109
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Mesozoic stem-group zoroasterid sea stars imply a delayed radiation of the crown group and adaptation to the deep seas

ORCID Icon & ORCID Icon
Article: 2243268 | Received 11 Nov 2022, Accepted 13 Jul 2023, Published online: 18 Sep 2023

References

  • Allman, E. S., Holder, M. T., & Rhodes, J. A. (2010). Estimating trees from filtered data: Identifiability of models for morphological phylogenetics. Journal of Theoretical Biology, 263(1), 108–119. https://doi.org/10.1016/j.jtbi.2009.12.001
  • Améziane, N., & Roux, M. (1997). Biodiversity and historical biogeography of stalked crinoids (Echinodermata) in the deep sea. Biodiversity & Conservation, 6, 1557–1570.
  • Belin, S., & Kenig, F. (1994). Petrographic analyses of organo-mineral relationships: Depositional conditions of the Oxford Clay Formation (Jurassic), UK. Journal of the Geological Society, 151, 153–160. https://doi.org/10.1144/gsjgs.151.1.0153
  • Benavides-Serrato, M., O’Loughlin, P. M., & Rowley, C. (2007). A new fissiparous micro-asteriid from southern Australia (Echinodermata: Asteroidea: Asteriidae). Memoirs of Museum Victoria, 64, 71–78. https://doi.org/10.24199/j.mmv.2007.64.7
  • de Blainville, H. M. D. (1830). Zoophytes. In F. G. Levrault (Ed.), Dictionnaire des sciences naturelles, dans lequel on traitre méthodiquement des différents êtres de la nature, considérés soit en eux mêmes, d'après l'état actuel de nos connaissances, soit relativement à l'utilité qu'en peuvent retirer la médicine, l'agriculture, le commerce et les arts. Tome 60 (pp. 1–546). Le Normat.
  • Blake, D. B. (1987). A classification and phylogeny of post-Palaeozoic sea stars (Asteroidea: Echinodermata). Journal of Natural History, 21, 481–528. https://doi.org/10.1080/00222938700771141
  • Blake, D. B., & Aronson, R. B. (1998). Eocene stelleroids (Echinodermata) at Seymour Island, Antarctic Peninsula. Journal of Paleontology, 72, 339–353. https://doi.org/10.1017/S0022336000036325
  • Blake, D. B., Bielert, F., & Bielert, U. (2006). New early crown-group asteroids (Echinodermata; Triassic of Germany). Palaeontologische Zeitschrift, 80, 284–295.
  • Blake, D. B., & Elliott, D. R. (2003). Ossicular homologies, systematics, and phylogenetic implications of certain North American carboniferous asteroids (Echinodermata). Journal of Paleontology, 77, 476–489. https://doi.org/10.1666/0022-3360(2003)077<0476:OHSAPI>2.0.CO;2
  • Blake, D. B., & Hagdorn, H. (2003). The Asteroidea (Echinodermata) of the Muschelkalk (Middle Triassic of Germany). Paläontologische Zeitschrift, 77, 23–58. https://doi.org/10.1007/BF03004558
  • Blake, D. B., & Mah, C. L. (2014). Comments on ‘The phylogeny of post-Palaeozoic Asteroidea (Neoasteroidea, Echinodermata)’ by AS Gale and perspectives on the systematics of the Asteroidea. Zootaxa, 3779, 177–194. https://doi.org/10.11646/zootaxa.3779.2.4
  • Blake, D. B., & Reid, R. (1998). Some Albian (Cretaceous) asteroids (Echinodermata) from Texas and their paleobiological implications. Journal of Paleontology, 72, 512–532. https://doi.org/10.1017/S002233600002429X
  • Blake, D. B., & Zinsmeister, W. J. (1988). Eocene asteroids (Echinodermata) from Seymour Island, Antarctic Peninsula. Geological Society of America Memoirs, 169, 489–498.
  • Bribiesca-Contreras, G., Verbruggen, H., Hugall, A. F., & O’Hara, T. D. (2017). The importance of offshore origination revealed through ophiuroid phylogenomics. Proceedings of the Royal Society B: Biological Sciences, 284(1858), 20170160. https://doi.org/10.1098/rspb.2017.0160
  • Charbonnier, S., Vannier, J., Gaillard, C., Bourseau, J. P., & Hantzpergue, P. (2007). The La Voulte Lagerstätte (Callovian): Evidence for a deep water setting from sponge and crinoid communities. Palaeogeography, Palaeoclimatology, Palaeoecology, 250(1–4), 216–236. https://doi.org/10.1016/j.palaeo.2007.03.013
  • Clark, A. M., & Downey, M. E. (1992). Starfishes of the Atlantic. Chapman & Hall.
