188
Views
0
CrossRef citations to date
0
Altmetric
Review

Cell homing strategy as a promising approach to the vitality of pulp-dentin complexes in endodontic therapy: focus on potential biomaterials

, , , , , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1405-1416 | Received 29 Jan 2022, Accepted 28 Oct 2022, Published online: 08 Nov 2022

References

  • Eramo S, Natali A, Pinna R, et al. Dental pulp regeneration via cell homing. Int Endod J. 2018;51(4):405–419. .
  • Huang GT, Yamaza T, Shea LD, et al. Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng Part A. 2010;16(2):605–615.
  • Ishizaka R, Iohara K, Murakami M, et al. Regeneration of dental pulp following pulpectomy by fractionated stem/progenitor cells from bone marrow and adipose tissue. Biomaterials. 2012;33(7):2109–2118.
  • Kim JY, Xin X, Moioli EK, et al. Regeneration of dental-pulp-like tissue by chemotaxis-induced cell homing. Tissue Eng Part A. 2010;16(10):3023–3031.
  • Murray PE, Garcia-Godoy F, Hargreaves KM. Regenerative endodontics: a review of current status and a call for action. J Endod. 2007;33(4):377–390.
  • Duncan HF, Kobayashi Y, Shimizu E. Growth factors and cell homing in dental tissue regeneration. Curr Oral Health Rep. 2018;5(4):276–285.
  • Abou Neel EA, Chrzanowski W, Salih VM, et al. Tissue engineering in dentistry. J Dent. 2014;42(8):915–928.
  • Jontell M, Okiji T, Dahlgren U, et al. Immune defense mechanisms of the dental pulp. Crit Rev Oral Biol Med. 1998;9(2):179–200.
  • Yu C, Abbott PV. An overview of the dental pulp: its functions and responses to injury. Aust Dent J. 2007;52(1 Suppl):S4–16.
  • Lizier NF, Kerkis A, Gomes CM, et al. Scaling-up of dental pulp stem cells isolated from multiple niches. PLoS One. 2012;7(6):e39885.
  • Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res. 2003;18(4):696–704.
  • Zhang YD, Chen Z, Song YQ, et al. Making a tooth: growth factors, transcription factors, and stem cells. Cell Res. 2005;15(5):301–316.
  • Soares DG, Bordini EA, Swanson WB, et al. Platform technologies for regenerative endodontics from multifunctional biomaterials to tooth-on-a-chip strategies. Clin Oral Investig. 2021;25(8):4749–4779.
  • Khurshid Z, Alnaim AJA, Alhashim AAA, et al. Future of decellularized dental pulp matrix in regenerative endodontics. Eur J Dent. 2022.
  • Nait Lechguer A, Kuchler-Bopp S, Hu B, et al. Vascularization of engineered teeth. J Dent Res. 2008;87(12):1138–1143.
  • Sumita Y, Tsuchiya S, Asahina I, et al. The location and characteristics of two populations of dental pulp cells affect tooth development. Eur J Oral Sci. 2009;117(2):113–121.
  • Huang G-J, Garcia-Godoy F. Missing concepts in de novo pulp regeneration. J Dent Res. 2014;93(8):717–724.
  • Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–926.
  • Honda MJ, Sumita Y, Kagami H, et al. Histological and immunohistochemical studies of tissue engineered odontogenesis. Arch Histol Cytol. 2005;68(2):89–101.
  • Nakao K, Morita R, Saji Y, et al. The development of a bioengineered organ germ method. Nat Methods. 2007;4(3):227–230.
  • Zhang L, Morsi Y, Wang Y, et al. Review scaffold design and stem cells for tooth regeneration. Japan Dent Sci Rev. 2013;49(1):14–26. .
  • Ohara T, Itaya T, Usami K, et al. Evaluation of scaffold materials for tooth tissue engineering. J Biomed Mater Res A. 2010;94A(3):800–805.
  • Yuan Z, Nie H, Wang S, et al. Biomaterial selection for tooth regeneration. Tissue Eng Part B Rev. 2011;17(5):373–388.
