281
Views
0
CrossRef citations to date
0
Altmetric
Review

Antibody drug conjugates for glioblastoma: current progress towards clinical use

, , , , , , & show all
Pages 1089-1102 | Received 20 Aug 2023, Accepted 08 Nov 2023, Published online: 20 Nov 2023

References

  • Miller KD, Ostrom QT, Kruchko C, et al. Brain and other central nervous system tumor statistics, 2021. CA Cancer J Clin. 2021;71(5):381–406. doi: 10.3322/caac.21693
  • Australian Institute of Health and Welfare. Brain and other central nervous system cancers. Cat. no. CAN 106. Canberra: AIHW; 2017.
  • Ostrom QT, Price M, Neff C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015–2019. Neuro Oncol. 2022;24(Supplement_5):v1–v95. doi: 10.1093/neuonc/noac202
  • Miller KD, Ostrom QT, Kruchko C, et al. Brain and other central nervous system tumor statistics, 2021. CA Cancer J Clin N/A(n/A). 2021;71(5):381–406. doi: 10.3322/caac.21693
  • Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neurooncol. 2021 Aug 2;23(8):1231–1251. doi: 10.1093/neuonc/noab106
  • Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005 Mar 10;352(10):987–996. doi: 10.1056/NEJMoa043330
  • Stupp R, Taillibert S, Kanner A, et al. Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma: a randomized clinical trialEffect of TTFields Plus Temozolomide vs Temozolomide Alone on GlioblastomaEffect of TTFields Plus Temozolomide vs Temozolomide Alone on Glioblastoma. JAMA. 2017;318(23):2306–2316. doi: 10.1001/jama.2017.18718
  • Wong ET, Hess KR, Gleason MJ, et al. Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials. J Clin Oncol. 1999 Aug;17(8):2572–2578. doi: 10.1200/JCO.1999.17.8.2572
  • van den Bent MJ, Brandes AA, Rampling R, et al. Randomized phase II trial of erlotinib versus temozolomide or carmustine in recurrent glioblastoma: EORTC brain tumor group study 26034. J Clin Oncol. 2009 Mar 10;27(8):1268–1274. doi: 10.1200/JCO.2008.17.5984
  • Batchelor TT, Mulholland P, Neyns B, et al. Phase III randomized trial comparing the efficacy of cediranib as monotherapy, and in combination with lomustine, versus lomustine alone in patients with recurrent glioblastoma. J Clin Oncol. 2013;31(26):3212–3218. doi: 10.1200/JCO.2012.47.2464
  • Wick W, Puduvalli VK, Chamberlain MC, et al. Phase III study of enzastaurin compared with lomustine in the treatment of recurrent intracranial glioblastoma. J Clin Oncol. 2010;28(7):1168–1174. doi: 10.1200/JCO.2009.23.2595
  • Taal W, Oosterkamp HM, Walenkamp AME, et al. Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): a randomised controlled phase 2 trial. Lancet Oncol. 2014;15(9):943–953. doi: 10.1016/S1470-2045(14)70314-6
  • Dumontet C, Reichert JM, Senter PD, et al. Antibody-drug conjugates come of age in oncology. Nat Rev Drug Discov. 2023 Jun 12;12:12.
  • Tarantino P, Ricciuti B, Pradhan SM, et al. Optimizing the safety of antibody-drug conjugates for patients with solid tumours. Nat Rev Clin Oncol. 2023 Jun 09;9:09.
