805
Views
0
CrossRef citations to date
0
Altmetric
Review

Biologic insights from single-cell studies of psoriasis and psoriatic arthritis

ORCID Icon, , , , ORCID Icon, , , , , & show all
Pages 1449-1461 | Received 07 Aug 2022, Accepted 28 Oct 2022, Published online: 09 Nov 2022

References

  • Kuret T, Sodin-Šemrl S, Leskošek B, et al. Single cell RNA sequencing in autoimmune inflammatory rheumatic diseases: current applications, challenges and a step toward precision medicine. Front Med. [Internet]. 2022. [cited 2022 Jul 30];8. Available from. https://www.frontiersin.org/articles/10.3389/fmed.2021.822804
  • Stuart T, Satija R. Integrative single-cell analysis. Nat Rev Genet. 2019;20(5):257–272.
  • Zhao M, Jiang J, Zhao M, et al. The application of single-cell RNA sequencing in studies of autoimmune diseases: a comprehensive review. Clin Rev Allergy Immunol. 2021;60(1):68–86.
  • Zhou X, Chen Y, Cui L, et al. Advances in the pathogenesis of psoriasis: from keratinocyte perspective. Cell Death Dis. 2022;13(1):1–13.
  • Lowes MA, Kikuchi T, Fuentes-Duculan J, et al. Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J Invest Dermatol. 2008;128(5):1207–1211.
  • Brembilla NC, Senra L, Boehncke W-H. The IL-17 family of cytokines in psoriasis: IL-17A and beyond. Front Immunol. [Internet]. 2018. [cited 2022 Jul 30];9. Available from. https://www.frontiersin.org/articles/10.3389/fimmu.2018.01682
  • Hawkes JE, Yan BY, Chan TC, et al. Discovery of the IL-23/IL-17 signaling pathway and the treatment of psoriasis. J Immunol Baltim Md. 1950;201:1605–1613. 2018.
  • Wang X-Y, Zhang C-L, Wang W-H. Time to relapse after treatment withdrawal for different biologics used to treat plaque psoriasis. Chin Med J (Engl). 2020;133(24):2998–3000.
  • FitzGerald O, Ogdie A, Chandran V, et al. Psoriatic arthritis. Nat Rev Dis Primer. 2021;7(1):1–17.
  • Wang EA, Suzuki E, Maverakis E, et al. Targeting IL-17 in psoriatic arthritis. Eur J Rheumatol. 2017;4(4):272–277.
  • Liu Y, Wang H, Taylor M, et al., Classification of human chronic inflammatory skin disease based on single-cell immune profiling. Sci Immunol. 2022;7(70): eabl9165.
  • Kashima Y, Sakamoto Y, Kaneko K, et al. Single-cell sequencing techniques from individual to multiomics analyses. Exp Mol Med. 2020;52(9):1419–1427.
  • See P, Lum J, Chen J, et al. A Single-Cell sequencing guide for immunologists. Front Immunol. [Internet]. 2018. [cited 2022 Sep 28];9. Available from. https://www.frontiersin.org/articles/10.3389/fimmu.2018.02425
  • Cai Y, Fleming C, Yan J. New insights of T cells in the pathogenesis of psoriasis. Cell Mol Immunol. 2012;9(4):302–309.
  • Casciano F, Pigatto PD, Secchiero P, et al. T cell hierarchy in the pathogenesis of psoriasis and associated cardiovascular comorbidities. Front Immunol. 2018;9:1390.
  • Austin LM, Ozawa M, Kikuchi T, et al. The majority of epidermal T cells in psoriasis vulgaris lesions can produce type 1 cytokines, interferon-γ, interleukin-2, and tumor necrosis factor-α, defining TC1 (cytotoxic T lymphocyte) and TH1 effector populations:1 a type 1 differentiation bias is also measured in circulating blood T cells in psoriatic patients. J Invest Dermatol. 1999;113(5):752–759.
  • Reynolds G, Vegh P, Fletcher J, et al., Developmental cell programs are co-opted in inflammatory skin disease. Science.2021; 371(6527): eaba6500.
  • Kim J, Lee J, Kim HJ, et al., Single-cell transcriptomics applied to emigrating cells from psoriasis elucidate pathogenic versus regulatory immune cell subsets. J Allergy Clin Immunol. 2021;148(5): 1281–1292.
  • Liu J, Chang H-W, Huang Z-M, et al., Single-cell RNA sequencing of psoriatic skin identifies pathogenic Tc17 cell subsets and reveals distinctions between CD8+ T cells in autoimmunity and cancer. J Allergy Clin Immunol. 2021;147(6):2370–2380.
  • Penkava F, Velasco-Herrera MDC, Young MD, et al. Single-cell sequencing reveals clonal expansions of pro-inflammatory synovial CD8 T cells expressing tissue-homing receptors in psoriatic arthritis. Nat Commun. 2020;11(1):4767.