  • Huang GT-J. Dental pulp and dentin tissue engineering and regeneration–advancement and challenge. Front Biosci (Elite Ed). 2011;3(2):788.
  • Uijlenbroek H, Liu Y, Wismeijer D. Soft tissue expansion: principles and inferred intraoral hydrogel tissue expanders. 2015.
  • Chang Y, Zhang F, Liu F, et al. Self-swelling tissue expander for soft tissue reconstruction in the craniofacial region: an in vitro and in vivo evaluation. Biomed Mater Eng. 2022;33(1):77–90.
  • Dissanayaka WL, Zhang C. Scaffold-based and scaffold-free strategies in dental pulp regeneration. J Endod. 2020;46(9):S81–S9.
  • Ovsianikov A, Khademhosseini A, Mironov V. The synergy of scaffold-based and scaffold-free tissue engineering strategies. Trends Biotechnol. 2018;36(4):348–357.
  • Luo L, He Y, Wang X, et al. Potential roles of dental pulp stem cells in neural regeneration and repair. Stem Cells Int. 2018;2018:1–15. 2018 .
  • Mitsiadis TA, Magloire H, Pagella P. Nerve growth factor signalling in pathology and regeneration of human teeth. Sci Rep. 2017;7(1):1–14.
  • Lee S-M, Zhang Q, Le AD. Dental stem cells: sources and potential applications. Curr Oral Health Rep. 2014;1(1):34–42.
  • Yoshida S, Tomokiyo A, Hasegawa D, et al. Insight into the role of dental pulp stem cells in regenerative therapy. Biology (Basel). 2020;9(7):160.
  • Miran S, Mitsiadis TA, Pagella P. Innovative dental stem cell-based research approaches: the future of dentistry. Stem Cells Int. 2016;2016:1–7.
  • Hughes D, Song B. Dental and nondental stem cell based regeneration of the craniofacial region: a tissue based approach. Stem Cells Int. 2016;2016:1–20.
  • Bakopoulou A, Leyhausen G, Volk J, et al. Comparative characterization of STRO-1(neg)/CD146(pos) and STRO-1(pos)/CD146(pos) apical papilla stem cells enriched with flow cytometry. Arch Oral Biol. 2013;58(10):1556–1568.
  • Garna D, Kaur M, Hughes FJ, et al. Comparison of the expression of periodontal markers in dental and bone marrow-derived mesenchymal stem cells. Open Dent J. 2020;14(1):196–202.
  • Kandalam S, De Berdt P, Ucakar B, et al. Human dental stem cells of the apical papilla associated to BDNF-loaded pharmacologically active microcarriers (PAMs) enhance locomotor function after spinal cord injury. Int J Pharm. 2020;587:119685.
  • De Berdt P, Vanacker J, Ucakar B, et al. Dental apical papilla as therapy for spinal cord injury. J Dent Res. 2015;94(11):1575–1581.
  • Wu T, Xu W, Chen H, et al. Comparison of the differentiation of dental pulp stem cells and periodontal ligament stem cells into neuron-like cells and their effects on focal cerebral ischemia. Acta Biochim Biophys Sin (Shanghai). 2020;52(9):1016–1029.
  • Rajan TS, Giacoppo S, Diomede F, et al. The secretome of periodontal ligament stem cells from MS patients protects against EAE. Sci Rep. 2016;6(1):1–16.
  • Hargreaves KM, Diogenes A, Teixeira FB. Treatment options: biological basis of regenerative endodontic procedures. Pediatr Dent. 2013;35(2):129–140.
  • Kahler B, Rossi-Fedele G, Chugal N, et al. An evidence-based review of the efficacy of treatment approaches for immature permanent teeth with pulp necrosis. J Endod. 2017;43(7):1052–1057.
  • Reichardt LF. Neurotrophin-regulated signalling pathways. Philos Trans R Soc B. 2006;361(1473):1545–1564.
  • Tomellini E, Lagadec C, Polakowska R, et al. Role of p75 neurotrophin receptor in stem cell biology: more than just a marker. Cell Mol Life Sci. 2014;71(13):2467–2481.