  • Mair MJ, Bartsch R, Le Rhun E, et al. Understanding the activity of antibody-drug conjugates in primary and secondary brain tumours. Nat Rev Clin Oncol. 2023 06;20(6):372–389. doi: 10.1038/s41571-023-00756-z
  • Kunwar S, Chang S, Westphal M, et al. Phase III randomized trial of CED of IL13-PE38QQR vs gliadel wafers for recurrent glioblastoma. Neuro Oncol. 2010;12(8):871–881. doi: 10.1093/neuonc/nop054
  • Weber F, Asher A, Bucholz R, et al. Safety, tolerability, and tumor response of IL4-Pseudomonas exotoxin (NBI-3001) in patients with recurrent malignant glioma. J Neurooncol. 2003 Aug;64(1–2):125–137. doi: 10.1007/BF02700027
  • Sampson JH, Akabani G, Archer GE, et al. Intracerebral infusion of an EGFR-targeted toxin in recurrent malignant brain tumors. Neuro Oncol. 2008 Jun;10(3):320–329. doi: 10.1215/15228517-2008-012
  • Weaver M, Laske DW. Transferrin receptor ligand-targeted toxin conjugate (Tf-CRM107) for therapy of malignant gliomas. J Neurooncol. 2003 Oct;65(1):3–13. doi: 10.1023/A:1026246500788
  • Gan HK, Cvrljevic AN, Johns TG. The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. FEBS J. 2013 Nov;280(21):5350–5370. doi: 10.1111/febs.12393
  • Chandramohan V, Sampson JH, Pastan I, et al. Toxin-based targeted therapy for malignant brain tumors. Clin Dev Immunol. 2012;2012:15. doi: 10.1155/2012/480429
  • Tortorella S, Karagiannis TC. Transferrin receptor-mediated endocytosis: a useful target for cancer therapy. J Membr Biol. 2014 Apr;247(4):291–307. doi: 10.1007/s00232-014-9637-0
  • Rand RW, Kreitman RJ, Patronas N, et al. Intratumoral administration of recombinant circularly permuted interleukin-4-pseudomonas exotoxin in patients with high-grade glioma. Clin Cancer Res. 2000 Jun;6(6):2157–2165.
  • Joshi BH, Leland P, Asher A, et al. In situ expression of interleukin-4 (IL-4) receptors in human brain tumors and cytotoxicity of a recombinant IL-4 cytotoxin in primary glioblastoma cell cultures. Cancer Res. 2001 Nov 15;61(22):8058–8061.
  • Sampson JH, Singh Achrol A, Aghi MK, et al. Targeting the IL4 receptor with MDNA55 in patients with recurrent glioblastoma: results of a phase IIb trial. Neurooncol. 2023 Jun 2;25(6):1085–1097. doi: 10.1093/neuonc/noac285
  • Gan HK, Burgess AW, Clayton AH, et al. Targeting of a conformationally exposed, tumor-specific epitope of EGFR as a strategy for cancer therapy. Cancer Res. 2012 Jun 15;72(12):2924–2930. doi: 10.1158/0008-5472.CAN-11-3898
  • Phillips AC, Boghaert ER, Vaidya KS, et al. ABT-414, an antibody-drug conjugate targeting a tumor-selective EGFR Epitope. Mol Cancer Ther. 2016 Apr;15(4):661–669. doi: 10.1158/1535-7163.MCT-15-0901
  • Reardon DA, Lassman AB, van den Bent M, et al. Efficacy and safety results of ABT-414 in combination with radiation and temozolomide in newly diagnosed glioblastoma. Neurooncol. 2017 Jul 1;19(7):965–975. doi: 10.1093/neuonc/now257
  • van den Bent M, Gan HK, Lassman AB, et al. Efficacy of depatuxizumab mafodotin (ABT-414) monotherapy in patients with EGFR-amplified, recurrent glioblastoma: results from a multi-center, international study. Cancer Chemother Pharmacol. 2017 Dec;80(6):1209–1217. doi: 10.1007/s00280-017-3451-1
  • Gan HK, Reardon DA, Lassman AB, et al. Safety, pharmacokinetics and antitumor response of ABT-414 as monotherapy or as combination therapy with temozolomide in patients with glioblastoma. Neuro Oncol. 2016;18(20):838–847. doi: 10.1093/neuonc/nox202
  • Richardson DL. Ocular toxicity and mitigation strategies for antibody drug conjugates in gynecologic oncology. Gynecol Oncol Rep. 2023 Apr 01;46:101148. doi: 10.1016/j.gore.2023.101148
