1,328
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Racket orientation angle differences between accurate and inaccurate squash shots, as determined by a racket embedded magnetic-inertial measurement unit

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 817-829 | Received 28 Sep 2020, Accepted 14 Feb 2021, Published online: 04 Mar 2021

References

  • Ahmadi, A., Rowlands, D., & James, D. A. (2009). Towards a wearable device for skill assessment and skill acquisition of a tennis player during the first serve. Sports Technology, 2(3–4), 129–136. https://doi.org/10.1080/19346182.2009.9648510
  • Ahmadi, A., Rowlands, D. D., & James, D. A. (2010). Development of inertial and novel marker-based techniques and analysis for upper arm rotational velocity measurements in tennis. Sports Engineering, 12(4), 179–188. https://doi.org/10.1007/s12283-010-0044-1
  • Bartlett, R., Wheat, J., & Robins, M. (2007). Is movement variability important for sports biomechanists? Sports Biomechanics, 6(2), 224–243. https://doi.org/10.1080/14763140701322994
  • Bergamini, E., Guillon, P., Camomilla, V., Pillet, H., Skalli, W., & Cappozzo, A. (2013). Trunk inclination estimate during the sprint start using an inertial measurement unit: A validation study. Journal of Applied Biomechanics, 29(5), 622–627. https://doi.org/10.1123/jab.29.5.622
  • Blair, S., Duthie, G., Robertson, S., Hopkins, W., & Ball, K. (2018). Concurrent validation of an inertial measurement system to quantify kicking biomechanics in four football codes. Journal of Biomechanics, 73, 24–32. https://doi.org/10.1016/j.jbiomech.2018.03.031
  • Boyer, E., Bevilacqua, F., Phal, F., & Hanneton, S. (2013). Low-cost motion sensing of table tennis players for real time feedback. Paper presented at The 13th ITTF sports science congress. Paris, France.
  • Brodie, M., Walmsley, A., & Page, W. (2008). Fusion motion capture: A prototype system using inertial measurement units and GPS for the biomechanical analysis of ski racing. Sports Technology, 1(1), 17–28. https://doi.org/10.1002/jst.6
  • Brody, H. (2006). Unforced errors and error reduction in tennis. British Journal of Sports Medicine, 40(5), 397–400. https://doi.org/10.1136/bjsm.2005.023432
  • Brunette, K., & Durbach, R. (2011). Squash with the pros. Moonshine Media.
  • Buthe, L., Blanke, U., Capkevics, H., & Troster, G. (2016). A wearable sensing system for timing analysis in tennis 2016 IEEE 13th international conference on wearable and implantable body sensor networks (BSN) (pp. 43–48). San Francisco, CA: IEEE.
  • Button, C., Macleod, M., Sanders, R., & Coleman, S. (2003). Examining movement variability in the basketball free-throw action at different skill levels. Research Quarterly for Exercise and Sport, 74(3), 257–269. https://doi.org/10.1080/02701367.2003.10609090
  • Camomilla, V., Bergamini, E., Fantozzi, S., & Vannozzi, G. (2018). Trends supporting the in-field use of wearable inertial sensors for sport performance evaluation: A systematic review. Sensors, 18(3), 873. https://doi.org/10.3390/s18030873
  • Chambers, R., Gabbett, T. J., Cole, M. H., & Beard, A. (2015). The use of wearable microsensors to quantify sport-specific movements. Sports Medicine, 45(7), 1065–1081. https://doi.org/10.1007/s40279-015-0332-9
  • Connaghan, D., Kelly, P., O’Connor, N. E., Gaffney, M., Walsh, M., & O’Mathuna, C. (2011). Multi-sensor classification of tennis strokes. 2011 IEEE sensors, Limerick, Ireland, 1437–1440. https://doi.org/10.1109/ICSENS.2011.6127084
  • Cortis, C., Tessitore, A., Perroni, F., Lupo, C., Pesce, C., Ammendolia, A. (2009). Interlimb coordination, strength, and power in soccer players across the lifespan. The Journal of Strength & Conditioning Research, 23(9), 2458–2466. https://doi.org/10.1519/JSC.0b013e3181bc1b39
  • Davey, P. R., Thorpe, R. D., & Williams, C. (2002). Fatigue decreases skilled tennis performance. Journal of Sports Sciences, 20(4), 311–318. https://doi.org/10.1080/026404102753576080
  • Elliott, B., Marsh, T., & Overheu, P. (1989). A biomechanical comparison of the multisegment and single unit topspin forehand drives in tennis. International Journal of Sport Biomechanics, 5(3), 350–364. https://doi.org/10.1123/ijsb.5.3.350
  • Elliott, B., Takahashi, K., & Noffal, G. (1997). The influence of grip position on upper limb contributions to racket head velocity in a tennis forehand. Journal of Applied Biomechanics, 13(2), 182–196. https://doi.org/10.1123/jab.13.2.182
  • Jaitner, T., & Gawin, W. (2010). A mobile measure device for the analysis of highly dynamic movement techniques. Procedia Engineering, 2(2), 3005–3010. https://doi.org/10.1016/j.proeng.2010.04.102
  • Knudson, D. V., & Blackwell, J. R. (2005). Variability of impact kinematics and margin for error in the tennis forehand of advanced players. Sports Engineering, 8(2), 75–80. https://doi.org/10.1007/bf02844005
  • Kwon, S., Pfister, R., Hager, R. L., Hunter, I., & Seeley, M. K. (2017). Influence of tennis racquet kinematics on ball topspin angular velocity and accuracy during the forehand groundstroke. Journal of Sports Science & Medicine, 16(4), 505–513.
