431
Views
3
CrossRef citations to date
0
Altmetric
Review

Biologic therapies for chronic obstructive pulmonary disease

, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 163-173 | Received 02 Nov 2022, Accepted 15 Dec 2022, Published online: 26 Dec 2022

References

  • Lange P, Ahmed E, Lahmar ZM, et al. Natural history and mechanisms of COPD. Respirology. 2021;26:298–321.
  • Brightling C, Greening N. Airway inflammation in COPD: progress to precision medicine. Eur Respir J. 2019;54:1900651.
  • Barnes PJ. Targeting cytokines to treat asthma and chronic obstructive pulmonary disease. Nat Rev Immunol. 2018;18:454–466.
  • Higham A, Beech A, Wolosianka S, et al. Type 2 inflammation in eosinophilic chronic obstructive pulmonary disease. Allergy. 2021;76:1861–1864.
  • Hammad H, Lambrecht BN. The basic immunology of asthma. Cell. 2021;184:1469–1485.
  • Chiu CJ, Huang MT. Asthma in the precision medicine era: biologics and probiotics. Int J Mol Sci. 2021;22:4528.
  • Fieldes M, Bourguignon C, Assou S, et al., Targeted therapy in eosinophilic chronic obstructive pulmonary disease. ERJ Open Res. 2021. 7(2): 00437–2020.
  • David B, Bafadhel M, Koenderman L, et al., Eosinophilic inflammation in COPD: from an inflammatory marker to a treatable trait. Thorax. 2021. 76(2): 188–195.
  • Singh D, Agusti A, Martinez FJ, et al. Blood eosinophils and chronic obstructive pulmonary disease: a global initiative for chronic obstructive lung disease science committee 2022 review. Am J Respir Crit Care Med. 2022;206(1):17–24.
  • Cazzola M, Puxeddu E, Ora J, et al. Evolving concepts in chronic obstructive pulmonary disease blood-based biomarkers. Mol Diagn Ther. 2019;23(5):603–614.
  • Martinez FJ, Rabe KF, Ferguson GT, et al. Reduced all-cause mortality in the ETHOS trial of budesonide/glycopyrrolate/formoterol for chronic obstructive pulmonary disease. A randomized, double-blind, multicenter, parallel-group study. Am J Respir Crit Care Med. 2021;203(5):553–564.
  • Bel EH, Ten Brinke A. New anti-eosinophil drugs for asthma and COPD: targeting the trait! Chest. 2017;152:1276–1282.
  • Gamble E, Qiu Y, Wang D, et al. Variability of bronchial inflammation in chronic obstructive pulmonary disease: implications for study design. Eur Respir J. 2006;27(2):293–299.
  • Barnes PJ. Identifying molecular targets for new drug development for chronic obstructive pulmonary disease: what does the future hold? Semin Respir Crit Care Med. 2015;36:508–522.
  • Gea J. The future of biological therapies in COPD. Arch Bronconeumol. 2018;54(4):185–186.
  • Le Rouzic O, Pichavant M, Frealle E, et al. Th17 cytokines: novel potential therapeutic targets for COPD pathogenesis and exacerbations. Eur Respir J. 2017;50(4):1602434.
  • Roos AB, Sandén C, Mori M, et al. IL-17A is elevated in end-stage chronic obstructive pulmonary disease and contributes to cigarette smoke-induced lymphoid neogenesis. Am J Respir Crit Care Med. 2015;191(11):1232–1241.
  • Roos AB, Mori M, Gura HK, et al. Increased IL-17RA and IL-17RC in end-stage COPD and the contribution to mast cell secretion of FGF-2 and VEGF. Respir Res. 2017;18(1):48.
  • Zou Y, Chen X, Liu J, et al. Serum IL-1ß and IL-17 levels in patients with COPD: associations with clinical parameters. Int J Chron Obstruct Pulmon Dis. 2017;12:1247–1254.
  • Ritzmann F, Beisswenger C. Preclinical studies and the function of IL-17 cytokines in COPD. Ann Anat. 2021;237:151729.
  • Ding F, Han L, Fu Q, et al. IL-17 aggravates Pseudomonas aeruginosa airway infection in acute exacerbations of chronic obstructive pulmonary disease. Front Immunol. 2022;12:811803.
  • Vella G, Ritzmann F, Wolf L, et al. IL-17C contributes to NTHi-induced inflammation and lung damage in experimental COPD and is present in sputum during acute exacerbations. PLoS One. 2021;16(1):e0243484.
  • Matera MG, Cazzola M, Page C. Prospects for COPD treatment. Curr Opin Pharmacol. 2021;56:74–84.