  • Lassman AB, Pugh SL, Wang TJC, et al. Depatuxizumab mafodotin in EGFR-amplified newly diagnosed glioblastoma: a phase III randomized clinical trial. Neurooncol. 2023 Feb 14;25(2):339–350. doi: 10.1093/neuonc/noac173
  • Van Den Bent M, Eoli M, Sepulveda JM, et al. INTELLANCE 2/EORTC 1410 randomized phase II study of depatux-M alone and with temozolomide vs temozolomide or lomustine in recurrent EGFR amplified glioblastoma. Neuro-Oncologyquery. 2020;22(5):684–693. doi: 10.1093/neuonc/noz222
  • Narita Y, Muragaki Y, Kagawa N, et al. Safety and efficacy of depatuxizumab mafodotin in Japanese patients with malignant glioma: a nonrandomized, phase 1/2 trial. Cancer Sci. 2021 Dec;112(12):5020–5033. doi: 10.1111/cas.15153
  • Padovan M, Eoli M, Pellerino A, et al. Depatuxizumab mafodotin (Depatux-M) plus temozolomide in recurrent glioblastoma patients: real-world Experience from a Multicenter Study of Italian Association of Neuro-Oncology (AINO). Cancers (Basel). 2021 Jun 3;13(11):2773. doi: 10.3390/cancers13112773
  • Carneiro BA, Papadopoulos KP, Strickler JH, et al. Phase I study of anti-epidermal growth factor receptor antibody-drug conjugate serclutamab talirine: safety, pharmacokinetics, and antitumor activity in advanced glioblastoma. Neurooncol Adv. 2023 Jan;5(1):vdac183. doi: 10.1093/noajnl/vdac183
  • Hamblett KJ, Kozlosky CJ, Siu S, et al. AMG 595, an Anti-EGFRvIII Antibody–Drug Conjugate, Induces Potent Antitumor Activity against EGFRvIII-Expressing Glioblastoma. Mol Cancer Ther. 2015;14(7):1614–1624. molcanther. 1078.2014. doi: 10.1158/1535-7163.MCT-14-1078
  • Rosenthal M, Curry R, Reardon DA, et al. Safety, tolerability, and pharmacokinetics of anti-EGFRvIII antibody–drug conjugate AMG 595 in patients with recurrent malignant glioma expressing EGFRvIII. Cancer Chemother Pharmacol. 2019;84(2):327–336. doi: 10.1007/s00280-019-03879-2
  • Gan HK, Parakh S, Lassman AB, et al. Tumor volumes as a predictor of response to the anti-EGFR antibody drug conjugate depatuxizumab mafadotin. Neurooncol Adv. 2021 Aug 3:3(1). doi: 10.1093/noajnl/vdab102
  • Marin BM, Porath KA, Jain S, et al. Heterogeneous delivery across the blood-brain barrier limits the efficacy of an EGFR-targeting antibody drug conjugate in glioblastoma. Neuro Oncol. 2021 May 29;23(12):2042–2053. doi: 10.1093/neuonc/noab133
  • Porath KA, Regan MS, Griffith JI, et al. Convection enhanced delivery of EGFR targeting antibody-drug conjugates serclutamab talirine and depatux-M in glioblastoma patient-derived xenografts. Neurooncol Adv. 2022 Jan;4(1):vdac130. doi: 10.1093/noajnl/vdac130
  • Anami Y, Otani Y, Xiong W, et al. Homogeneity of antibody-drug conjugates critically impacts the therapeutic efficacy in brain tumors. Cell Rep. 2022;39(8):110839. doi: 10.1016/j.celrep.2022.110839
  • Lassman AB, van den Bent MJ, Gan HK, et al. Safety and efficacy of depatuxizumab mafodotin + temozolomide in patients with EGFR-amplified, recurrent glioblastoma: results from an international phase I multicenter trial. Neurooncol. 2019 Jan 1;21(1):106–114. doi: 10.1093/neuonc/noy091
  • Lassman AB, Roberts-Rapp L, He L, et al. P01.071 genomic profiling identifies tubulin mutations that may predict response to depatuxizumab mafodotin in patients with glioblastoma. Neuro Oncol. 2018;20(suppl_3):iii246–iii246. doi: 10.1093/neuonc/noy139.113
  • Abbott NJ, Patabendige AA, Dolman DE, et al. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37(1):13–25. doi: 10.1016/j.nbd.2009.07.030
  • Sarkaria JN, Hu LS, Parney IF, et al. Is the blood–brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro Oncol. 2018;20(2):184–191. doi: 10.1093/neuonc/nox175
  • Chudasama V, Maruani A, Caddick S. Recent advances in the construction of antibody–drug conjugates. Nat Chem. 2016 Jan 02;8(2):114–119.