  • Levi-Montalcini R. The nerve growth factor 35 years later. Science. 1987;237(4819):1154–1162.
  • Silverman JD, Kruger L. An interpretation of dental innervation based upon the pattern of calcitonin gene-related peptide (CGRP)-immunoreactive thin sensory axons. Somatosens Res. 1987;5(2):157–175
  • Bernard GW, Shih C. The osteogenic stimulating effect of neuroactive calcitonin gene-related peptide. Peptides. 1990;11(4):625–632.
  • Zhang Y, Xu J, Ruan YC, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat Med. 2016;22(10):1160–1169.
  • El Karim IA, Linden GJ, Irwin CR, et al. Neuropeptides regulate expression of angiogenic growth factors in human dental pulp fibroblasts. J Endod. 2009;35(6):829–833.
  • Kerezoudis NP, Olgart L, Edwall L. Involvement of substance P but not nitric oxide or calcitonin gene-related peptide in neurogenic plasma extravasation in rat incisor pulp and lip. Arch Oral Biol. 1994;39(9):769–774.
  • Heyeraas KJ, Kim S, Raab WH, et al. Effect of electrical tooth stimulation on blood flow, interstitial fluid pressure and substance P and CGRP-immunoreactive nerve fibers in the low compliant cat dental pulp. Microvasc Res. 1994;47(3):329–343.
  • Iohara K, Imabayashi K, Ishizaka R, et al. Complete pulp regeneration after pulpectomy by transplantation of CD105+ stem cells with stromal cell-derived factor-1. Tissue Eng Part A. 2011;17(15–16):1911–1920.
  • Yildirim S, Fu SY, Kim K, et al. Tooth regeneration: a revolution in stomatology and evolution in regenerative medicine. Int J Oral Sci. 2011;3(3):107–116.
  • Mao JJ, Kim SG, Zhou J, et al. Regenerative endodontics: barriers and strategies for clinical translation. Dent Clin North Am. 2012;56(3):639–649.
  • Laird DJ, von Andrian UH, Wagers AJ. Stem cell trafficking in tissue development, growth, and disease. Cell. 2008;132(4):612–630.
  • Mao JJ, Stosich MS, Moioli EK, et al. Facial reconstruction by biosurgery: cell transplantation versus cell homing. Tissue Eng Part B Rev. 2010;16(2):257–262.
  • Kim SG, Zheng Y, Zhou J, et al. Dentin and dental pulp regeneration by the patient’s endogenous cells. Endod Topics. 2013;28(1):106–117.
  • Xiao L, Nasu M. From regenerative dentistry to regenerative medicine: progress, challenges, and potential applications of oral stem cells. Stem Cells Cloning. 2014;7:89–99.
  • Laureys WG, Cuvelier CA, Dermaut LR, et al. The critical apical diameter to obtain regeneration of the pulp tissue after tooth transplantation, replantation, or regenerative endodontic treatment. J Endod. 2013;39(6):759–763.
  • Moretti S, Bartolommei L, Galosi C, et al. Fine-tuning of Th17 cytokines in periodontal disease by IL-10. J Dent Res. 2015;94(9):1267–1275.
  • Wang F, Jiang Y, Huang X, et al. Pro-Inflammatory cytokine TNF-α attenuates BMP9-Induced osteo/odontoblastic differentiation of the Stem Cells of Dental Apical Papilla (SCAPs). Cell Physiol Biochem. 2017;41(5):1725–1735.
  • Kao RT, Murakami S, Beirne OR. The use of biologic mediators and tissue engineering in dentistry. Periodontol. 2000;50(1):127–153.
  • Chieruzzi M, Pagano S, Moretti S, et al. Nanomaterials for tissue engineering in dentistry. Nanomaterials. 2016;6(7):134.
  • Lau TT, Wang DA. Stromal cell-derived factor-1 (SDF-1): homing factor for engineered regenerative medicine. Expert Opin Biol Ther. 2011;11(2):189–197.
  • El-Sayed KM F, Jakusz K, Jochens A, et al. Stem cell transplantation for pulpal regeneration: a systematic review. Tissue Eng Part B Rev. 2015;21(5):451–460.