  • Downey, M. E. (1970). Zorocallida, new order, and Doraster constellatus, new genus and species, with notes on the Zoroasteridae (Echinodermata; Asteroidea). Smithsonian Contributions to Zoology, 64, 1–18. https://doi.org/10.5479/si.00810282.64
  • Eagle, M. K. (2006). A new asteroid (Forcipulatida: Zoroasteridae) from the Eocene of Whangarei, Northland, New Zealand. Records of the Auckland Museum, 43, 81–96.
  • Ewin, T. A. M., & Gale, A. S. (2020). Asteroids (Echinodermata) from the Barremian (Lower Cretaceous) of the Agadir Basin, west Morocco. Journal of Paleontology, 94, 931–954. https://doi.org/10.1017/jpa.2020.20
  • Fau, M., & Villier, L. (2018). Post-metamorphic ontogeny of Zoroaster fulgens Thomson, 1873 (Asteroidea, Forcipulatacea). Journal of Anatomy, 233, 644–665. https://doi.org/10.1111/joa.12881
  • Fau, M., & Villier, L. (2020). Comparative anatomy and phylogeny of the Forcipulatacea (Echinodermata: Asteroidea): Insights from ossicle morphology. Zoological Journal of the Linnean Society, 189, 921–952. https://doi.org/10.1093/zoolinnean/zlz127
  • Fisher, W. K. (1928). Asteroidea of the North Pacific and Adjacent Waters, Pt. 2: Forcipulata (Part). Bulletin of the US National Museum, 76, 1–245. https://doi.org/10.5479/si.03629236.76.2
  • Gale, A. S. (1987). Phylogeny and classification of the Asteroidea (Echinodermata). Zoological Journal of the Linnean Society, 89, 107–132. https://doi.org/10.1111/j.1096-3642.1987.tb00652.x
  • Gale, A. S. (2011a). The phylogeny of post-Palaeozoic Asteroidea (Neoasteroidea, Echinodermata). Special Papers in Palaeontology, 85, 1–112.
  • Gale, A. S. (2011b). Asteroidea (Echinodermata) from the Oxfordian (Late Jurassic) of Savigna, Départment du Jura, France. Swiss Journal of Palaeontology, 130, 69–89. https://doi.org/10.1007/s13358-010-0008-x
  • Gale, A. S. (2020). The fossil record of the asteroid (Echinodermata) family Chaetasteridae Sladen, 1889 and subfamily Hyalothricinae Fisher, 1911. Zootaxa, 4858(1), 144–150. https://doi.org/10.11646/zootaxa.4858.1.11
  • Gale, A. S., & Jagt, J. W. (2021). The fossil record of the family Benthopectinidae (Echinodermata, Asteroidea), a reappraisal. European Journal of Taxonomy, 755, 149–190. https://doi.org/10.5852/ejt.2021.755.1405
  • Hess, H. (1970). Schlangensterne und Seesterne aus dem oberen Hauterivien ‘Pierre jaune’ von St-Blaise bei Neuchâtel. Eclogae Geologicae Helvetiae, 63, 1069–1091.
  • Hess, H. (1974). Neue Funde des Seesterns Terminaster cancriformis (Quenstedt) aus Callovien und Oxford von England, Frankreich und der Schweiz. Eclogae Geologicae Helvetiae, 67, 647–659.
  • Hess, H. (1975). Die fossilen Echinodermen des Schweizer Juras. Veröffentlichungen aus dem Naturhistorischen Museum Basel, 8, 1–130.
  • Hudson, J. D., & Martill, D. M. (1991). The Lower Oxford Clay: Production and preservation of organic matter in the Callovian (Jurassic) of central England. Geological Society, London, Special Publications, 58(1), 363–379. https://doi.org/10.1144/GSL.SP.1991.058.01.23
  • Jablonski, D., Sepkoski, J. J., Bottjer, D. J., & Sheehan P. M. (1983). Onshore-offshore patterns in the evolution of Phanerozoic shelf communities. Science, 222(4628), 1123–1125. https://doi.org/10.1126/science.222.4628.1123
  • Juignet, P. (1974). La transgression crétacée sur la bordure orientale du Massif Armoricain: Aptien, Albien, Cénomanien de Normandie et du Maine. Le stratotype du Cénomanien [thèse d’état, Unpublished thesis, Université de Caen].