  • Matos TR, O’Malley JT, Lowry EL, et al. Clinically resolved psoriatic lesions contain psoriasis-specific IL-17–producing αβ T cell clones. J Clin Invest. 2017;127(11):4031–4041.
  • Harden JL, Hamm D, Gulati N, et al. Deep Sequencing of the T-cell receptor repertoire demonstrates polyclonal T-cell infiltrates in psoriasis [Internet]. F1000Research; 2015 cited 2022 Aug 7]. Available from 2022 Aug 7: https://f1000research.com/articles/4-460.
  • Liu J, Kumar S, Hong J, et al. Combined single cell transcriptome and surface epitope profiling identifies potential biomarkers of psoriatic arthritis and facilitates diagnosis via machine learning. Front Immunol. 2022. [cited 2022 Jul 30];13: [Internet]. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2022.835760• This machine learning model showed over 70% accuracy in classifying ambiguous rashes into psoriatic arthritis and psoriasis.
  • Bassler K, Schulte-Schrepping J, Warnat-Herresthal S, et al. The myeloid cell compartment-cell by cell. Annu Rev Immunol. 2019;37(1):269–293.
  • Kawamoto H, Minato N. Myeloid cells. Int J Biochem Cell Biol. 2004;36(8):1374–1379.
  • Nakamizo S, Dutertre C-A, Khalilnezhad A, et al., Single-cell analysis of human skin identifies CD14+ type 3 dendritic cells co-producing IL1B and IL23A in psoriasis. J Exp Med. 2021;218(9): e20202345.
  • Gao Y, Yao X, Zhai Y, et al., Single cell transcriptional zonation of human psoriasis skin identifies an alternative immunoregulatory axis conducted by skin resident cells. Cell Death Dis. 2021;12(5): 1–13.
  • Zhou X, Ding S, Wang D, et al. Identification of cell markers and their expression patterns in skin based on single-cell RNA-sequencing profiles. Life. 2022;12(4):550.
  • Cheng JB, Sedgewick AJ, Finnegan AI, et al. Transcriptional programming of normal and inflamed human epidermis at single-cell resolution. Cell Rep. 2018;25(4):871–883.
  • Abji F, Rasti M, Gómez-Aristizábal A, et al. Proteinase-mediated macrophage signaling in psoriatic arthritis. Front Immunol. [Internet]. 2021 cited 2022 Jul 30;11. Available from]. https://www.frontiersin.org/articles/10.3389/fimmu.2020.629726.
  • Yager N, Cole S, Lara AL, et al. Ex vivo mass cytometry analysis reveals a profound myeloid proinflammatory signature in psoriatic arthritis synovial fluid. Ann Rheum Dis. 2021;80(12):1559–1567.
  • Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17–producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6(11):1123–1132.
  • Park YJ, Kim YH, Lee E-S, et al. Comparative analysis of single-cell transcriptome data reveals a novel role of keratinocyte-derived IL-23 in psoriasis. Front Immunol. 2022;13:905239.
  • Iznardo H, Puig L. Exploring the role of IL-36 cytokines as a new target in psoriatic disease. Int J Mol Sci. 2021;22(9):4344.
  • Goldstein JD, Bassoy EY, Caruso A, et al. IL-36 signaling in keratinocytes controls early IL-23 production in psoriasis-like dermatitis. Life Sci Alliance. 2020;3(6):e202000688.
  • Xia M, Hu S, Fu Y, et al. CCR10 regulates balanced maintenance and function of resident regulatory and effector T cells to promote immune homeostasis in the skin. J Allergy Clin Immunol. 2014;134(3):634–644.e10.
  • Li C, Xu M, Coyne J, et al. Psoriasis-associated impairment of CCL27/CCR10-derived regulation leads to IL-17A/IL-22-producing skin T-cell overactivation. J Allergy Clin Immunol. 2021;147(2):759–763.e9.
  • Duan X, Liu X, Liu N, et al. Inhibition of keratinocyte necroptosis mediated by RIPK1/RIPK3/MLKL provides a protective effect against psoriatic inflammation. Cell Death Dis. 2020;11(2):1–14.
  • Honda T, Kabashima K. Involvement of necroptosis in the development of imiquimod-induced psoriasis-like dermatitis (BA3P.135). J Immunol. 2014;192:44.5.
  • Shou Y, Yang L, Yang Y, et al. Inhibition of keratinocyte ferroptosis suppresses psoriatic inflammation. Cell Death Dis. 2021;12(11):1009.
  • Wang J, Li X, Zhang P, et al. CHRNA5 Is overexpressed in patients with psoriasis and promotes psoriasis-like inflammation in mouse models. J Invest Dermatol. 2022;142(11):P2978–2987.