  • Suzuki T, Lee CH, Chen M, et al. Induced migration of dental pulp stem cells for in vivo pulp regeneration. J Dent Res. 2011;90(8):1013–1018.
  • Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–689.
  • Keung AJ, Asuri P, Kumar S, et al. Soft microenvironments promote the early neurogenic differentiation but not self-renewal of human pluripotent stem cells. Integr Biol. 2012;4(9):1049–1058.
  • Alipour M, Firouzi N, Aghazadeh Z, et al. The osteogenic differentiation of human dental pulp stem cells in alginate-gelatin/nano-hydroxyapatite microcapsules. BMC Biotechnol. 2021;21(1):1–12.
  • Saha K, Keung AJ, Irwin EF, et al. Substrate modulus directs neural stem cell behavior. Biophys J. 2008;95(9):4426–4438.
  • Semler EJ, Moghe PV. Engineering hepatocyte functional fate through growth factor dynamics: the role of cell morphologic priming. Biotechnol Bioeng. 2001;75(5):510–520.
  • Kim IG, Gil C-H, Seo J, et al. Mechanotransduction of human pluripotent stem cells cultivated on tunable cell-derived extracellular matrix. Biomaterials. 2018;150:100–111.
  • Fu J, Chuah YJ, Ang WT, et al. Optimization of a polydopamine (PD)-based coating method and polydimethylsiloxane (PDMS) substrates for improved mouse embryonic stem cell (ESC) pluripotency maintenance and cardiac differentiation. Biomater Sci. 2017;5(6):1156–1173.
  • Graziano A, d’Aquino R, MGC-D A, et al. Scaffold’s surface geometry significantly affects human stem cell bone tissue engineering. J Cell Physiol. 2008;214(1):166–172.
  • Umapathi R, Vepuri SB, Venkatesu P, et al. Comprehensive computational and experimental analysis of biomaterial toward the behavior of imidazolium-based ionic liquids: an interplay between hydrophilic and hydrophobic interactions. J Phys Chem A. 2017;121(18):4909–4922.
  • Braatz JA, Heifetz AH, Kehr CL. A new hydrophilic polymer for biomaterial coatings with low protein adsorption. J Biomater Sci Polym Ed. 1992;3(6):451–462.
  • Zhang B, Sun H, Wu L, et al. 3D printing of calcium phosphate bioceramic with tailored biodegradation rate for skull bone tissue reconstruction. Bio-Design and Manufacturing. 2019;2(3):161–171.
  • Zhang B, Pei X, Song P, et al. Porous bioceramics produced by inkjet 3D printing: effect of printing ink formulation on the ceramic macro and micro porous architectures control. Compos Part B Eng. 2018;155:112–121.
  • Maleki Dizaj S, Sharifi S, Ahmadian E, et al. An update on calcium carbonate nanoparticles as cancer drug/gene delivery system. Expert Opin Drug Deliv. 2019;16(4):331–345.
  • Zhu H, Wang X, Han Y, et al. Icariin promotes the migration of bone marrow stromal cells via the SDF-1α/HIF-1α/CXCR4 pathway. Drug Des Devel Ther. 2018;12:4023–4031.
  • Zhou T, Yan Y, Zhao C, et al. Resveratrol improves osteogenic differentiation of senescent bone mesenchymal stem cells through inhibiting endogenous reactive oxygen species production via AMPK activation. Redox Rep. 2019;24(1):62–69.
  • Li Y, Wang J, Chen G, et al. Quercetin promotes the osteogenic differentiation of rat mesenchymal stem cells via mitogen-activated protein kinase signaling. Exp Ther Med. 2015;9(6):2072–2080.
  • Rassi CM, Lieberherr M, Chaumaz G, et al. Modulation of osteoclastogenesis in porcine bone marrow cultures by quercetin and rutin. Cell Tissue Res. 2005;319(3):383–393.
