386
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Larger hip external rotation motion is associated with larger knee abduction and internal rotation motions during a drop vertical jump

ORCID Icon, ORCID Icon, , , , , , & show all
Pages 640-654 | Received 14 May 2020, Accepted 21 Jan 2021, Published online: 04 Mar 2021

References

  • Agel, J., Rockwood, T., & Klossner, D. (2016). Collegiate ACL injury rates across 15 sports: national collegiate athletic association injury surveillance system data update (2004-2005 through 2012-2013). Clinical Journal of Sport Medicine, 26(6), 518–523. https://doi.org/10.1097/JSM.0000000000000290
  • Ardern, C. L., Taylor, N. F., Feller, J. A., & Webster, K. E. (2014). Fifty-five per cent return to competitive sport following anterior cruciate ligament reconstruction surgery: An updated systematic review and meta-analysis including aspects of physical functioning and contextual factors. British Journal of Sports Medicine, 48(21), 1543–1552. https://doi.org/10.1136/bjsports-2013-093398
  • Barber-Westin, S. D., & Noyes, F. R. (2011). Factors used to determine return to unrestricted sports activities after anterior cruciate ligament reconstruction. Arthroscopy, 27(12), 1697–1705. https://doi.org/10.1016/j.arthro.2011.09.009
  • Bates, N. A., Ford, K. R., Myer, G. D., & Hewett, T. E. (2013). Kinetic and kinematic differences between first and second landings of a drop vertical jump task: Implications for injury risk assessments. Clinical Biomechanics, 28(4), 459–466. https://doi.org/10.1016/j.clinbiomech.2013.02.013
  • Bates, N. A., Schilaty, N. D., Nagelli, C. V., Krych, A. J., & Hewett, T. E. (2019). Multiplanar loading of the knee and its influence on anterior cruciate ligament and medial collateral ligament strain during simulated landings and noncontact tears. The American Journal of Sports Medicine, 47(8), 1844–1853. https://doi.org/10.1177/0363546519850165
  • Beaulieu, M. L., Oh, Y. K., Bedi, A., Ashton-Miller, J. A., & Wojtys, E. M. (2014). Does limited internal femoral rotation increase peak anterior cruciate ligament strain during a simulated pivot landing? The American Journal of Sports Medicine, 42(12), 2955–2963. https://doi.org/10.1177/0363546514549446
  • Beaulieu, M. L., Wojtys, E. M., & Ashton-Miller, J. A. (2015). Risk of anterior cruciate ligament fatigue failure is increased by limited internal femoral rotation during in vitro repeated pivot landings. The American Journal of Sports Medicine, 43(9), 2233–2241. https://doi.org/10.1177/0363546515589164
  • Bedi, A., Warren, R. F., Wojtys, E. M., Oh, Y. K., Ashton-Miller, J. A., Oltean, H., & Kelly, B. T. (2016). Restriction in hip internal rotation is associated with an increased risk of ACL injury. Knee Surgery, Sports Traumatology, Arthroscopy, 24(6), 2024–2031. https://doi.org/10.1007/s00167-014-3299-4
  • Critchley, M. L., Davis, D. J., Keener, M. M., Layer, J. S., Wilson, M. A., Zhu, Q., & Dai, B. (2020). The effects of mid-flight whole-body and trunk rotation on landing mechanics: Implications for anterior cruciate ligament injuries. Sports Biomechanics, 19(4), 421–437. https://doi.org/10.1080/14763141.2019.1595704
  • de Leva, P. (1996). Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. Journal of Biomechanics, 29(9), 1223–1230. https://doi.org/10.1016/0021-9290(95)00178-6
  • Delp, S. L., Loan, J. P., Hoy, M. G., Zajac, F. E., Topp, E. L., & Rosen, J. M. (1990). An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Transactions on Bio-medical Engineering, 37(8), 757–767. https://doi.org/10.1109/10.102791
  • Ellera Gomes, J. L., de Castro, J. V., & Becker, R. (2008). Decreased hip range of motion and noncontact injuries of the anterior cruciate ligament. Arthroscopy, 24(9), 1034–1037. https://doi.org/10.1016/j.arthro.2008.05.012
  • Ford, K. R., Myer, G. D., & Hewett, T. E. (2007). Reliability of landing 3D motion analysis: Implications for longitudinal analyses. Medicine and Science in Sports and Exercise, 39(11), 2021–2028. https://doi.org/10.1249/mss.0b013e318149332d
  • Hewett, T. E., Myer, G. D., Ford, K. R., Heidt, R. S., Colosimo, A. J., McLean, S. G., van den Bogert, A. J., Paterno, M. V., & Succop, P. (2005). Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. The American Journal of Sports Medicine, 33(4), 492–501. https://doi.org/10.1177/0363546504269591
  • Hewett, T. E., Ford, K. R., Hoogenboom, B. J., & Myer, G. D. (2010). Understanding and preventing ACL injuries: Current biomechanical and epidemiologic considerations - update. North American Journal of Sports Physical Therapy, 5(4), 234–251.
