301
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The oldest fossil record of Bauhinia s.s. (Fabaceae) from the Tibetan Plateau sheds light on its evolutionary and biogeographic implications

, , , , , , , , & show all
Article: 2244495 | Received 20 Mar 2023, Accepted 28 Jul 2023, Published online: 17 Oct 2023

References

  • Adams, D. C., Collyer, M., & Kaliontzopoulou, A. (2020). Package ‘geomorph’: Geometric morphometric analyses of 2D/3D landmark data. https://github.com/geomorphR/geomorph/
  • Akli, A., Lorenzo, Z., Alía, R., Rabhi, K., & Torres, E. (2022). Morphometric analyses of leaf shapes in four sympatric Mediterranean oaks and hybrids in the Algerian kabylie forest. Forests, 13, 508. https://doi.org/10.3390/f13040508
  • Ali, J. R., & Aitchison, J. C. (2008). Gondwana to Asia: plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through Latest Eocene (166–35 Ma). Earth-Science Reviews, 88, 145–166. https://doi.org/10.1016/j.earscirev.2008.01.007
  • Ashton, P. S., Morley, R. J., Heckenhauer, J., & Prasad, V. (2021). The magnificent Dipterocarps: Précis for an epitaph? Kew Bulletin, 76, 87–125. https://doi.org/10.1007/s12225-021-09934-7
  • Awasthi, N., & Mehrotra, R. (1989). Some fossil woods from Tipam Sandstone of Assam and Nagaland. Journal of Palaeosciences, 38, 277–284. https://doi.org/10.54991/jop.1989.1662
  • Awasthi, N., & Prasad, M. (1989). Siwalik plant fossils from Surai Khola area, western Nepal. Journal of Palaeosciences, 38, 298–318. https://doi.org/10.54991/jop.1989.1665
  • Bande, M., & Srivastava, G. (1988). Late Cenozoic plant-impressions from Mahuadanr valley, Palamu District, Bihar. Journal of Palaeosciences, 37, 331–366. https://doi.org/10.54991/jop.1988.1632
  • Bansal, M., Morley, R. J., Nagaraju, S. K., Dutta, S., Mishra, A. K., Selveraj, J., Kumar, S., Niyolia, D., Harish, S. M., Abdelrahim, O. B., Hasan, S. E., Ramesh, B. R., Dayanandan, S., Morley, H. P., Ashton, P. S., & Prasad, V. (2022). Southeast Asian Dipterocarp origin and diversification driven by Africa-India floristic interchange. Science, 375, 455–460. https://doi.org/10.1126/science.abk2177
  • Berry, E. (1945). Fossil floras from southern Ecuador. Johns Hopkins University Studies in Geology, 14, 93–150.
  • Bookstein, F. L. (1997). Landmark methods for forms without landmarks: Morphometrics of group differences in outline shape. Medical Image Analysis, 1, 225–243. https://doi.org/10.1016/S1361-8415(97)85012-8
  • Bromhead, E. F. (1838). An attempt to ascertain characters of the botanical alliances. The Edinburgh New Philosophical Journal, 25, 123–134.