  • Gong HH, Ihle N, Jones MT, et al. Control Strategy for Small Molecule Impurities in Antibody-Drug Conjugates. AAPS Pharm Sci Tech. 2018 Apr 01;19(3):971–977. doi: 10.1208/s12249-017-0943-6
  • MCNeill KA, Fine H. Challenges in clinical trial design for recurrent glioblastoma. Clin Investig. 2013;3(9):835–848. doi: 10.4155/cli.13.67
  • Gan HK, van den Bent M, Lassman AB, et al. Antibody-drug conjugates in glioblastoma therapy: the right drugs to the right cells. Nat Rev Clin Oncol. 2017 Nov;14(11):695–707. doi: 10.1038/nrclinonc.2017.95
  • Roberts JW, Powlovich L, Sheybani N, et al. Focused ultrasound for the treatment of glioblastoma. J Neurooncol. 2022 Apr;157(2):237–247. doi: 10.1007/s11060-022-03974-0
  • Phoenix TN, Patmore DM, Boop S, et al. Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell. 2016 Apr 11;29(4):508–522. doi: 10.1016/j.ccell.2016.03.002
  • He L, Zhou H, Zeng Z, et al. Wnt/β-catenin signaling cascade: a promising target for glioma therapy. J Cell Physiol. 2019;234(3):2217–2228. doi: 10.1002/jcp.27186
  • Wang W, He H, Marin-Ramos NI, et al. Enhanced brain delivery and therapeutic activity of trastuzumab after blood-brain barrier opening by NEO100 in mouse models of brain-metastatic breast cancer. Neurooncol. 2021;23(12):2123–2123. In press. doi: 10.1093/neuonc/noab204
  • Nicolazzo JA, Katneni K. Drug transport across the blood-brain barrier and the impact of breast cancer resistance protein (ABCG2). Curr Top Med Chem. 2009;9(2):130–147. doi: 10.2174/156802609787521580
  • Hafeez U, Parakh S, Gan HK, et al. Antibody–drug conjugates for Cancer therapy. Molecules. 2020;25(20):4764. doi: 10.3390/molecules25204764
  • Agarwal S, Mittapalli RK, Zellmer DM, et al. Active efflux of dasatinib from the brain limits efficacy against murine glioblastoma: broad implications for the clinical use of molecularly targeted agents. Mol Cancer Ther. 2012 Oct;11(10):2183–2192. doi: 10.1158/1535-7163.MCT-12-0552
  • Schinkel AH. P-Glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Delivery Rev. 1999;36(2–3):179–194. doi: 10.1016/S0169-409X(98)00085-4
  • Kim M, Kizilbash SH, Laramy JK, et al. Barriers tor effective drug treatment for brain metastases: a mulltifactorial problem in the delivery of precision medicine. Pharm Res. 2018;35(9):177. doi: 10.1007/s11095-018-2455-9
  • Loganzo F, Tan X, Sung M, et al. Tumor cells chronically treated with a trastuzumab–maytansinoid antibody–drug conjugate develop varied resistance mechanisms but respond to alternate treatments. Mol Cancer Ther. 2015;14(4):952–963. doi: 10.1158/1535-7163.MCT-14-0862