  • Hogg, J. A., Schmitz, R. J., & Shultz, S. J. (2019). The influence of hip structure on functional valgus collapse during a single-leg forward landing in females. Journal of Applied Biomechanics, 35(6), 370–376. https://doi.org/10.1123/jab.2019-0069
  • Howard, J. S., Fazio, M. A., Mattacola, C. G., Uhl, T. L., & Jacobs, C. A. (2011). Structure, sex, and strength and knee and hip kinematics during landing. Journal of Athletic Training, 46(4), 376–385. https://doi.org/10.4085/1062-6050-46.4.376
  • Ishida, T., Yamanaka, M., Takeda, N., & Aoki, Y. (2014). Knee rotation associated with dynamic knee valgus and toe direction. The Knee, 21(2), 563–566. https://doi.org/10.1016/j.knee.2012.12.002
  • Ishida, T., Yamanaka, M., Takeda, N., Homan, K., Koshino, Y., Kobayashi, T., Matsumoto, H., & Aoki, Y. (2015). The effect of changing toe direction on knee kinematics during drop vertical jump: A possible risk factor for anterior cruciate ligament injury. Knee Surgery, Sports Traumatology, Arthroscopy, 23(4), 1004–1009. https://doi.org/10.1007/s00167-013-2815-2
  • Ishida, T., Koshino, Y., Yamanaka, M., Ueno, R., Taniguchi, S., Samukawa, M., Saito, H., Matsumoto, H., Aoki, Y., & Tohyama, H. (2018). The effects of a subsequent jump on the knee abduction angle during the early landing phase. BMC Musculoskeletal Disorders, 19(1), 379. https://doi.org/10.1186/s12891-018-2291-4
  • Khayambashi, K., Ghoddosi, N., Straub, R. K., & Powers, C. M. (2016). Hip muscle strength predicts noncontact anterior cruciate ligament injury in male and female athletes: a prospective study. The American Journal of Sports Medicine, 44(2), 355–361. https://doi.org/10.1177/0363546515616237
  • Kiapour, A. M., Demetropoulos, C. K., Kiapour, A., Quatman, C. E., Wordeman, S. C., Goel, V. K., & Hewett, T. E. (2016). Strain response of the anterior cruciate ligament to uniplanar and multiplanar loads during simulated landings: implications for injury mechanism. The American Journal of Sports Medicine, 44(8), 2087–2096. https://doi.org/10.1177/0363546516640499
  • Koga, H., Nakamae, A., Shima, Y., Bahr, R., & Krosshaug, T. (2018). Hip and ankle kinematics in noncontact anterior cruciate ligament injury situations: video analysis using model-based image matching. The American Journal of Sports Medicine, 46(2), 333–340. https://doi.org/10.1177/0363546517732750
  • Koga, H., Nakamae, A., Shima, Y., Iwasa, J., Myklebust, G., Engebretsen, L., Bahr, R., & Krosshaug, T. (2010). Mechanisms for noncontact anterior cruciate ligament injuries: Knee joint kinematics in 10 injury situations from female team handball and basketball. The American Journal of Sports Medicine, 38(11), 2218–2225. https://doi.org/10.1177/0363546510373570
  • LaBella, C. R., Huxford, M. R., Grissom, J., Kim, K.-Y., Peng, J., & Christoffel, K. K. (2011). Effect of neuromuscular warm-up on injuries in female soccer and basketball athletes in urban public high schools: Cluster randomized controlled trial. Archives of Pediatrics & Adolescent Medicine, 165(11), 1033–1040. https://doi.org/10.1001/archpediatrics.2011.168
  • Leppänen, M., Pasanen, K., Kujala, U. M., Vasankari, T., Kannus, P., Äyrämö, S., Krosshaug, T., Bahr, R., Avela, J., Perttunen, J., & Parkkari, J. (2017). Stiff landings are associated with increased ACL injury risk in young female basketball and floorball players. The American Journal of Sports Medicine, 45(2), 386–393. https://doi.org/10.1177/0363546516665810
  • Malloy, P., Morgan, A., Meinerz, C., Geiser, C., & Kipp, K. (2015). The association of dorsiflexion flexibility on knee kinematics and kinetics during a drop vertical jump in healthy female athletes. Knee Surgery, Sports Traumatology, Arthroscopy, 23(12), 3550–3555. https://doi.org/10.1007/s00167-014-3222-z
  • Malloy, P., Morgan, A. M., Meinerz, C. M., Geiser, C. F., & Kipp, K. (2016). Hip external rotator strength is associated with better dynamic control of the lower extremity during landing tasks. Journal of Strength and Conditioning Research, 30(1), 282–291. https://doi.org/10.1519/JSC.0000000000001069