  • Calvillo-Canadell, L., & Cevallos-Ferriz, S. R. S. (2002). Bauhcis moranii gen. et sp. nov. (Cercideae, Caesalpinieae), an Oligocene plant from Tepexi de Rodríguez, Puebla, Mex., with leaf architecture similar to Bauhinia and Cercis. Review of Palaeobotany and Palynology, 122, 171–184. https://doi.org/10.1016/S0034-6667(02)00135-5
  • Chaney, R. W. (1933). A Tertiary flora from Uganda. The Journal of Geology, 41, 702–709. https://doi.org/10.1086/624089
  • Chatterjee, S., Goswami, A., & Scotese, C. R. (2013). The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Research, 23, 238–267. https://doi.org/10.1016/j.gr.2012.07.001
  • Chen, L., Deng, W., Su, T., Li, S., & Zhou, Z. (2021). Late Eocene sclerophyllous oak from Markam Basin, Tibet, and its biogeographic implications. Science China Earth Sciences, 64, 1969–1981. https://doi.org/10.1007/s11430-020-9826-4
  • Chen, P.-R., Del Rio, C., Huang, J., Liu, J., Zhao, J.-G., Spicer, R. A., Li, S.-F., Wang, T.-X., Zhou, Z.-K., & Su, T. (2022). Fossil capsular valves of Koelreuteria (Sapindaceae) from the Eocene of Central Tibetan Plateau and Their Biogeographic Implications. International Journal of Plant Sciences, 183, 307–319. https://doi.org/10.1086/719401
  • Chen, Y., & Zhang, D.-X. (2005). Bauhinia larsenii, a fossil legume from Guangxi, China. Botanical Journal of the Linnean Society, 147, 437–440. https://doi.org/10.1111/j.1095-8339.2005.00373.x
  • Davis, C. C., Bell, C. D., Mathews, S., & Donoghue, M. J. (2002). Laurasian migration explains Gondwanan disjunctions: Evidence from Malpighiaceae. Proceedings of the National Academy of Sciences, 99, 6833–6837. https://doi.org/10.1073/pnas.102175899
  • de Candolle, A. P. (1825). Prodromus systematis naturalis regni vegetabilis, sive, Enumeratio contracta ordinum generum specierumque plantarum huc usque cognitarium, juxta methodi naturalis, normas digesta. Sumptibus Sociorum Treuttel et Würtz.
  • de Jussieu, A. L. (1789). Antonii Laurentii de Jussieu genera plantarum: Secundum ordines naturales disposita, juxta methodum in horto regio parisiensi exaratam. Herissant et Theophilum Barrois.
  • Del Rio, C., Wang, T., Liu, J., Liang, S., Spicer, R. A., Wu, F., Zhou, Z., & Su, T. (2020). Asclepiadospermum gen. nov., the earliest fossil record of Asclepiadoideae (Apocynaceae) from the Early Eocene of central Qinghai‐Tibetan Plateau, and its biogeographic implications. American Journal of Botany, 107, 126–138. https://doi.org/10.1002/ajb2.1418
  • Deng, T., Wu, F., Zhou, Z., & Su, T. (2020). Tibetan Plateau: An evolutionary junction for the history of modern biodiversity. Science China Earth Sciences, 63, 172–187. https://doi.org/10.1007/s11430-019-9507-5
  • Ding, L., Xu, Q., Yue, Y., Wang, H., Cai, F., & Li, S. (2014). The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene–Eocene Linzhou Basin. Earth and Planetary Science Letters, 392, 250–264. https://doi.org/10.1016/j.epsl.2014.01.045
  • Ding, L., Spicer, R. A., Yang, J., Xu, Q., Cai, F., Li, S., Lai, Q., Wang, H., Spicer, T. E. V., Yue, Y., Shukla, A., Srivastava, G., Khan, M. A., Bera, S., & Mehrotra, R. (2017). Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology, 45, 215–218. https://doi.org/10.1130/G38583.1
  • Ding, W.-N., Ree, R. H., Spicer, R. A., & Xing, Y.-W. (2020). Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Science, 369, 578–581. https://doi.org/10.1126/science.abb4484
  • Ellis, B., Daly, D. C., Hickey, L. J., Johnson, K. R., Mitchell, J. D., Wilf, P., & Wing, S. L. (2009). Manual of Leaf Architecture. Cornell University Press.
  • Fang, A., Yan, Z., Liu, X., Tao, J., Li, J., & Pan, Y. (2005). The flora of the Liuqu Formation in south Tibet and its climatic implications. Acta Palaeontologica Sinica, 44, 442. https://doi.org/10.3724/SP.J.1006.2018.00442
  • Guleria, J., Srivastava, R., & Prasad, M. (2000). Some fossil leaves from the Kasauli Formation of Himachal Pradesh, north-west India. Himalayan Geology, 21, 43–52.