  • Eich A, Urban V, Jutel M, et al. A randomized, placebo-controlled phase 2 trial of CNTO 6785 in chronic obstructive pulmonary disease. COPD. 2017;14(5):476–483.
  • Busse WW, Holgate S, Kerwin E, et al. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med. 2013;188(11):1294–1302.
  • Khokhlovich E, Grant S, Kazani S, et al. The biological pathways underlying response to anti-IL-17A (AIN457; secukinumab) therapy differ across severe asthmatic patients [abstract]. Eur Respir J. 2017;50(suppl61):OA2897.
  • Kirsten A, Watz H, Pedersen F, et al. The anti-IL-17A antibody secukinumab does not attenuate ozone-induced airway neutrophilia in healthy volunteers. Eur Respir J. 2013;41(1):239–241.
  • Cazzola M, Ora J, Cavalli F, et al. An overview of the safety and eficacy of monoclonal antibodies for the chronic obstructive pulmonary disease. Biologics. 2021;15:363–374.
  • Li Y, Hua S, Mechanisms of pathogenesis in allergic asthma: role of interleukin-23. Respirology. 2014;19(5):663–669.
  • Fujii U, Miyahara N, Taniguchi A, et al. IL-23 is essential for the development of elastase-induced pulmonary inflammation and emphysema. Am J Respir Cell Mol Biol. 2016;55(5):697–707.
  • Brightling CE, Nair P, Cousins DJ, et al. Risankizumab in severe asthma - a phase 2a, placebo-controlled trial. N Engl J Med. 2021;385(18):1669–1679.
  • Rogliani P, Calzetta L, Ora J, et al. Canakinumab for the treatment of chronic obstructive pulmonary disease. Pulm Pharmacol Ther. 2015;31:15–27.
  • Fu JJ, McDonald VM, Baines KJ, et al. Airway IL-1β and systemic inflammation as predictors of future exacerbation risk in asthma and COPD. Chest. 2015;148(3):618–629.
  • Singh B, Arora S, Khanna V, Association of severity of COPD with IgE and interleukin-1 beta. Monaldi Arch Chest Dis. 2010;73(2):86–87.
  • Rogliani P, Matera MG, Puxeddu E, et al. Emerging biological therapies for treating chronic obstructive pulmonary disease: A pairwise and network meta-analysis. Pulm Pharmacol Ther. 2018;50:28–37.
  • Osei ET, Brandsma CA, Timens W, et al. Current perspectives on the role of interleukin-1 signalling in the pathogenesis of asthma and COPD. Eur Respir J. 2020;55(2):1900563.
  • Brusselle G, Bracke K, Targeting immune pathways for therapy in asthma and chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2014;11(5):S322–328.
  • Mukaida N, Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol. 2003;284(4):L566–577.
  • Mahler DA, Huang S, Tabrizi M, et al. Efficacy and safety of a monoclonal antibody recognizing interleukin-8 in COPD: a pilot study. Chest. 2004;126(3):926–934.
  • Cazzola M, Page CP, Calzetta L, et al. Emerging anti-inflammatory strategies for COPD. Eur Respir J. 2012;40(3):724–741.
  • Adage T, Del Bene F, Fiorentini F, et al. PA401, a novel CXCL8-based biologic therapeutic with increased glycosaminoglycan binding, reduces bronchoalveolar lavage neutrophils and systemic inflammatory markers in a murine model of LPS-induced lung inflammation. Cytokine. 2015;76(2):433–441.
  • Gerlza T, Hecher B, Jeremic D, et al. A combinatorial approach to biophysically characterize chemokine-glycan binding affinities for drug development. Molecules. 2014;19(7):10618–10634.
  • Matera MG, Calzetta L, Cazzola M, TNF-alpha inhibitors in asthma and COPD: we must not throw the baby out with the bath water. Pulm Pharmacol Ther. 2010;23(2):121–128.
  • Zhu NL, Li C, Huang HH, et al. TNF-alpha represses transcription of human Bone Morphogenetic Protein-4 in lung epithelial cells. Gene. 2007;393(1–2):70–80.
  • Yao Y, Zhou J, Diao X, et al. Association between tumor necrosis factor-α and chronic obstructive pulmonary disease: a systematic review and meta-analysis. Ther Adv Respir Dis. 2019;13:1753466619866096.
  • van der Vaart H, Koëter GH, Postma DS, et al. First study of infliximab treatment in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005;172(4):465–469.
  • Rennard SI, Fogarty C, Kelsen S, et al. The safety and efficacy of infliximab in moderate to severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;175(9):926–934.
  • Aaron SD, Vandemheen KL, Maltais F, et al. TNFα antagonists for acute exacerbations of COPD: a randomized double-blind controlled trial. Thorax. 2013;68(2):142–148.