  • Markolf, K. L., Burchfield, D. M., Shapiro, M. M., Shepard, M. F., Finerman, G. A., & Slauterbeck, J. L. (1995). Combined knee loading states that generate high anterior cruciate ligament forces. Journal of Orthopaedic Research, 13(6), 930–935. https://doi.org/10.1002/jor.1100130618
  • Matsumoto, H. (1990). Mechanism of the pivot shift. The Journal of Bone and Joint Surgery. British Volume, 72(5), 816–821. https://doi.org/10.1302/0301-620X.72B5.2211763
  • Navacchia, A., Bates, N. A., Schilaty, N. D., Krych, A. J., & Hewett, T. E. (2019). Knee abduction and internal rotation moments increase ACL force during landing through the posterior slope of the tibia. Journal of Orthopaedic Research, 37(8), 1730–1742. https://doi.org/10.1002/jor.24313
  • Nguyen, A.-D., Shultz, S. J., & Schmitz, R. J. (2015). Landing biomechanics in participants with different static lower extremity alignment profiles. Journal of Athletic Training, 50, 498–507. https://doi.org/10.4085/1062-6050-49.6.03
  • Olson, T. J., Chebny, C., Willson, J. D., Kernozek, T. W., & Straker, J. S. (2011). Comparison of 2D and 3D kinematic changes during a single leg step down following neuromuscular training. Physical Therapy in Sport, 12(2), 93–99. https://doi.org/10.1016/j.ptsp.2010.10.002
  • Omi, Y., Sugimoto, D., Kuriyama, S., Kurihara, T., Miyamoto, K., Yun, S., Kawashima, T., & Hirose, N. (2018). Effect of hip-focused injury prevention training for anterior cruciate ligament injury reduction in female basketball players: a 12-year prospective intervention study. The American Journal of Sports Medicine, 46(4), 852–861. https://doi.org/10.1177/0363546517749474
  • Paterno, M. V., Schmitt, L. C., Ford, K. R., Rauh, M. J., Myer, G. D., Huang, B., & Hewett, T. E. (2010). Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. The American Journal of Sports Medicine, 38(10), 1968–1978. https://doi.org/10.1177/0363546510376053
  • Paterno, M. V., Huang, B., Thomas, S., Hewett, T. E., & Schmitt, L. C. (2017). Clinical factors that predict a second ACL injury after ACL reconstruction and return to sport: preliminary development of a clinical decision algorithm. Orthopaedic Journal of Sports Medicine, 5(12), 2325967117745279. https://doi.org/10.1177/2325967117745279
  • Pollard, C. D., Sigward, S. M., & Powers, C. M. (2010). Limited hip and knee flexion during landing is associated with increased frontal plane knee motion and moments. Clinical Biomechanics, 25(2), 142–146. https://doi.org/10.1016/j.clinbiomech.2009.10.005
  • Shimokochi, Y., & Shultz, S. J. (2008). Mechanisms of noncontact anterior cruciate ligament injury. Journal of Athletic Training, 43(4), 396–408. https://doi.org/10.4085/1062-6050-43.4.396
  • Tainaka, K., Takizawa, T., Kobayashi, H., & Umimura, M. (2014). Limited hip rotation and non-contact anterior cruciate ligament injury: A case-control study. The Knee, 21(1), 86–90. https://doi.org/10.1016/j.knee.2013.07.006
  • Ueno, R., Navacchia, A., Bates, N. A., Schilaty, N. D., Krych, A. J., & Hewett, T. E. (2020). Analysis of internal knee forces allows for the prediction of rupture events in a clinically relevant model of anterior cruciate ligament injuries. Orthopaedic Journal of Sports Medicine, 8(1), 2325967119893758. https://doi.org/10.1177/2325967119893758
  • Ueno, R., Navacchia, A., DiCesare, C. A., Ford, K. R., Myer, G. D., Ishida, T., Tohyama, H., & Hewett, T. E. (2020). Knee abduction moment is predicted by lower gluteus medius force and larger vertical and lateral ground reaction forces during drop vertical jump in female athletes. Journal of Biomechanics, 103. https://doi.org/10.1016/j.jbiomech.2020.109669
  • Waldén, M., Atroshi, I., Magnusson, H., Wagner, P., & Hägglund, M. (2012). Prevention of acute knee injuries in adolescent female football players: Cluster randomised controlled trial. BMJ, 344. https://doi.org/10.1136/bmj.e3042
  • Wiggins, A. J., Grandhi, R. K., Schneider, D. K., Stanfield, D., Webster, K. E., & Myer, G. D. (2016). Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. The American Journal of Sports Medicine, 44(7), 1861–1876. https://doi.org/10.1177/0363546515621554

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.