412
Views
0
CrossRef citations to date
0
Altmetric
Review

The endosomal-lysosomal system in ADC design and cancer therapy

Pages 1067-1076 | Received 05 Sep 2023, Accepted 16 Nov 2023, Published online: 21 Nov 2023

References

  • Dumontet C, Reichert JM, Senter PD, et al. Antibody–drug conjugates come of age in oncology. Nat Rev Drug Discov. 2023 Aug;22(8):641–661. doi: 10.1038/s41573-023-00709-2
  • Hoffmann RM, Coumbe BGT, Josephs DH, et al. Antibody structure and engineering considerations for the design and function of antibody drug conjugates (ADCs). Oncoimmunology. 2018;7(3):e1395127. doi: 10.1080/2162402X.2017.1395127
  • Qi X, Li Y, Liu W, et al. Research trend of publications concerning antibody-drug conjugate in solid cancer: a bibliometric study. Front Pharmacol. 2022;13:921385. doi: 10.3389/fphar.2022.921385
  • Hammood M, Craig AW, Leyton JV. Impact of endocytosis mechanisms for the receptors targeted by the currently approved antibody-drug conjugates (ADCs)—a necessity for future ADC research and development. Pharmaceuticals (Basel). 2021 Jul 15;14(7):674. doi: 10.3390/ph14070674
  • Jin Y, Schladetsch MA, Huang X, et al. Stepping forward in antibody-drug conjugate development. Pharmacol Ther. 2022 Jan;229:107917.
  • Leyton JV. Improving Receptor-Mediated Intracellular Access and Accumulation of Antibody Therapeutics—The Tale of HER2. Antibodies (Basel). 2020 Jul 13;9(3):32. doi: 10.3390/antib9030032
  • Mellman I, Yarden Y. Endocytosis and cancer. Cold Spring Harb Perspect Biol. 2013 Dec 1;5(12):a016949. doi: 10.1101/cshperspect.a016949
  • Mosesson Y, Mills GB, Yarden Y. Derailed endocytosis: an emerging feature of cancer. Nat Rev Cancer. 2008 Nov;8(11):835–850. doi: 10.1038/nrc2521
  • Banushi B, Joseph SR, Lum B, et al. Endocytosis in cancer and cancer therapy. Nat Rev Cancer. 2023 Jul;23(7):450–473. doi: 10.1038/s41568-023-00574-6
  • Chen YF, Xu YY, Shao ZM, et al. Resistance to antibody-drug conjugates in breast cancer: mechanisms and solutions. Cancer Commun (Lond). 2023 Mar;43(3):297–337. doi: 10.1002/cac2.12387
  • Khoury R, Saleh K, Khalife N, et al. Mechanisms of resistance to antibody-drug conjugates. Int J Mol Sci. 2023 Jun 2;24(11):9674. doi: 10.3390/ijms24119674
  • Wandinger-Ness A, Zerial M. Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb Perspect Biol. 2014 Oct 23;6(11):a022616. doi: 10.1101/cshperspect.a022616
  • Jin H, Tang Y, Yang L, et al. Rab GTPases: central coordinators of membrane trafficking in cancer. Front Cell Dev Biol. 2021;9:648384. doi: 10.3389/fcell.2021.648384
  • Frittoli E, Palamidessi A, Marighetti P, et al. A RAB5/RAB4 recycling circuitry induces a proteolytic invasive program and promotes tumor dissemination. J Cell Bio. 2014 Jul 21;206(2):307–328. doi: 10.1083/jcb.201403127
  • Engebraaten O, Yau C, Berg K, et al. RAB5A expression is a predictive biomarker for trastuzumab emtansine in breast cancer. Nat Commun. 2021 Nov 5;12(1):6427. doi: 10.1038/s41467-021-26018-z
  • Squires H, Stevenson M, Simpson E, et al. Trastuzumab emtansine for treating HER2-positive, unresectable, locally advanced or metastatic breast cancer after treatment with trastuzumab and a taxane: an evidence review group perspective of a NICE single technology appraisal. Pharmaco Eco. 2016 Jul;34(7):673–680. doi: 10.1007/s40273-016-0386-z
  • Barok M, Puhka M, Vereb G, et al. Cancer-derived exosomes from HER2-positive cancer cells carry trastuzumab-emtansine into cancer cells leading to growth inhibition and caspase activation. BMC Cancer. 2018 May 2;18(1): 504. 10.1186/s12885-018-4418-2
  • Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016 Mar 10;164(6):1226–1232. doi: 10.1016/j.cell.2016.01.043
  • Loganzo F, Tan X, Sung M, et al. Tumor cells chronically treated with a trastuzumab-maytansinoid antibody-drug conjugate develop varied resistance mechanisms but respond to alternate treatments. Mol Cancer Ther. 2015 Apr;14(4):952–963. doi: 10.1158/1535-7163.MCT-14-0862