  • Suissa S, Ernst P, Hudson M, TNF-alpha antagonists and the prevention of hospitalization for chronic obstructive pulmonary disease. Pulm Pharmacol Ther. 2008;21(1):234–238.
  • Dejager L, Dendoncker K, Eggermont M, et al. Neutralizing TNFα restores glucocorticoid sensitivity in a mouse model of neutrophilic airway inflammation. Mucosal Immunol. 2015;8(6):1212–1225.
  • Yilmaz O, Karaman M, Bagriyanik HA, et al. Comparison of TNF antagonism by etanercept and dexamethasone on airway epithelium and remodeling in an experimental model of asthma. Int Immunopharmacol. 2013;17(3):768–773.
  • Guilleminault L, Conde E, Reber LL Pharmacological approaches to target type 2 cytokines in asthma. Pharmacol Ther. 2022;237:108167.
  • Lommatzsch M, Speer T, Herr C et al, IgE is associated with exacerbations and lung function decline in COPD. Respir Res. 2022;23(1):1.
  • Hanania NA, Chipps BE, Griffin NM, et al. Omalizumab effectiveness in asthma-COPD overlap: Post hoc analysis of PROSPERO. J Allergy Clin Immunol. 2019;143(4):1629–1633.e2.
  • Varricchi G, Bagnasco D, Borriello F, et al. Interleukin-5 pathway inhibition in treating eosinophilic respiratory disorders: evidence and unmet needs. Curr Opin Allergy Clin Immunol. 2016;16(2):186–200.
  • Eltboli O, Mistry V, Barker B, et al. Relationship between blood and bronchial submucosal eosinophilia and reticular basement membrane thickening in chronic obstructive pulmonary disease. Respirology. 2015;20(4):667–670.
  • Caramori G, Adcock IM, Di Stefano A, et al. Cytokine inhibition in the treatment of COPD. Int J Chron Obstruct Pulmon Dis. 2014;9:397–412.
  • Donovan T, Milan SJ, Wang R et al, Anti-IL-5 therapies for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2020;12(12):CD013432.
  • Yousuf A, Ibrahim W, Greening NJ, et al. T2 Biologics for chronic obstructive pulmonary disease. J Allergy Clin Immunol Pract. 2019;7(5):1405–1416.
  • Pavord ID, Chapman KR, Bafadhel M et al, Mepolizumab for eosinophil-associated COPD: analysis of METREX and METREO. Int J Chron Obstruct Pulmon Dis. 2021;16:1755–1770.
  • Criner GJ, Celli BR, Singh D et al, Predicting response to benralizumab in chronic obstructive pulmonary disease: analyses of GALATHEA and TERRANOVA studies. Lancet Respir Med. 2020;8(2):158–170.
  • Brightling CE, Bleecker ER, RA P Jr, et al. Benralizumab for chronic obstructive pulmonary disease and sputum eosinophilia: a randomised, double-blind, placebo-controlled, phase 2a study. Lancet Respir Med. 2014;2(11):891–901.
  • Mesnil C, Raulier S, Paulissen G, et al. Lung-resident eosinophils represent a distinct regulatory eosinophil subset. J Clin Invest. 2016;126(9):3279–3295.
  • Robinson D, Humbert M, Buhl R, et al. Revisiting Type 2-high and Type 2-low airway inflammation in asthma: current knowledge and therapeutic implications. Clin Exp Allergy. 2017;47(2):161–175.
  • Shankar A, McAlees JW, Lewkowich IP, Modulation of IL-4/IL-13 cytokine signaling in the context of allergic disease. J Allergy Clin Immunol. 2022;150(2):266–276.
  • Saco TV, Pepper A, Casale TB, Uses of biologics in allergic diseases: What to choose and when. Ann Allergy Asthma Immunol. 2018;120(4):357–366.
  • Doyle AD, Mukherjee M, LeSuer WE, et al. Eosinophil-derived IL-13 promotes emphysema. Eur Respir J. 2019;53(5):1801291.
  • Sun J, Liu T, Yan Y, et al. The role of Th1/Th2 cytokines played in regulation of specific CD4+ Th1 cell conversion and activation during inflammatory reaction of chronic obstructive pulmonary disease. Scand J Immunol. 2018;88(1):e12674.
  • Ziegler SF, Roan F, Bell BD, et al. The biology of thymic stromal lymphopoietin (TSLP). Adv Pharmacol. 2013;66:129–155.
  • Corren J, Ziegler SF, TSLP: from allergy to cancer. Nat Immunol. 2019;20(12):1603–1609.