  • Chen R, Hou J, Newman E, et al. CD30 downregulation, MMAE resistance, and MDR1 upregulation are all associated with resistance to brentuximab vedotin. Mol Cancer Ther. 2015;14(6):1376–1384. doi: 10.1158/1535-7163.MCT-15-0036
  • Drappatz J, Brenner A, Wong ET, et al. Phase I study of GRN1005 in recurrent malignant glioma. Clin Cancer Res. 2013 Mar 15;19(6):1567–1576. doi: 10.1158/1078-0432.CCR-12-2481
  • Nounou MI, Adkins CE, Rubinchik S, et al. Anti-cancer antibody trastuzumab-melanotransferrin conjugate (BT2111) for the treatment of metastatic HER2+ breast cancer tumors in the brain: an in-vivo study. Pharm Res. 2016;33(12):2930–2942. doi: 10.1007/s11095-016-2015-0
  • Sarkaria JN, Hu LS, Parney IF, et al. Is the blood–brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro Oncol. 2017;20(2):184–191. doi: 10.1093/neuonc/nox175
  • Coats S, Williams M, Kebble B, et al. Antibody–drug conjugates: future directions in clinical and translational strategies to improve the therapeutic index. Clin Cancer Res. 2019;25(18):5441–5448. doi: 10.1158/1078-0432.CCR-19-0272
  • Amero P, Khatua S, Rodriguez-Aguayo C, et al. Aptamers: novel therapeutics and potential role in Neuro-Oncology. Cancers. 2020;12(10):2889. doi: 10.3390/cancers12102889
  • Nimjee SM, White RR, Becker RC, et al. Aptamers as therapeutics. Annual review of pharmacology and toxicology. Annu Rev Pharmacol Toxicol. 2017;57(1):61–79. doi: 10.1146/annurev-pharmtox-010716-104558
  • Monaco I, Camorani S, Colecchia D, et al. Aptamer functionalization of nanosystems for glioblastoma targeting through the blood–brain barrier. J Med Chem. 2017;60(10):4510–4516. doi: 10.1021/acs.jmedchem.7b00527
  • Nuzzo S, Brancato V, Affinito A, et al. The role of RNA and DNA Aptamers in glioblastoma diagnosis and therapy: a systematic review of the literature. Cancers. 2020;12(8):2173. doi: 10.3390/cancers12082173
  • Pourgholi F, Hajivalili M, Farhad J-N, et al. Nanoparticles: novel vehicles in treatment of glioblastoma. Biomed Pharmacother. 2016 Feb 01;77:98–107.
  • Whittle JR, Lickliter JD, Gan HK, et al. First in human nanotechnology doxorubicin delivery system to target epidermal growth factor receptors in recurrent glioblastoma. J Clin Neurosci. 2015 Aug 13;22(12):1889–1894. doi: 10.1016/j.jocn.2015.06.005
  • Kouhi A, Pachipulusu V, Kapenstein T, et al. Brain disposition of antibody-based therapeutics: dogma, approaches and perspectives. Int J Mol Sci. 2021 Jun 16;22(12):6442. doi: 10.3390/ijms22126442
  • Kadry H, Noorani B, Cucullo L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS. 2020 Nov 18;17(1):69.