  • Grigoriev I, Splinter D, Keijzer N, et al. Rab6 regulates transport and targeting of exocytotic carriers. Dev Cell. 2007 Aug;13(2):305–314. doi: 10.1016/j.devcel.2007.06.010
  • Wei D, Zhan W, Gao Y, et al. RAB31 marks and controls an ESCRT-independent exosome pathway. Cell Res. 2021 Feb;31(2):157–177. doi: 10.1038/s41422-020-00409-1
  • Wang L, Wang Q, Xu P, et al. YES1 amplification confers trastuzumab-emtansine (T-DM1) resistance in HER2-positive cancer. Br J Cancer. 2020 Sep;123(6):1000–1011. doi: 10.1038/s41416-020-0952-1
  • Zhou Y, Wang C, Ding J, et al. miR-133a targets YES1 to reduce cisplatin resistance in ovarian cancer by regulating cell autophagy. Cancer Cell Int. 2022 Jan 10;22(1):15. doi: 10.1186/s12935-021-02412-x
  • Ullrich O, Reinsch S, Urbe S, et al. Rab11 regulates recycling through the pericentriolar recycling endosome. J Cell Bio. 1996 Nov;135(4):913–924. doi: 10.1083/jcb.135.4.913
  • Sato I, Obata Y, Kasahara K, et al. Differential trafficking of src, Lyn, Yes and Fyn is specified by the state of palmitoylation in the SH4 domain. J Cell Sci. 2009 Apr 1;122(Pt 7):965–975. doi: 10.1242/jcs.034843
  • Trivedi PC, Bartlett JJ, Pulinilkunnil T. Lysosomal biology and function: modern view of cellular debris bin. Cells. 2020 May 4;9(5):1131. doi: 10.3390/cells9051131
  • Perera RM, Zoncu R. The lysosome as a regulatory hub. Annu Rev Cell Dev Biol. 2016 Oct 6;32(1):223–253. doi: 10.1146/annurev-cellbio-111315-125125
  • Nadal-Serrano M, Morancho B, Escriva-de-Romani S, et al. The second generation antibody-drug conjugate SYD985 overcomes resistances to T-DM1. Cancers (Basel). 2020 Mar 13;12(3):670. doi: 10.3390/cancers12030670
  • Rios-Luci C, Garcia-Alonso S, Diaz-Rodriguez E, et al. Resistance to the antibody-drug conjugate T-DM1 is based in a reduction in lysosomal proteolytic activity. Cancer Res. 2017 Sep 1;77(17):4639–4651. doi: 10.1158/0008-5472.CAN-16-3127
  • Wang H, Wang W, Xu Y, et al. Aberrant intracellular metabolism of T-DM1 confers T-DM1 resistance in human epidermal growth factor receptor 2-positive gastric cancer cells. Cancer Sci. 2017 Jul;108(7):1458–1468. doi: 10.1111/cas.13253
  • Steinman RM, Mellman IS, Muller WA, et al. Endocytosis and the recycling of plasma membrane. J Cell Bio. 1983 Jan;96(1):1–27. doi: 10.1083/jcb.96.1.1
  • Mahmutefendic H, Blagojevic Zagorac G, Macesic S, et al. Chapter 6. Rapid Endosomal Recycling. Peripheral Membrane Proteins: IntechOpen. 2018.
  • Lynch M, Marinov GK. Membranes, energetics, and evolution across the prokaryote-eukaryote divide. Elife. 2017 Mar 16;6. doi: 10.7554/eLife.20437
  • Erazo-Oliveras A, Fuentes NR, Wright RC, et al. Functional link between plasma membrane spatiotemporal dynamics, cancer biology, and dietary membrane-altering agents. Cancer Metastasis Rev. 2018 Sep;37(2–3):519–544. doi: 10.1007/s10555-018-9733-1
  • Huotari J, Helenius A. Endosome maturation. EMBO J. 2011 Aug 31;30(17):3481–3500. doi: 10.1038/emboj.2011.286
  • Cullen PJ, Steinberg F. To degrade or not to degrade: mechanisms and significance of endocytic recycling. Nat Rev Mol Cell Biol. 2018 Nov;19(11):679–696. doi: 10.1038/s41580-018-0053-7
  • Elkin SR, Bendris N, Reis CR, et al. A systematic analysis reveals heterogeneous changes in the endocytic activities of cancer cells. Cancer Res. 2015 Nov 1;75(21):4640–4650. doi: 10.1158/0008-5472.CAN-15-0939
  • Grant BD, Donaldson JG. Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol. 2009 Sep;10(9):597–608. doi: 10.1038/nrm2755
  • Ivanova D, Cousin MA. Synaptic vesicle recycling and the endolysosomal system: a reappraisal of form and function. Front Synaptic Neurosci. 2022;14:826098. doi: 10.3389/fnsyn.2022.826098
  • Jonker CTH, Deo C, Zager PJ, et al. Accurate measurement of fast endocytic recycling kinetics in real time. J Cell Sci. 2020 Jan 22;133(2). doi: 10.1242/jcs.231225