  • Kato, M., & Oji, T. (2013). A new species of Doraster (Echinodermata: Asteroidea) from the lower Miocene of central Japan: Implications for its enigmatic paleobiogeography. Paleontological Research, 17(4), 330–334. https://doi.org/10.2517/1342-8144-17.4.330
  • Kutscher, M. (1987). Die Echinodermen der Callovien-Geschiebe. Der Geschiebesammler, 21, 53–104.
  • Lamarck, J.-B. P. A. de. (1816). Asterie. In Histoire naturelle des animaux sans vertèbres, volume 2 (pp. 547–568). Verdière.
  • Lewis, P. O. (2001). A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology, 50(6), 913–925. https://doi.org/10.1080/106351501753462876
  • de Loriol, P. (1874). Description de quelques astérides du terrain Néocomien des environs de Neuchâtel. Mémoires de la Société des Sciences Naturelles de Neuchâtel, 4, 3–19.
  • Maddison, W. P., & Maddison, D. R. (2021). Mesquite: A modular system for evolutionary analysis. Version 3.70 http://www.mesquiteproject.org
  • Mah, C. (2000). Preliminary phylogeny of the forcipulatacean Asteroidea. American Zoologist, 40, 375–381. https://doi.org/10.1093/icb/40.3.375
  • Mah, C. (2007). Phylogeny of the Zoroasteridae (Zorocallina; Forcipulatida): evolutionary events in deep-sea Asteroidea displaying Palaeozoic features. Zoological Journal of the Linnean Society, 150, 177–210. https://doi.org/10.1111/j.1096-3642.2007.00291.x
  • Mah, C., & Blake, D. B. (2012). Global diversity and phylogeny of the Asteroidea (Echinodermata). PLoS ONE, 7, e35644. https://doi.org/10.1371/journal.pone.0035644
  • Mah, C., & Foltz, D. (2011). Molecular phylogeny of the Forcipulatacea (Asteroidea: Echinodermata): Systematics and biogeography. Zoological Journal of the Linnean Society, 162, 646–660. https://doi.org/10.1111/j.1096-3642.2010.00688.x
  • Mah, C., Linse, K., Copley, J., Marsh, L., Rogers, A., Clague, D., & Foltz, D. (2015). Description of a new family, new genus, and two new species of deep-sea Forcipulatacea (Asteroidea), including the first known sea star from hydrothermal vent habitats. Zoological Journal of the Linnean Society, 174, 93–113. https://doi.org/10.1111/zoj.12229
  • Mancini, E. A. (1977). Depositional environment of the Grayson Formation (Upper Cretaceous) of Texas. Gulf Coast Association of Geological Societies Transactions, 27, 334–351.
  • Miller, A. K., Kerr, A. M., Paulay, G., Reich, M., Wilson, N. G., Carvajal, J. I., & Rouse, G. W. (2017). Molecular phylogeny of extant Holothuroidea (Echinodermata). Molecular Phylogenetics and Evolution, 111, 110–131. https://doi.org/10.1016/j.ympev.2017.02.014
  • Mongiardino Koch, N., & Thompson, J. R. (2021). A total-evidence dated phylogeny of Echinoidea combining phylogenomic and paleontological data. Systematic Biology, 70(3), 421–439. https://doi.org/10.1093/sysbio/syaa069
  • Morel, N. (Ed.). (2015). Stratotype Cénomanien. Muséum national d'Histoire naturelle, Paris; Biotope, Mèze.
  • Müller, J., & Troschel, F. H. (1840). Über die Gattungen der Asterien. Archiv für Naturgeschichte, 6, 318–326.