  • Zhao B, Xiong Y, Zhang Y, et al. Rutin promotes osteogenic differentiation of periodontal ligament stem cells through the GPR30-mediated PI3K/AKT/mTOR signaling pathway. Exp Biol Med (Maywood). 2020;245(6):552–561.
  • Gu Q, Cai Y, Huang C, et al. Curcumin increases rat mesenchymal stem cell osteoblast differentiation but inhibits adipocyte differentiation. Pharmacogn Mag. 2012;8(31):202–208.
  • Mani H, Sidhu GS, Kumari R, et al. Curcumin differentially regulates TGF-beta1, its receptors and nitric oxide synthase during impaired wound healing. Biofactors. 2002;16(1–2):29–43.
  • Chen S, Liang H, Ji Y, et al. Curcumin modulates the crosstalk between macrophages and bone mesenchymal stem cells to ameliorate osteogenesis. Front Cell Dev Biol. 2021;9:634650.
  • Sharifi S, Zununi Vahed S, Ahmadian E, et al. Stem cell therapy: curcumin does the trick. Phytother Res. 2019;33(11):2927–2937.
  • Khezri K, Maleki Dizaj S, Rahbar Saadat Y, et al. Osteogenic differentiation of mesenchymal stem cells via curcumin-containing nanoscaffolds. Stem Cells Int. 2021 2021;2021:1–9.
  • Li M, Choi ST, Tsang KS, et al. DNA microarray expression analysis of baicalin-induced differentiation of C17.2 neural stem cells. Chembiochem. 2012;13(9):1286–1290.
  • Yao R, Zhang L, Li X, et al. Effects of epimedium flavonoids on proliferation and differentiation of neural stem cells in vitro. Neurol Res. 2010;32(7):736–742.
  • Sharifi S, Moghaddam FA, Abedi A, et al. Phytochemicals impact on osteogenic differentiation of mesenchymal stem cells. BioFactors. 2020;46(6):874–893.
  • Alipour M, Pouya B, Aghazadeh Z, et al. The antimicrobial, antioxidative, and anti-inflammatory effects of polycaprolactone/gelatin scaffolds containing chrysin for regenerative endodontic purposes. Stem Cells Int. 2021 2021;2021:1–11.
  • Forouzideh N, Nadri S, Fattahi A, et al. Epigallocatechin gallate loaded electrospun silk fibroin scaffold with anti-angiogenic properties for corneal tissue engineering. J Drug Delivery Sci Technol. 2020;56:101498.
  • Alipour M, Fadakar S, Aghazadeh M, et al. Synthesis, characterization, and evaluation of curcumin‐loaded endodontic reparative material. J Biochem Mol Toxicol. 2021;35(9):e22854.
  • Tseng P-C, Hou S-M, Chen R-J, et al. Resveratrol promotes osteogenesis of human mesenchymal stem cells by upregulating RUNX2 gene expression via the SIRT1/FOXO3A axis. J Bone Miner Res. 2011;26(10):2552–2563.
  • Samiei M, Abedi A, Sharifi S, et al. Early osteogenic differentiation stimulation of dental pulp stem cells by calcitriol and curcumin. Stem Cells Int. 2021;2021:1–7. 2021.
  • Ren M, Zhao Y, He Z, et al. Baicalein inhibits inflammatory response and promotes osteogenic activity in periodontal ligament cells challenged with lipopolysaccharides. BMC Compl Med Ther. 2021;21(1):43.
  • Um IW. Demineralized Dentin Matrix (DDM) as a carrier for recombinant human bone morphogenetic proteins (rhBMP-2). Adv Exp Med Biol. 2018;1077:487–499.
  • Holiel AA, Mahmoud EM, Abdel-Fattah WM, et al. Histological evaluation of the regenerative potential of a novel treated dentin matrix hydrogel in direct pulp capping. Clin Oral Investig. 2021;25(4):2101–2112.
  • Bessho K, Tagawa T, Murata M. Purification of rabbit bone morphogenetic protein derived from bone, dentin, and wound tissue after tooth extraction. J Oral Maxillofac Surg. 1990;48(2):162–169.