  • Mayle KM, Le AM, Kamei DT. The intracellular trafficking pathway of transferrin. Biochim Biophys Acta. 2012 Mar;1820(3):264–281. doi: 10.1016/j.bbagen.2011.09.009
  • Candelaria PV, Leoh LS, Penichet ML, et al. Antibodies targeting the transferrin receptor 1 (TfR1) as direct anti-cancer agents. Front Immunol. 2021;12:607692. doi: 10.3389/fimmu.2021.607692
  • Dautry-Varsat A, Ciechanover A, Lodish HF. pH and the recycling of transferrin during receptor-mediated endocytosis. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2258–2262. doi: 10.1073/pnas.80.8.2258
  • Kleven MD, Jue S, Enns CA. Transferrin receptors TfR1 and TfR2 bind transferrin through differing mechanisms. Biochemistry. 2018 Mar 6;57(9):1552–1559. doi: 10.1021/acs.biochem.8b00006
  • Hopkins CR. The appearance and internalization of transferrin receptors at the margins of spreading human tumor cells. Cell. 1985 Jan;40(1):199–208. doi: 10.1016/0092-8674(85)90323-X
  • Ciechanover A, Schwartz AL, Dautry-Varsat A, et al. Kinetics of internalization and recycling of transferrin and the transferrin receptor in a human hepatoma cell line. Effect of lysosomotropic agents. J Biol Chem. 1983 Aug 25;258(16):9681–9689. doi: 10.1016/S0021-9258(17)44551-0
  • Hopkins CR, Trowbridge IS. Internalization and processing of transferrin and the transferrin receptor in human carcinoma A431 cells. J Cell Bio. 1983 Aug;97(2):508–521. doi: 10.1083/jcb.97.2.508
  • van der Ende A, du Maine A, Schwartz AL, et al. Modulation of transferrin-receptor activity and recycling after induced differentiation of BeWo choriocarcinoma cells. Biochem J. 1990 Sep 1;270(2):451–457. doi: 10.1042/bj2700451
  • van der Sluijs P, Hull M, Webster P, et al. The small GTP-binding protein rab4 controls an early sorting event on the endocytic pathway. Cell. 1992 Sep 4;70(5):729–740. doi: 10.1016/0092-8674(92)90307-X
  • Lakadamyali M, Rust MJ, Zhuang X. Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell. 2006 Mar 10;124(5):997–1009. doi: 10.1016/j.cell.2005.12.038
  • Ren M, Xu G, Zeng J, et al. Hydrolysis of GTP on rab11 is required for the direct delivery of transferrin from the pericentriolar recycling compartment to the cell surface but not from sorting endosomes. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6187–6192. doi: 10.1073/pnas.95.11.6187
  • Hattula K, Furuhjelm J, Tikkanen J, et al. Characterization of the Rab8-specific membrane traffic route linked to protrusion formation. J Cell Sci. 2006 Dec 1;119(Pt 23):4866–4877. doi: 10.1242/jcs.03275
  • Weissman AM, Klausner RD, Rao K, et al. Exposure of K562 cells to anti-receptor monoclonal antibody OKT9 results in rapid redistribution and enhanced degradation of the transferrin receptor. J Cell Bio. 1986 Mar;102(3):951–958. doi: 10.1083/jcb.102.3.951
  • Daniels TR, Bernabeu E, Rodriguez JA, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta. 2012 Mar;1820(3):291–317. doi: 10.1016/j.bbagen.2011.07.016
  • Johnson M, El-Khoueiry A, Hafez N, et al. Phase I, first-in-human study of the probody therapeutic CX-2029 in adults with advanced solid tumor malignancies. Clin Cancer Res. 2021 Aug 15;27(16):4521–4530. doi: 10.1158/1078-0432.CCR-21-0194
  • Luria-Perez R, Helguera G, Rodriguez JA. Antibody-mediated targeting of the transferrin receptor in cancer cells. Bol Med Hosp Infant Mex. 2016 Nov;73(6):372–379. doi: 10.1016/j.bmhimx.2016.11.004
  • Polson AG, Yu SF, Elkins K, et al. Antibody-drug conjugates targeted to CD79 for the treatment of non-Hodgkin lymphoma. Blood. 2007 Jul 15;110(2):616–623. doi: 10.1182/blood-2007-01-066704
  • Palanca-Wessels MC, Czuczman M, Salles G, et al. Safety and activity of the anti-CD79B antibody-drug conjugate polatuzumab vedotin in relapsed or refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukaemia: a phase 1 study. Lancet Oncol. 2015 Jun;16(6):704–715. doi: 10.1016/S1470-2045(15)70128-2
  • Pinilla-Macua I, Sorkin A. Methods to study endocytic trafficking of the EGF receptor. Methods Cell Biol. 2015;130:347–367.