  • Hughes TK, Wadsworth MH, Gierahn TM, et al. Second-strand synthesis-based massively parallel scRNA-seq reveals cellular states and molecular features of human inflammatory skin pathologies. Immunity. 2020;53(4):878–894.e7.
  • Eberl G, Colonna M, Di Santo JP, et al. Innate lymphoid cells: a new paradigm in immunology. Science. 2015;348(6237):aaa6566.
  • Teunissen MBM, Munneke JM, Bernink JH, et al. Composition of innate lymphoid cell subsets in the human skin: enrichment of NCR(+) ILC3 in lesional skin and blood of psoriasis patients. J Invest Dermatol. 2014;134(9):2351–2360.
  • Bielecki P, Riesenfeld SJ, Hütter J-C, et al., Skin-resident innate lymphoid cells converge on a pathogenic effector state. Nature.2021; 592(7852): 128–132.
  • Villanova F, Flutter B, Tosi I, et al. Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis. J Invest Dermatol. 2014;134(4):984–991.
  • Honan AM, Chen Z. Stromal cells underlining the paths from autoimmunity, inflammation to cancer with roles beyond structural and nutritional support. Front Cell Dev Biol. Internet]. 2021 cited 2022 Jul 30;9. Available from. https://www.frontiersin.org/articles/10.3389/fcell.2021.658984
  • Sun P, Vu R, Dragan M, et al. OVOL1 regulates psoriasis-like skin inflammation and epidermal hyperplasia. J Invest Dermatol. 2021;141(6):1542–1552.
  • Tseng P-Y, Hoon MA. Oncostatin M can sensitize sensory neurons in inflammatory pruritus. Sci Transl Med. 2021;13(619):eabe3037.
  • Rendon A, Schäkel K. Psoriasis pathogenesis and treatment. Int J Mol Sci. 2019;20(6):1475.
  • Nussbaum L, Chen Y L, Ogg GS. Ogg G s. role of regulatory T cells in psoriasis pathogenesis and treatment. Br J Dermatol. 2021;184(1):14–24.
  • Ghoreschi K, Weigert C, Röcken M. Immunopathogenesis and role of T cells in psoriasis. Clin Dermatol. 2007;25(6):574–580.
  • Mastorino L, Roccuzzo G, Dapavo P, et al. Patients with psoriasis resistant to multiple biological therapies: characteristics and definition of a difficult-to-treat population. Br J Dermatol [Internet]. cited 2022 Jul 30];n/a. Available from 2022 Jul 30: http://onlinelibrary.wiley.com/doi/abs/10.1111/bjd.21048.
  • Raimundo F, Meng-Papaxanthos L, Vallot C, et al. Machine learning for single-cell genomics data analysis. Curr Opin Syst Biol. 2021;26:64–71.
  • Qiu P. Embracing the dropouts in single-cell RNA-seq analysis. Nat Commun. 2020;11(1):1169.
  • scSorter: assigning cells to known cell types according to marker genes | genome biology | full text [Internet]. cited 2022 Sep 28]. Available from 2022 Sep 28: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02281-7.
  • Lange M, Bergen V, Klein M, et al. CellRank for directed single-cell fate mapping. Nat Methods. 2022;19(2):159–170.
  • Lähnemann D, Köster J, Szczurek E, et al. Eleven grand challenges in single-cell data science. Genome Biol. 2020;21(1):31.
  • Merritt CR, Ong GT, Church SE, et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat Biotechnol. 2020;38(5):586–599.
  • Ding J, Adiconis X, Simmons SK, et al. Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat Biotechnol. 2020;38(6):737–746.
  • Ziegenhain C, Vieth B, Parekh S, et al. Comparative analysis of single-cell RNA sequencing methods. Mol Cell. 2017;65(4):631–643.e4.
  • Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202–1214.
  • Zilionis R, Nainys J, Veres A, et al. Single-cell barcoding and sequencing using droplet microfluidics. Nat Protoc. 2017;12(1):44–73.
  • Clark IC, Fontanez KM, Meltzer RH, et al. Microfluidics-free single-cell genomics with templated emulsification [Internet]. bio Rxiv; 2022 [cited 2022 Jul 30]. p. 2022.06.10.495582. Available from: https://www.biorxiv.org/content/10.1101/2022.06.10.495582v1.
  • Hao Y, Hao S, Andersen-Nissen E, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184(13):3573–3587.e29.
  • Choudhary S, Satija R. Comparison and evaluation of statistical error models for scRNA-seq. Genome Biol. 2022;23:27.
  • Mimitou EP, Lareau CA, Chen KY, et al. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat Biotechnol. 2021;39(10):1246–1258.
  • Haque A, Engel J, Teichmann SA, et al. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 2017;9(1):75.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.