FG, Wang D, et al. Concepts in oncolytic adenovirus therapy. Int J Mol Sci. 2021 Sep 29;22(19):10522.
  • Young AM, Archibald KM, Tookman LA, et al. Failure of translation of human adenovirus mRNA in murine cancer cells can be partially overcome by L4-100K expression in vitro and in vivo. Mol Ther. 2012 Sep;20(9):1676–1688.
  • Siurala M, Vaha-Koskela M, Havunen R, et al. Syngeneic Syrian hamster tumors feature tumor-infiltrating lymphocytes allowing adoptive cell therapy enhanced by oncolytic adenovirus in a replication permissive setting. Oncoimmunology. 2016 May;5(5):e1136046.
  • McKenna MK, Rosewell-Shaw A, Suzuki M. Modeling the efficacy of oncolytic adenoviruses in vitro and in vivo: current and future perspectives. Cancers (Basel). 2020 Mar 7; 12(3):619.
  • Saruuldalai E, Park J, Kang D, et al. A host non-coding RNA, nc886, plays a pro-viral role by promoting virus trafficking to the nucleus. Mol Ther Oncolytics. 2022 Mar 17;24:683–694. .
  • Lei J, Jacobus EJ, Taverner WK, et al. Expression of human CD46 and trans-complementation by murine adenovirus 1 fails to allow productive infection by a group B oncolytic adenovirus in murine cancer cells. J Immunother Cancer. 2018 Jun 13;6(1):55.
  • Chartier C, Degryse E, Gantzer M, et al. Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli. J Virol. 1996 Jul;70(7):4805–4810.
  • Hamdan F, Martins B, Feodoroff M, et al. GAMER-Ad: a novel and rapid method for generating recombinant adenoviruses. Mol Ther Methods Clin Dev. 2021 Mar 12;20:625–634.
  • Ni N, Deng F, He F, et al. A one-step construction of adenovirus (OSCA) system using the Gibson DNA assembly technology. Mol Ther Oncolytics. 2021 Dec 17;23:602–611. 10.1016/j.omto.2021.11.011.
  • Hatanaka K, Ohnami S, Yoshida K, et al. A simple and efficient method for constructing an adenoviral cDNA expression library. Mol Ther. 2003 Jul;8(1):158–166.
  • Rojas LA, Condezo GN, Moreno R, et al. Albumin-binding adenoviruses circumvent pre-existing neutralizing antibodies upon systemic delivery. J Control Release. 2016 Sep 10;237:78–88. 10.1016/j.jconrel.2016.07.004.
  • Hofherr SE, Shashkova EV, Weaver EA, et al. Modification of adenoviral vectors with polyethylene glycol modulates in vivo tissue tropism and gene expression. Mol Ther. 2008 Jul;16(7):1276–1282.
  • Schmid M, Ernst P, Honegger A, et al. Adenoviral vector with shield and adapter increases tumor specificity and escapes liver and immune control. Nat Commun. 2018 Jan 31;9(1):450.
  • Yoon AR, Hong J, Kim SW, et al. Redirecting adenovirus tropism by genetic, chemical, and mechanical modification of the adenovirus surface for cancer gene therapy. Expert Opin Drug Deliv. 2016 Jun;13(6):843–858.
  • Barry MA, Rubin JD, Lu S-C. Retargeting adenoviruses for therapeutic applications and vaccines. FEBS Lett. 2020 Jun;594(12):1918–1946.
  • Saha B, Parks RJ, Nevels M. Human adenovirus type 5 vectors deleted of early region 1 (E1) undergo limited expression of early replicative E2 proteins and DNA replication in non-permissive cells. PLoS One. 2017;12(7):e0181012.
  • Dhar D, Spencer JF, Toth K, et al. Pre-existing immunity and passive immunity to adenovirus 5 prevents toxicity caused by an oncolytic adenovirus vector in the Syrian hamster model. Mol Ther. 2009 Oct;17(10):1724–1732. DOI:10.1038/mt.2009.156.