  • Lu CT, Zhao YZ, Wong HL, et al. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomed. 2014;9:2241–2257. doi: 10.2147/IJN.S61288
  • Tashima T. Proteolysis-Targeting Chimera (PROTAC) delivery into the brain across the blood-brain barrier. Antibodies. 2023;12(3):43. doi: 10.3390/antib12030043
  • Peng SL, Saunders L, Bheddah S, et al. Metastatic melanoma, glioblastoma and high-grade extrapulmonary neuroendocrine carcinomas (NECs) as novel indications for rovalpituzumab tesirine: A delta-like protein 3 (DLL3)-targeted antibody-drug conjugate (ADC). Am Soc Clin Oncol. 2016;34(15_suppl):11611–11611. doi: 10.1200/JCO.2016.34.15_suppl.11611
  • Saunders LR, Bankovich AJ, Anderson WC, et al. A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Sci, trans med. 2015;7(302):ra302136–ra302136. doi: 10.1126/scitranslmed.aac9459
  • Spino M, Kurz SC, Chiriboga L, et al. Cell surface Notch ligand DLL3 is a therapeutic target in isocitrate dehydrogenase–mutant glioma. Clin Cancer Res. 2019;25(4):1261–1271. doi: 10.1158/1078-0432.CCR-18-2312
  • Mansfield AS, Hong DS, Hann CL, et al. A phase I/II study of rovalpituzumab tesirine in delta-like 3-expressing, advanced solid tumors. Am Soc Clin Oncol. 2020;38(15_suppl):3552–3552. doi: 10.1200/JCO.2020.38.15_suppl.3552
  • Dufrusine B, Capone E, Ponziani S, et al. Extracellular LGALS3BP: a potential disease marker and actionable target for antibody–drug conjugate therapy in glioblastoma. Molecular Oncology. 2023 May 17;17(8):1460–1473. doi: 10.1002/1878-0261.13453
  • Purcell JW, Tanlimco SG, Hickson J, et al. LRRC15 is a novel mesenchymal protein and stromal target for antibody–drug conjugates. Cancer Res. 2018;78(14):4059–4072. doi: 10.1158/0008-5472.CAN-18-0327
  • Li Y, Si R, Wang J, et al. Discovery of novel antibody-drug conjugates bearing tissue protease specific linker with both anti-angiogenic and strong cytotoxic effects. Bioorg Chem. 2023 Aug;137:106575.
  • London M, Gallo E. Critical role of EphA3 in cancer and current state of EphA3 drug therapeutics. Mol Biol Rep. 2020 Jul;47(7):5523–5533. doi: 10.1007/s11033-020-05571-8
  • Day BW, Stringer BW, Al-Ejeh F, et al. EphA3 maintains tumorigenicity and is a therapeutic target in glioblastoma multiforme. Cancer Cell. 2013;23(2):238–248. doi: 10.1016/j.ccr.2013.01.007
  • Offenhäuser C, Al-Ejeh F, Puttick S, et al. EphA3 pay-loaded antibody therapeutics for the treatment of glioblastoma. Cancers. 2018 Dec 17;10(12):519. doi: 10.3390/cancers10120519
  • Gan H, Cher L, Inglis P, et al. Phase I safety and bioimaging trial of KB004 (ifabotuzumab) in patients with glioblastoma. J Nucl Med. 2020;61(supplement 1):1562–1562.
  • Rios-Doria J, Harper J, Rothstein R, et al. Antibody–drug conjugates bearing pyrrolobenzodiazepine or tubulysin payloads are immunomodulatory and synergize with multiple immunotherapies. Cancer Res. 2017;77(10):2686–2698. doi: 10.1158/0008-5472.CAN-16-2854
  • Weiss T, Puca E, Silginer M, et al. Immunocytokines are a promising immunotherapeutic approach against glioblastoma. Sci, trans med. 2020 Oct 7;12(564). doi: 10.1126/scitranslmed.abb2311
  • Mao Y, Wei D, Fu F, et al. Development of a MMAE-based antibody-drug conjugate targeting B7-H3 for glioblastoma. Eur J Med Chem. 2023 May 20;257:115489.
  • Schwach J, Abdellatif M, Stengl A. More than toxins—current prospects in designing the next generation of antibody drug conjugates. FBL. 2022 Aug 23;27(8):240.
  • Yu K, Hu Y, Wu F, et al. Surveying brain tumor heterogeneity by single-cell RNA-sequencing of multi-sector biopsies. Natl Sci Rev. 2020;7(8):1306–1318. doi: 10.1093/nsr/nwaa099
  • McGranahan N, Swanton C. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell. 2015 Jan 12;27(1):15–26.