  • O’Hara, T. D., Hugall, A. F., Thuy, B., & Moussalli, A. (2014). Phylogenomic resolution of the class Ophiuroidea unlocks a global microfossil record. Current Biology, 24, 1874–1879. https://doi.org/10.1016/j.cub.2014.06.060
  • O’Reilly, J. E., Puttick, M. N., Parry, L. A., Tanner, A. R., Tarver, J. E., Fleming, J. F., Pisani, D., & Donoghue, P. C. J. (2016). Bayesian methods outperform parsimony but at the expense of precision in the estimation of phylogeny from discrete morphological data. Biology Letters, 12, 20160081. https://doi.org/10.1098/rsbl.2016.0081
  • Palópolo, E. E., Brezina, S. S., Casadio, S., Griffin, M., & Santillana, S. (2021). A new zoroasterid asteroid from the Eocene of Seymour Island, Antarctica. Acta Palaeontologica Polonica, 66(2), 301–318. https://doi.org/10.4202/app.00714.2019
  • Quenstedt, F. A. (1876). Petrefaktenkunde Deutschlands, 1 abt. Echinodermen (Asteriden und Encriniden) und Atlas zu den Echiniden und Encriniden, 4, L. F. Fues.
  • R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  • Rambaut, A., Drummond, A. J., Xie D., Baele, G., & Suchard, M. A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67(5), 901–904. https://doi.org/10.1093/sysbio/syy032
  • Ramirez-Llodra, E., Brandt, A., Danovaro, R., De Mol, B., Escobar, E., German, C. R., Levin, L. A., Martinez Arbizu, P., Menot, L., Buhl-Mortensen, P., Narayanaswamy, B. E., Smith, C. R., Tittensor, D. P., Tyler, P. A., Vanreusel, A., & Vecchione, M. (2010). Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem. Biogeosciences, 7, 2851–2899. https://doi.org/10.5194/bg-7-2851-2010
  • Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542. https://doi.org/10.1093/sysbio/sys029
  • Scott, R. W., Fee, D., Magee, R., & Laali, H. (1978). Epeiric depositional models for the Lower Cretaceous Washita Group North-Central Texas. University of Texas, Austin, Bureau of Economic Geology Report of Investigation, 94, 1–23.
  • Smith, A. B. (2004). Phylogeny and systematics of Holasteroid echinoids and their migration into the deep-sea. Palaeontology, 47(1), 123–150. https://doi.org/10.1111/j.0031-0239.2004.00352.x
  • Smith, A. B. (2013). Geological history of bathyal echinoid faunas, with a new genus from the Late Cretaceous of Italy. Geology Geological Magazine, 150(1), 177–182. https://doi.org/10.1017/S0016756812000738
  • Smith, A. B., & Stockley, B. (2005). The geological history of deep-sea colonization by echinoids: Roles of surface productivity and deep-water ventilation, Proceedings of the Royal Society B: Biological Sciences, 272, 865–869. https://doi.org/10.1098/rspb.2004.2996
  • Strasser, A., Clavel, B., Monteil, E., Charollais, J., Piuz, A., & Mastrangelo, B. (2018). La Formation du Grand Essert (Jura franco-suisse; Valanginien supérieur à Hauterivien supérieur basal). Archives des Sciences, 70, 205–228.
  • Swofford, D. L. (2002). PAUP*: Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates.
  • Thompson, J. R., Cotton, L. J., Candela, Y., Kutscher, M., Reich, M., & Bottjer, D. J. (2022). The Ordovician diversification of sea urchins: Systematics of the Bothriocidaroida (Echinodermata: Echinoidea). Journal of Systematic Palaeontology, 19(20), 1395–1448. https://doi.org/10.1080/14772019.2022.2042408
  • Thompson, J. R., Hu, S. X., Zhang, Q. Y., Petsios, E., Cotton, L. J., Huang, J. Y., Zhou, C. Y., Wen, W., & Bottjer, D. J. (2018). A new stem group echinoid from the Triassic of China leads to a revised macroevolutionary history of echinoids during the end-Permian mass extinction. Royal Society Open Science, 5(1), 171548. https://doi.org/10.1098/rsos.171548
  • Thomson, C. W. (1873). The depths of the sea. Macmillan.