  • Hickey, L. J. (1973). Classification of the architecture of dicotyledonous leaves. American Journal of Botany, 60, 17–33. https://doi.org/10.1002/j.1537-2197.1973.tb10192.x
  • Hijmans, R. J., Van Etten, J., Sumner, M., Cheng, J., Baston, D., Bevan, A., Bivand, R., Busetto, L., Canty, M., & Fasoli, B. (2020). Raster: Geographic data analysis and modeling (R package version, 2–1).
  • Jacques, F. M. B., Shi, G., Su, T., & Zhou, Z. (2015). A tropical forest of the Middle Miocene of Fujian (SE China) reveals Sino-Indian biogeographic affinities. Review of Palaeobotany and Palynology, 216, 76–91. https://doi.org/10.1016/j.revpalbo.2015.02.001
  • Jia, L.-B., Hu, J.-J., Zhang, S.-T., Su, T., Spicer, R. A., Liu, J., Yang, J.-C., Zou, P., Huang, Y.-J., & Zhou, Z.-K. (2022). Bauhinia (Leguminosae) fossils from the Paleogene of southwestern China and its species accumulation in Asia. Diversity, 14, 173. https://doi.org/10.3390/d14030173
  • Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587–589. https://doi.org/10.1038/nmeth.4285
  • Khan, M. A., Bera, M., Spicer, R. A., Spicer, T. E. V., & Bera, S. (2019). Floral diversity and environment during the middle Siwalik sedimentation (Pliocene) in the Arunachal sub-Himalaya. Palaeobiodiversity and Palaeoenvironments, 99, 401–424. https://doi.org/10.1007/s12549-018-0351-2
  • Klein, L., & Svoboda, H. (2017). Comprehensive methods for leaf geometric morphometric analyses. Bio-Protocol, 7, e2269–e2269. https://doi.org/10.21769/bioprotoc.2269
  • Klingenberg, C. P. (2022). Methods for studying allometry in geometric morphometrics: A comparison of performance. Evolutionary Ecology, 36, 439–470. https://doi.org/10.1007/s10682-022-10170-z
  • Lakhanpal, R. N., & Guleria, J. S. (1982). Plant remains from the Miocene of Kachchh, Western India. Journal of Palaeosciences, 30, 279–296. https://doi.org/10.54991/jop.1982.1455
  • Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948. https://doi.org/10.1093/bioinformatics/btm404
  • Larsson, A. (2014). AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics, 30, 3276–3278. https://doi.org/10.1093/bioinformatics/btu531
  • Leary, R. J., DeCelles, P. G., Quade, J., Gehrels, G. E., & Waanders, G. (2016). The Liuqu Conglomerate, southern Tibet: Early Miocene basin development related to deformation within the Great Counter Thrust system. Lithosphere, 8, 427–450. https://doi.org/10.1130/L542.1
  • Leary, R. J., Quade, J., DeCelles, P. G., & Reynolds, A. (2017). Evidence from paleosols for low to moderate elevation of the India–Asia suture zone during mid-Cenozoic time. Geology, 45, 399–402. https://doi.org/10.1130/G38830.1
  • Li, G., Kohn, B., Sandiford, M., Xu, Z., & Wei, L. (2015). Constraining the age of Liuqu Conglomerate, southern Tibet: Implications for evolution of the India–Asia collision zone. Earth and Planetary Science Letters, 426, 259–266. https://doi.org/10.1016/j.epsl.2015.06.010
  • Lin, Y., Wong, W. O., Shi, G., Shen, S., & Li, Z. (2015). Bilobate leaves of Bauhinia (Leguminosae, Caesalpinioideae, Cercideae) from the Middle Miocene of Fujian Province, southeastern China and their biogeographic implications. BMC Evolutionary Biology, 15, 252. https://doi.org/10.1186/s12862-015-0540-9
  • Linnaeus, C. (1753). Species plantarum (1st ed.). Laurentius Salvius.