  • Francis JM, Zhang C-Z, Maire CL, et al. EGFR variant heterogeneity in glioblastoma resolved through single-nucleus sequencing. Cancer Discov. 2014;4(8):956–971. doi: 10.1158/2159-8290.CD-13-0879
  • Felsberg J, Hentschel B, Kaulich K, et al. Epidermal growth factor receptor variant III (EGFRvIII) positivity in EGFR-amplified glioblastomas: prognostic role and comparison between primary and recurrent tumors. Clin Cancer Res. 2017;23(22):6846–6855. doi: 10.1158/1078-0432.CCR-17-0890
  • Nathanson DA, Gini B, Mottahedeh J, et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science. 2014;343(6166):72–76. doi: 10.1126/science.1241328
  • Ahluwalia MS, Dimino CR, Mansukhani MM, et al. Effect of therapeutic pressure on stability of EGFR amplification in glioblastoma. J Clin Oncol. 2018;36(15_suppl):2033–2033. doi: 10.1200/JCO.2018.36.15_suppl.2033
  • Anderson MG, Falls HD, Mitten MJ, et al. Targeting multiple EGFR-expressing tumors with a highly potent tumor-selective antibody-drug conjugate. Mol Cancer Ther. 2020 Oct;19(10):2117–2125. doi: 10.1158/1535-7163.MCT-20-0149
  • Levengood MR, Zhang X, Hunter JH, et al. Orthogonal cysteine protection enables homogeneous multi‐drug antibody–drug conjugates. Angewandte Chemie. 2017;56(3):733–737. doi: 10.1002/anie.201608292
  • Bausart M, Préat V, Malfanti A. Immunotherapy for glioblastoma: the promise of combination strategies. J Exp Clin Cancer Res. 2022 Jan 25;41(1):35.
  • Gerber H-P, Sapra P, Loganzo F, et al. Combining antibody–drug conjugates and immune-mediated cancer therapy: what to expect? Biochem Pharmacol. 2016;102:1–6. doi: 10.1016/j.bcp.2015.12.008
  • Griguolo G, Pascual T, Dieci MV, et al. Interaction of host immunity with HER2-targeted treatment and tumor heterogeneity in HER2-positive breast cancer. J Immunother Cancer. 2019;7(1):1–14. doi: 10.1186/s40425-019-0548-6
  • Khattar M, Traore T, Horton K, et al. Synergy of an anti-HER2 ADC TAK-522 (XMT-1522) in combination with anti-PD1 monoclonal antibody (mAb) in a syngeneic breast cancer model expressing human HER2. Am Assoc Immnol. 2018;200(1_Supplement):.122.29–.122.29. doi: 10.4049/jimmunol.200.Supp.122.29
  • Müller P, Kreuzaler M, Khan T, et al. Trastuzumab emtansine (T-DM1) renders HER2+ breast cancer highly susceptible to CTLA-4/PD-1 blockade. Sci, Trans Med. 2015;7(315):ra315188–ra315188. doi: 10.1126/scitranslmed.aac4925
  • Reardon DA, Lassman AB, van den Bent M, et al. Efficacy and safety results of ABT-414 in combination with radiation and temozolomide in newly diagnosed glioblastoma. Neuro Oncol. 2016;now257. doi: 10.1093/neuonc/now257
  • Lassman AB, Gan HK, Roberts-Rapp L, et al. Identifying the correct patient population for depatuxizumab mafodotin (ABT-414): biomarker assays for Epidermal growth factor receptor (EGFR) in patients with glioblastoma. WFNO. 2017 May 4-7;19(suppl_3):iii75–iii75. Zurich2017. doi:10.1093/neuonc/nox036.281
  • Desjardins A, Chandramohan V, Landi DB, et al. A phase 1 trial of D2C7-it in combination with an Fc-engineered anti-CD40 monoclonal antibody (2141-V11) administered intratumorally via convection-enhanced delivery for adult patients with recurrent malignant glioma (MG). J Clin Oncol. 2022;40(16_suppl):e14015–e14015. doi: 10.1200/JCO.2022.40.16_suppl.e14015