  • Butler WT, Mikulski A, Urist MR, et al. Noncollagenous proteins of a rat dentin matrix possessing bone morphogenetic activity. J Dent Res. 1977;56(3):228–232.
  • Galler KM, Widbiller M, Buchalla W, et al. EDTA conditioning of dentine promotes adhesion, migration and differentiation of dental pulp stem cells. Int Endod J. 2016;49(6):581–590.
  • Smith AJ, Tobias RS, Cassidy N, et al. Odontoblast stimulation in ferrets by dentine matrix components. Arch Oral Biol. 1994;39(1):13–22.
  • Tomson PL, Grover LM, Lumley PJ, et al. Dissolution of bio-active dentine matrix components by mineral trioxide aggregate. J Dent. 2007;35(8):636–642.
  • Graham L, Cooper PR, Cassidy N, et al. The effect of calcium hydroxide on solubilisation of bio-active dentine matrix components. Biomaterials. 2006;27(14):2865–2873.
  • Ferracane JL, Cooper PR, Smith AJ. Dentin matrix component solubilization by solutions of pH relevant to self-etching dental adhesives. J Adhes Dent. 2013;15(5):407–412.
  • Cassidy N, Fahey M, Prime SS, et al. Comparative analysis of transforming growth factor-beta isoforms 1-3 in human and rabbit dentine matrices. Arch Oral Biol. 1997;42(3):219–223.
  • Smith AJ. Vitality of the dentin-pulp complex in health and disease: growth factors as key mediators. J Dent Educ. 2003;67(6):678–689.
  • Mazzoni A, Tjäderhane L, Checchi V, et al. Role of dentin MMPs in caries progression and bond stability. J Dent Res. 2015;94(2):241–251.
  • Dung SZ, Gregory RL, Li Y, et al. Effect of lactic acid and proteolytic enzymes on the release of organic matrix components from human root dentin. Caries Res. 1995;29(6):483–489.
  • Charadram N, Farahani RM, Harty D, et al. Regulation of reactionary dentin formation by odontoblasts in response to polymicrobial invasion of dentin matrix. Bone. 2012;50(1):265–275.
  • Widbiller M, Eidt A, Hiller KA, et al. Ultrasonic activation of irrigants increases growth factor release from human dentine. Clin Oral Investig. 2017;21(3):879–888.
  • Duncan HF, Smith AJ, Fleming GJ, et al. Release of bio-active dentine extracellular matrix components by histone deacetylase inhibitors (HDACi). Int Endod J. 2017;50(1):24–38.
  • Galler KM, Buchalla W, Hiller KA, et al. Influence of root canal disinfectants on growth factor release from dentin. J Endod. 2015;41(3):363–368.
  • Martin DE, De Almeida JF, Henry MA, et al. Concentration-dependent effect of sodium hypochlorite on stem cells of apical papilla survival and differentiation. J Endod. 2014;40(1):51–55.
  • Nakashima M. Induction of dentine in amputated pulp of dogs by recombinant human bone morphogenetic proteins-2 and −4 with collagen matrix. Arch Oral Biol. 1994;39(12):1085–1089.
  • Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Nat Acad Sci. 2000;97(25):13625–13630.
  • Tziafas D, Smith AJ, Lesot H. Designing new treatment strategies in vital pulp therapy. J Dent. 2000;28(2):77–92.
  • Nakashima M, Reddi AH. The application of bone morphogenetic proteins to dental tissue engineering. Nat Biotechnol. 2003;21(9):1025–1032.
  • Smith AJ, Scheven BA, Takahashi Y, et al. Dentine as a bioactive extracellular matrix. Arch Oral Biol. 2012;57(2):109–121.
  • Ruangsawasdi N, Zehnder M, Patcas R, et al. Effects of stem cell factor on cell homing during functional pulp regeneration in human immature teeth. Tissue Eng Part A. 2017;23(3–4):115–123.
  • Gaviño-Orduña JF, Caviedes-Bucheli J, Manzanares-Céspedes MC et al. Dentin growth after direct pulp capping with the different fractions of plasma rich in growth factors (PRGF) vs. MTA: experimental study in animal model. J Clin Med. 2021;10(15):3432.