  • Landlinger, J., Stöggl, T., Lindinger, S., Wagner, H., & Müller, E. (2012). Differences in ball speed and accuracy of tennis groundstrokes between elite and high-performance players. European Journal of Sport Science, 12(4), 301–308. https://doi.org/10.1080/17461391.2011.566363
  • Lebel, K., Boissy, P., Hamel, M., & Duval, C. (2013). Inertial measures of motion for clinical biomechanics: Comparative assessment of accuracy under controlled conditions - effect of velocity. PLoS ONE, 8(11). https://doi.org/10.1371/journal.pone.0079945
  • Mavvidis, A., Koronas, K., Riganas, C., & Metaxas, T. (2005). Speed differences between forehand and backhand in intermediate-level tennis players. Kinesiology, 37(2), 159–163.
  • Pasciuto, I., Ligorio, G., Bergamini, E., Vannozzi, G., Sabatini, A., & Cappozzo, A. (2015). How angular velocity features and different gyroscope noise types interact and determine orientation estimation accuracy. Sensors, 15(9). https://doi.org/10.3390/s150923983
  • Pei, W., Wang, J., Xu, X., Wu, Z., & Du, X. (2017). An embedded 6-axis sensor based recognition for tennis stroke. Paper presented at the 2017 IEEE international conference on consumer electronics (ICCE), Las Vegas, NV.
  • Picerno, P. (2017). Good practice rules for the assessment of the force-velocity relationship in isoinertial resistance exercises. Asian Journal of Sports Medicine, 8(3). https://doi.org/10.5812/asjsm.15590
  • Punchihewa, N. G., Yamako, G., Fukao, Y., & Chosa, E. (2019). Identification of key events in baseball hitting using inertial measurement units. Journal of Biomechanics, 87, 157–160. https://doi.org/10.1016/j.jbiomech.2019.02.001
  • Robert-Lachaine, X., Mecheri, H., Larue, C., & Plamondon, A. (2017). Validation of inertial measurement units with an optoelectronic system for whole-body motion analysis. Medical & Biological Engineering & Computing, 55(4), 609–619. https://doi.org/10.1007/s11517-016-1537-2
  • Santoso, F., Garratt, M. A., & Anavatti, S. G. (2017). Visual–inertial navigation systems for aerial robotics: Sensor fusion and technology. IEEE Transactions on Automation Science and Engineering, 14(1), 260–275. https://doi.org/10.1109/TASE.2016.2582752
  • Scott, M. A., Li, F.-X., & Davids, K. (1997). Expertise and the regulation of gait in the approach phase of the long jump. Journal of Sports Sciences, 15(6), 597–605. https://doi.org/10.1080/026404197367038
  • Sheppard, A., & Li, F.-X. (2007). Expertise and the control of interception in table tennis. European Journal of Sport Science, 7(4), 213–222. https://doi.org/10.1080/17461390701718505
  • Van Der Slikke, R. M. A., Berger, M. A. M., Bregman, D. J. J., Lagerberg, A. H., & Veeger, H. E. J. (2015). Opportunities for measuring wheelchair kinematics in match settings; reliability of a three inertial sensor configuration. Journal of Biomechanics, 48(12), 3398–3405. https://doi.org/10.1016/j.jbiomech.2015.06.001
  • Vučković, G., James, N., Hughes, M., Murray, S., Sporiš, G., & Perš, J. (2013). The effect of court location and available time on the tactical shot selection of elite squash players. Journal of Sports Science & Medicine, 12(1), 66–73.
  • Walker, C., Sinclair, P., Graham, K., & Cobley, S. (2017). The validation and application of inertial measurement units to springboard diving. Sports Biomechanics, 16(4), 485–500. https://doi.org/10.1080/14763141.2016.1246596
  • Whiteside, D., Elliott, B., Lay, B., & Reid, M. (2013). A kinematic comparison of successful and unsuccessful tennis serves across the elite development pathway. Human Movement Science, 32(4), 822–835. https://doi.org/10.1016/j.humov.2013.06.003
  • Whiteside, D., Elliott, B. C., Lay, B., & Reid, M. (2015). Coordination and variability in the elite female tennis serve. Journal of Sports Sciences, 33(7), 675–686. https://doi.org/10.1080/02640414.2014.962569
  • Whiteside, D., Cant, O., Connolly, M., & Reid, M. (2017). Monitoring hitting load in tennis using inertial sensors and machine learning. International Journal of Sports Physiology and Performance, 12(9), 1212–1217. https://doi.org/10.1123/ijspp.2016-0683
  • Williams, B. K., Bourdon, P. C., Graham-Smith, P., & Sinclair, P. J. (2018). Validation of the hunt squash accuracy test used to assess individual shot performance. Movement & Sport Sciences - Science & Motricité, 100, 13–20. https://doi.org/10.1051/sm/2017001
  • Williams, B. K., Sanders, R. H., Ryu, J. H., Bourdon, P. C., Graham-Smith, P., & Sinclair, P. J. (2019). Static and dynamic accuracy of a magnetic-inertial measurement unit used to provide racket swing kinematics. Sports Biomechanics, 18(2), 202–214. https://doi.org/10.1080/14763141.2017.1391326
  • Williams, B. K., Sanders, R. H., Ryu, J. H., Graham-Smith, P., & Sinclair, P. (2020a). The kinematic differences between skill levels in the squash forehand drive, volley and drop strokes. Journal of Sports Sciences, 38(13), 1550–1559. https://doi.org/10.1080/02640414.2020.1747828
  • Williams, B. K., Sanders, R. H., Ryu, J. H., Graham-Smith, P., & Sinclair, P. (2020b). The kinematic differences between accurate and inaccurate squash forehand drives for athletes of different skill levels. Journal of Sports Sciences, 38(10), 1115–1123. https://doi.org/10.1080/02640414.2020.1742971