  • Ileana Dumbrava E, Meric-Bernstam F, Yap TA. Challenges with biomarkers in cancer drug discovery and development. Expert opinion on drug discovery. Expert Opin Drug Discov. 2018;13(8):685–690. doi: 10.1080/17460441.2018.1479740
  • Linehan AS, Fitzpatrick OM, Morris PG. Profile of trastuzumab deruxtecan in the management of patients with HER2-positive unresectable or metastatic breast Cancer: an evidence-based review. Breast Cancer: Target Therapy. 2021;13:151. doi: 10.2147/BCTT.S245024
  • Tsurutani J, Iwata H, Krop I, et al. Targeting HER2 with trastuzumab deruxtecan: a dose-expansion, phase I study in multiple advanced solid tumors. Cancer Discov. 2020;10(5):688–701. doi: 10.1158/2159-8290.CD-19-1014
  • Janes PW, Vail ME, Gan HK, et al. Antibody targeting of Eph receptors in Cancer. Pharmaceuticals. 2020;13(5):88. doi: 10.3390/ph13050088
  • Lassman A, Roberts-Rapp L, He L, et al. PATH-29. Molecular determinants associated with response and resistance to depatuxizumab mafodotin (abt-414) in patients with recurrent glioblastoma. Neuro Oncol. 2017;19(suppl_6):vi176–vi177. doi: 10.1093/neuonc/nox168.719
  • Leu AJ, Berk DA, Lymboussaki A, et al. Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res. 2000;60(16):4324–4327.
  • Munson JM, Shieh AC. Interstitial fluid flow in cancer: implications for disease progression and treatment. Cancer Manag Res. 2014;6:317. doi: 10.2147/CMAR.S65444
  • Harder BG, Blomquist MR, Wang J, et al. Developments in blood-brain barrier penetrance and drug repurposing for improved treatment of glioblastoma. Front Oncol. 2018;8: doi: 10.3389/fonc.2018.00462
  • Gan H, Seow A, Lau E, et al. ACTR-55. Tumour volume as a predictor of response to Ant-EGFR ADC ABT-414. Neuro Oncol. 2018;20(suppl_6):vi24–vi24. doi: 10.1093/neuonc/noy148.087
  • Trédan O, Galmarini CM, Patel K, et al. Drug resistance and the solid tumor microenvironment. JNCI. 2007;99(19):1441–1454. doi: 10.1093/jnci/djm135
  • Böckelmann LC, Schumacher U. Targeting tumor interstitial fluid pressure: will it yield novel successful therapies for solid tumors? Expert opinion on therapeutic targets. Expert Opin Ther Targets. 2019;23(12):1005–1014. doi: 10.1080/14728222.2019.1702974
  • Heldin C-H, Rubin K, Pietras K, et al. High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer. 2004;4(10):806–813. doi: 10.1038/nrc1456
  • Mellinghoff IK, van den Bent MJ, Blumenthal DT, et al. Vorasidenib in IDH1- or IDH2-Mutant Low-Grade Glioma. N Engl J Med. 2023;389(7):589–601. doi: 10.1056/NEJMoa2304194
  • Mellinghoff IK, Penas-Prado M, Peters KB, et al. Vorasidenib, a dual inhibitor of mutant IDH1/2, in recurrent or progressive glioma; results of a first-in-human phase I trial. Clin Cancer Res. 2021 Aug 15;27(16):4491–4499. doi: 10.1158/1078-0432.CCR-21-0611
  • Perreault S, van Tilburg CM, Geoerger B, et al. Efficacy and safety of larotrectinib in adult and pediatric patients with tropomyosin receptor kinase (TRK) fusion-positive primary central nervous system tumors. J Clin Oncol. 2021;39(15_suppl):2002–2002. doi: 10.1200/JCO.2021.39.15_suppl.2002
  • Aldape K, Brindle KM, Chesler L, et al. Challenges to curing primary brain tumours. Nat Rev Clin Oncol. 2019 Feb 07;16(8):509–520. doi: 10.1038/s41571-019-0177-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.