  • Borowski A, Vetter T, Kuepper M, et al. Expression analysis and specific blockade of the receptor for human thymic stromal lymphopoietin (TSLP) by novel antibodies to the human TSLPRα receptor chain. Cytokine. 2013;61(2):546–555.
  • Mkorombindo T, Balkissoon R, Journal Club: Biologics and Potential for Immune Modulation in Chronic Obstructive Lung Disease. Chronic Obstr Pulm Dis. 2022;9(2):285–297.
  • Zhang K, Shan L, Rahman MS, et al. Constitutive and inducible thymic stromal lymphopoietin expression in human airway smooth muscle cells: role in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2007;293(2):L375–382.
  • Redhu NS, Gounni AS, Function and mechanisms of TSLP/TSLPR complex in asthma and COPD. Clin Exp Allergy. 2012;42(7):994–1005.
  • Calvén J, Yudina Y, Hallgren O, et al. Viral stimuli trigger exaggerated thymic stromal lymphopoietin expression by chronic obstructive pulmonary disease epithelium: role of endosomal TLR3 and cytosolic RIG-I-like helicases. J Innate Immun. 2012;4(1):86–99.
  • Elder MJ, Webster SJ, Williams DL, et al. TSLP production by dendritic cells is modulated by IL-1β and components of the endoplasmic reticulum stress response. Eur J Immunol. 2016;46(2):455–463.
  • Matera MG, Rogliani P, Calzetta L, et al. TSLP inhibitors for asthma: current status and future prospects. Drugs. 2020;80(5):449–458.
  • Hohlfeld J, Gauvreau GM, Boulet LP, et al. Efficacy of CSJ117 on allergen-induced asthmatic response in mild atopic asthma patients. Pneumologie. 2021;75(Suppl. 1):S33.
  • Gabryelska A, Kuna P, Antczak A, et al. IL-33 Mediated inflammation in chronic respiratory diseases-understanding the role of the member of IL-1 superfamily. Front Immunol. 2019;10:692.
  • Cayrol C, Girard JP IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Curr Opin Immunol. 2014;31:31–37.
  • Donovan C, Hansbro PM, IL-33 in chronic respiratory disease: from preclinical to clinical studies. ACS Pharmacol Transl Sci. 2019;3(1):56–62.
  • Xia J, Zhao J, Shang J, et al. Increased IL-33 expression in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2015;308(7):L619–627.
  • Rabe KF, Celli BR, Wechsler ME et al, Safety and efficacy of itepekimab in patients with moderate-to-severe COPD: a genetic association study and randomised, double-blind, phase 2a trial. Lancet Respir Med. 2021;9(11):1288–1298.
  • Yousuf AJ, Mohammed S, Carr L et al, Astegolimab, an anti-ST2, in chronic obstructive pulmonary disease (COPD-ST2OP): a phase 2a, placebo-controlled trial. Lancet Respir Med. 2022;10(5):469–477.
  • Singh D, IL-33 in COPD: the hunt for responder subgroups. Lancet Respir Med. 2022;10(5):425–426.
  • Matera MG, Page C, Rogliani P, et al. Therapeutic monoclonal antibodies for the treatment of chronic obstructive pulmonary disease. Drugs. 2016;76(13):1257–1270.
  • Cazzola M, Calzetta L, Rogliani P, et al. The challenges of precision medicine in COPD. Mol Diagn Ther. 2017;21(4):345–355.
  • Nucera F, Lo Bello F, Shen SS, et al. Role of atypical chemokines and chemokine receptors pathways in the pathogenesis of COPD. Curr Med Chem. 2021;28(13):2577–2653.
  • Matera MG, Calzetta L, Annibale R, et al. Classes of drugs that target the cellular components of inflammation under clinical development for COPD. Expert Rev Clin Pharmacol. 2021;14(8):1015–1027.
  • Cazzola M, Rogliani P, Stolz D, et al., Pharmacological treatment and current controversies in COPD. F1000Res. 2019;8:F1000 Faculty Rev-1533
  • McDonald VM, Fingleton J, Agusti A, et al. Treatable traits: a new paradigm for 21st century management of chronic airway diseases: Treatable Traits Down Under International Workshop report. Eur Respir J. 2019;53(5):1802058.
  • Calzetta L, Ritondo BL, Matera MG et al, Targeting IL-5 pathway against airway hyperresponsiveness: A comparison between benralizumab and mepolizumab. Br J Pharmacol. 2020;177(20):4750–4765.
  • Manson ML, Säfholm J, James A, et al. IL-13 and IL-4, but not IL-5 nor IL-17A, induce hyperresponsiveness in isolated human small airways. J Allergy Clin Immunol. 2020;145(3):808–817.e2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.