  • Rosenkranz AA, Slastnikova TA. Epidermal growth factor receptor: key to selective intracellular delivery. Biochemistry (Mosc). 2020 Sep;85(9):967–1092. doi: 10.1134/S0006297920090011
  • Henriksen L, Grandal MV, Knudsen SL, et al. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands. PLoS One. 2013;8(3):e58148. doi: 10.1371/journal.pone.0058148
  • Ebner R, Derynck R. Epidermal growth factor and transforming growth factor-alpha: differential intracellular routing and processing of ligand-receptor complexes. Cell Regul. 1991 Aug;2(8):599–612. doi: 10.1091/mbc.2.8.599
  • Clague MJ, Liu H, Urbe S. Governance of endocytic trafficking and signaling by reversible ubiquitylation. Dev Cell. 2012 Sep 11;23(3):457–467. doi: 10.1016/j.devcel.2012.08.011
  • Chiaruttini N, Roux A. Dynamic and elastic shape transitions in curved ESCRT-III filaments. Curr Opin Cell Biol. 2017 Aug;47:126–135. doi: 10.1016/j.ceb.2017.07.002
  • Francavilla C, Papetti M, Rigbolt KT, et al. Multilayered proteomics reveals molecular switches dictating ligand-dependent EGFR trafficking. Nat Struct Mol Biol. 2016 Jun;23(6):608–618. doi: 10.1038/nsmb.3218
  • Takahashi JI, Nakamura S, Onuma I, et al. Synchronous intracellular delivery of EGFR-targeted antibody-drug conjugates by p38-mediated non-canonical endocytosis. Sci Rep. 2022 Jul 7;12(1):11561. doi: 10.1038/s41598-022-15838-8
  • Fan J, Zhuang X, Yang X, et al. A multivalent biparatopic EGFR-targeting nanobody drug conjugate displays potent anticancer activity in solid tumor models. Signal Transduct Target Ther. 2021 Sep 3;6(1):320. doi: 10.1038/s41392-021-00666-5
  • Gandullo-Sanchez L, Pandiella A. An anti-EGFR antibody-drug conjugate overcomes resistance to HER2-targeted drugs. Cancer Lett. 2023 Feb 1;554:216024. doi: 10.1016/j.canlet.2022.216024
  • Hu XY, Wang R, Jin J, et al. An EGFR-targeting antibody-drug conjugate LR004-VC-MMAE: potential in esophageal squamous cell carcinoma and other malignancies. Mol Oncol. 2019 Feb;13(2):246–263. doi: 10.1002/1878-0261.12400
  • Perez Verdaguer M, Zhang T, Paulo JA, et al. Mechanism of p38 MAPK–induced EGFR endocytosis and its crosstalk with ligand-induced pathways. J Cell Bio. 2021 Jul 5;220(7). doi: 10.1083/jcb.202102005
  • Tanaka T, Zhou Y, Ozawa T, et al. Ligand-activated epidermal growth factor receptor (EGFR) signaling governs endocytic trafficking of unliganded receptor monomers by non-canonical phosphorylation. J Biol Chem. 2018 Feb 16;293(7):2288–2301. doi: 10.1074/jbc.M117.811299
  • Zhang Y, Zhang J, Liu C, et al. Neratinib induces ErbB2 ubiquitylation and endocytic degradation via HSP90 dissociation in breast cancer cells. Cancer Lett. 2016 Nov 28;382(2):176–185. doi: 10.1016/j.canlet.2016.08.026
  • Li BT, Michelini F, Misale S, et al. HER2-mediated internalization of cytotoxic agents in ERBB2 amplified or mutant lung cancers. Cancer Discov. 2020 May;10(5):674–687. doi: 10.1158/2159-8290.CD-20-0215
  • McDonough H, Patterson C. CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones. 2003;8(4):303–308. Winter. doi: 10.1379/1466-1268(2003)008<0303:CALBTC>2.0.CO;2
  • Citri A, Alroy I, Lavi S, et al. Drug-induced ubiquitylation and degradation of ErbB receptor tyrosine kinases: implications for cancer therapy. EMBO J. 2002 May 15;21(10):2407–2417. doi: 10.1093/emboj/21.10.2407
  • Mukohara T, Hosono A, Mimaki S, et al. Effects of ado-trastuzumab emtansine and Fam-trastuzumab Deruxtecan on metastatic breast cancer Harboring HER2 amplification and the L755S mutation. Oncology. 2021 Aug;26(8):635–639. doi: 10.1002/onco.13715

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.