  • Widbiller M, Driesen RB, Eidt A, et al. Cell homing for pulp tissue engineering with endogenous dentin matrix proteins. J Endod. 2018;44(6): 956–62.e2.
  • Kim NR, Lee DH, Chung P-H, et al. Distinct differentiation properties of human dental pulp cells on collagen, gelatin, and chitosan scaffolds. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2009;108(5):e94–e100
  • Murakami M, Horibe H, Iohara K, et al. The use of granulocyte-colony stimulating factor induced mobilization for isolation of dental pulp stem cells with high regenerative potential. Biomaterials. 2013;34(36):9036–9047.
  • Zhang W, Walboomers XF, van Kuppevelt TH, et al. The performance of human dental pulp stem cells on different three-dimensional scaffold materials. Biomaterials. 2006;27(33):5658–5668.
  • Lin GSS, Cher CY, Goh YH, et al. An insight into the role of marine biopolymer alginate in endodontics: a review. Marine Drugs. 2022;20(8):539.
  • Nakashima M, Akamine A. The application of tissue engineering to regeneration of pulp and dentin in endodontics. J Endod. 2005;31(10):711–718.
  • Ruangsawasdi N, Zehnder M, Weber FE. Fibrin gel improves tissue ingrowth and cell differentiation in human immature premolars implanted in rats. J Endod. 2014;40(2):246–250.
  • Decup F, Six N, Palmier B, et al. Bone sialoprotein-induced reparative dentinogenesis in the pulp of rat’s molar. Clin Oral Investig. 2000;4(2):110–119.
  • Rahaman MN, Mao JJ. Stem cell-based composite tissue constructs for regenerative medicine. Biotechnol Bioeng. 2005;91(3):261–284.
  • Gupte MJ, Ma PX. Nanofibrous scaffolds for dental and craniofacial applications. J Dent Res. 2012;91(3):227–234.
  • Athanasiou KA, Niederauer GG, Agrawal CM. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials. 1996;17(2):93–102.
  • Fu YC, Nie H, Ho ML, et al. Optimized bone regeneration based on sustained release from three-dimensional fibrous PLGA/HAp composite scaffolds loaded with BMP-2. Biotechnol Bioeng. 2008;99(4):996–1006. .
  • Li WJ, Laurencin CT, Caterson EJ, et al. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002;60(4):613–621.
  • Li WJ, Tuli R, Huang X, et al. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials. 2005;26(25):5158–5166.
  • Yang J, Webb AR, Pickerill SJ, et al. Synthesis and evaluation of poly(diol citrate) biodegradable elastomers. Biomaterials. 2006;27(9):1889–1898.
  • Linde A. The extracellular matrix of the dental pulp and dentin. J Dent Res. 1985;64(4):523–529.
  • Da Sacco L, Masotti A. Chitin and chitosan as multipurpose natural polymers for groundwater arsenic removal and AS2O3 delivery in tumor therapy. Mar Drugs. 2010;8(5):1518–1525.
  • Oktay EO, Demiralp B, Demiralp B, et al. Effects of platelet-rich plasma and chitosan combination on bone regeneration in experimental rabbit cranial defects. J Oral Implantol. 2010;36(3):175–184.
  • Wen P, Gao J, Zhang Y, et al. Fabrication of chitosan scaffolds with tunable porous orientation structure for tissue engineering. J Biomater Sci Polym Ed. 2011;22(1–3):19–40.
  • Nie H, Lee LY, Tong H, et al. PLGA/chitosan composites from a combination of spray drying and supercritical fluid foaming techniques: new carriers for DNA delivery. J Control Release. 2008;129(3):207–214.
  • Smith J, Smith A, Shelton R, et al. Dental pulp cell behavior in biomimetic environments. J Dent Res. 2015;94(11):1552–1559.
  • Dobie K, Smith G, Sloan A, et al. Effects of alginate hydrogels and TGF-β1 on human dental pulp repair in vitro. Connect Tissue Res. 2002;43(2–3):387–390.