  • Thuy, B. (2013). Temporary expansion to shelf depths rather than an onshore-offshore trend: The shallow-water rise and demise of the modern deep-sea brittle star family Ophiacanthidae (Echinodermata: Ophiuroidea). European Journal of Taxonomy, 48, 1–242. https://doi.org/10.5852/ejt.2013.48
  • Thuy, B., Gale, A. S., Kroh, A., Kucera, M., Numberger-Thuy, L. D., Reich, M., & Stöhr S. (2012). Ancient origin of the modern deep-sea fauna. PLoS ONE, 7(10), e46913. https://doi.org/10.1371/journal.pone.0046913
  • Thuy, B., Hagdorn, H., & Gale, A. S. (2017). Paleozoic echinoderm hangovers: Waking up in the Triassic. Geology, 45(6), 531–534. https://doi.org/10.1130/G38909.1
  • Thuy, B., Kiel, S., Dulai, A., Gale, A. S., Kroh, A., Lord, A. R., Numberger-Thuy, L. D., Stöhr, S., & Wisshak, M. (2014). First glimpse into Lower Jurassic deep-sea biodiversity: In situ diversification and resilience against extinction. Proceedings of the Royal Society B, 281, 20132624. https://doi.org/10.1098/rspb.2013.2624
  • Thuy, B., Knox, L., Numberger-Thuy, L. D., Smith, N. S., & Sumrall, C. D. 2023. Ancient deep ocean as a harbor of biotic innovation revealed by Carboniferous ophiuroid microfossils. Geology. https://doi.org/10.1130/G50596.1
  • Twitchett, R. J., & Oji, T. (2005). Early Triassic recovery of echinoderms. Comptes Rendus Palevol, 4, 463–474. https://doi.org/10.1016/j.crpv.2005.02.006
  • Villier, L., Blake, D. B., Jagt, J. W., & Kutscher, M. (2004). A preliminary phylogeny of the Pterasteridae (Echinodermata, Asteroidea) and the first fossil record: Late Cretaceous of Germany and Belgium. Paläontologische Zeitschrift, 78(2), 281–300. https://doi.org/10.1007/BF03009226
  • Villier, L., Brayard, A., Bylund, K. G., Jenks, J. F., Escarguel, G., Olivier, N., Stephen, D. A., Vennin, E., & Fara, E. (2018). Superstesaster gen. nov. promissor sp. nov., a new starfish (Asteroidea, Echinodermata) from the late middle Smithian (Early Triassic) of Utah (USA), filling a major gap in the phylogeny of asteroids. Journal of systematic Palaeontology, 16(5), 395–415. https://doi.org/10.1080/14772019.2017.1308972
  • Villier, L., Charbonnier, S., & Riou, B. (2009). Sea stars from the Middle Jurassic Lagerstätte of La Voulte-sur-Rhône (Ardèche, France). Journal of Paleontology, 83, 389–398. https://doi.org/10.1666/08-030.1
  • Villier, L., Larrañaga, J., Payros, A., Moreno, T., Hieu, N., & Zamora, S. (2022). Systematics and phylogenetic interpretation of a new bathyal spatangoid echinoid from the Eocene of Spain: Habanaster itzae nov. sp. Geobios, 72, 54–67. https://doi.org/10.1016/j.geobios.2022.07.005
  • Vrijenhoek, R. C. (2013). On the instability and evolutionary age of deep-sea chemosynthetic communities. Deep-Sea Research part II; Topical Studies in Oceanography, 92, 189–200. https://doi.org/10.1016/j.dsr2.2012.12.004
  • Wright, A. M. (2019). A systematist’s guide to estimating Bayesian phylogenies from morphological data. Insect Systematics and Diversity, 3(3), 1–14. https://doi.org/10.1093/isd/ixz006
  • Wright, D. F. (2017). Bayesian estimation of fossil phylogenies and the evolution of early to middle Paleozoic crinoids (Echinodermata). Journal of Paleontology, 91(4), 799–814. https://doi.org/10.1017/jpa.2016.141
  • Whittle, R. J., Hunter, A. W., Cantrill, D. J., & McNamara, K. J. (2018). Globally discordant Isocrinida (Crinoidea) migration confirms asynchronous Marine Mesozoic Revolution. Communications Biology, 1(1), 1–46. https://doi.org/10.1038/s42003-018-0048-0
  • Yamaoka, M. (1987). Fossil asteroids from the Miocene Morozaki Group, Aichi Prefecture, Central Japan. Kaseki no Tomo, 31, 5–23.
  • Zhang, C., Rannala, B., & Yang, Z. (2012). Robustness of compound Dirichlet priors for Bayesian inference of branch lengths. Systematic Biology, 61(5), 779–784. https://doi.org/10.1093/sysbio/sys030
  • Zhang, L., He, J., Tan, P., Gong, Z., Qian, S., Miao, Y., Zhang, H.-Y., Tu, G., Chen, Q., Zhong, Q., Han, G., He, J., & Wang, M. (2022). The genome of an apodid holothuroid (Chiridota heheva) provides insights into its adaptation to a deep-sea reducing environment. Communications Biology, 5(224), 1–11. https://doi.org/10.1038/s42003-022-03176-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.