  • Iohara K, Murakami M, Takeuchi N, et al. A novel combinatorial therapy with pulp stem cells and granulocyte colony-stimulating factor for total pulp regeneration. Stem Cells Transl Med. 2013;2(7):521–533.
  • Prescott RS, Alsanea R, Fayad MI, et al. In vivo generation of dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold, and dentin matrix Protein 1 after subcutaneous transplantation in mice. J Endod. 2008;34(4):421–426.
  • Srisuwan T, Tilkorn DJ, Al-Benna S, et al. Revascularization and tissue regeneration of an empty root canal space is enhanced by a direct blood supply and stem cells. Dental Traumatology. 2013;29(2):84–91
  • Ishimatsu H, Kitamura C, Morotomi T, et al. Formation of dentinal bridge on surface of regenerated dental pulp in dentin defects by controlled release of fibroblast growth Factor-2 from gelatin hydrogels. J Endod. 2009;35(6):858–865.
  • Boehler RM, Graham JG, Shea LD. Tissue engineering tools for modulation of the immune response. Biotechniques. 2011;51(4):239.
  • Liesveld JL, Sharma N, Aljitawi OS. Stem cell homing: from physiology to therapeutics. Stem Cells. 2020;38(10):1241–1253.
  • Aurand ER, Lampe KJ, Bjugstad KB. Defining and designing polymers and hydrogels for neural tissue engineering. Neurosci Res. 2012;72(3):199–213.
  • Hynd MR, Turner JN, Shain W. Applications of hydrogels for neural cell engineering. J Biomater Sci Polym Ed. 2007;18(10):1223–1244.
  • Nisbet DR, Crompton KE, Horne MK, et al. Neural tissue engineering of the CNS using hydrogels. J Biomed Mater Res B Appl Biomater. 2008;87(1):251–263.
  • Kothapalli CR, Kamm RD. 3D matrix microenvironment for targeted differentiation of embryonic stem cells into neural and glial lineages. Biomaterials. 2013;34(25):5995–6007.
  • Socransky S, Manganiello S. The oral microbiota of man from birth to senility. J Periodontol. 1971;42(8):485–496.
  • Dioguardi M, Perrone D, Troiano G, et al. Cytotoxicity evaluation of five different dual-cured resin cements used for fiber posts cementation. Int J Clin Exp Med. 2015;8(6):9327.
  • Chevalier M, Ranque S, Prêcheur I. Oral fungal-bacterial biofilm models in vitro: a review. Med Mycol. 2018;56(6):653–667.
  • Ducret M, Fabre H, Celle A, et al. Current challenges in human tooth revitalization. Biomed Mater Eng. 2017;28(s1):S159–S68.
  • Assed S, Ito I, Leonardo M, et al. Anaerobic microorganisms in root canals of human teeth with chronic apical periodontitis detected by indirect immunofluorescence. Dental Traumatology. 1996;12(2):66–69
  • Swimberghe R, Coenye T, De Moor R, et al. Biofilm model systems for root canal disinfection: a literature review. Int Endod J. 2019;52(5):604–628.
  • Rivera Aguayo P, Bruna Larenas T, Alarcón Godoy C, et al. Antimicrobial and antibiofilm capacity of chitosan nanoparticles against wild type strain of pseudomonas sp. Isolated from milk of cows diagnosed with bovine mastitis. Antibiotics. 2020;9(9):551.
  • Shin SR, Li YC, Jang HL, et al. Graphene-based materials for tissue engineering. Adv Drug Deliv Rev. 2016;105(Pt B):255–274.
  • Ding X, Liu H, Fan Y. Graphene-based materials in regenerative medicine. Adv Healthc Mater. 2015;4(10):1451–1468.
  • Yang K, Wan J, Zhang S, et al. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials. 2012;33(7):2206–2214.
  • Lee WC, Lim CH, Shi H, et al. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano. 2011;5(9):7334–7341.
  • Ruijtenberg S, van den Heuvel S. Coordinating cell proliferation and differentiation: antagonism between cell cycle regulators and cell type-specific gene expression. Cell Cycle. 2016;15(2):196–212.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.