  • Liu, J., Su, T., Spicer, R. A., Tang, H., Deng, W.-Y.-D., Wu, F.-X., Srivastava, G., Spicer, T., Van Do, T., Deng, T., & Zhou, Z.-K. (2019). Biotic interchange through lowlands of Tibetan Plateau suture zones during Paleogene. Palaeogeography, Palaeoclimatology, Palaeoecology, 524, 33–40. https://doi.org/10.1016/j.palaeo.2019.02.022
  • Low, S. L., Su, T., Spicer, T. E. V., Wu, F.-X., Deng, T., Xing, Y.-W., & Zhou, Z.-K. (2020). Oligocene Limnobiophyllum (Araceae) from the central Tibetan Plateau and its evolutionary and palaeoenvironmental implications. Journal of Systematic Palaeontology, 18, 415–431. https://doi.org/10.1080/14772019.2019.1611673
  • Mak, C. Y., Cheung, K. S., Yip, P. Y., & Kwan, H. S. (2008). Molecular evidence for the hybrid origin of Bauhinia blakeana (Caesalpinioideae). Journal of Integrative Plant Biology, 50, 111–118. https://doi.org/10.1111/j.1744-7909.2007.00591.x
  • Matzke, N. J. (2014). Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Systematic Biology, 63, 951–970. https://doi.org/10.1093/sysbio/syu056
  • Mehrotra, R. C., Bera, S. K., Basumatary, S. K., & Srivastava, G. (2011). Study of fossil wood from the Middle–Late Miocene sediments of Dhemaji and Lakhimpur districts of Assam, India and its palaeoecological and palaeophytogeographical implications. Journal of Earth System Science, 120, 681–701. https://doi.org/10.1007/s12040-011-0103-4
  • Meng, H.-H., Jacques, F. M., Su, T., Huang, Y.-J., Zhang, S.-T., Ma, H.-J., & Zhou, Z.-K. (2014). New biogeographic insight into Bauhinia s.l. (Leguminosae): Integration from fossil records and molecular analyses. BMC Evolutionary Biology, 14, 181. https://doi.org/10.1186/s12862-014-0181-4
  • Morley, R. J. (2018). Assembly and division of the South and South-East Asian flora in relation to tectonics and climate change. Journal of Tropical Ecology, 34, 209–234. https://doi.org/10.1017/S0266467418000202
  • Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D’amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., & Kassem, K. R. (2001). Terrestrial ecoregions of the world: A new map of life on earth. BioScience, 51, 933. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;22.0.CO;2]
  • Prakash, U., & Prasad, M. (1984). Wood of Bauhinia from the Siwalik beds of Uttar Pradesh, India. Journal of Palaeosciences, 32, 140–145. https://doi.org/10.54991/jop.1984.1372
  • Rapini, A., Chase, M. W., Goyder, D. J., & Griffiths, J. (2003). Asclepiadeae classification: evaluating the phylogenetic relationships of New World Asclepiadoideae (Apocynaceae). Taxon, 52, 33–50. https://doi.org/10.2307/3647436
  • Rohlf, F. (2015). The tps series of software. Hystrix, the Italian Journal of Mammalogy, 26, 9–12. https://doi.org/10.4404/hystrix-26.1-11264
  • Scotese, C. (2016). PALEOMAP PaleoAtlas for GPlates and the PaleoData plotter program. PALEOMAP project. https://doi.org/10.13140/RG.2.2.34367.00166
  • Shukla, A., Mehrotra, R. C., Mandal, N., & Thakkar, M. G. (2015). Two new fossil woods from the Early Miocene of Kutch, Gujarat, India and their significance. Historical Biology, 27, 970–977. https://doi.org/10.1080/08912963.2014.917088
  • Sinou, C., Cardinal‐McTeague, W., & Bruneau, A. (2020). Testing generic limits in Cercidoideae (Leguminosae): insights from plastid and duplicated nuclear gene sequences. Taxon, 69, 67–86. https://doi.org/10.1002/tax.12207
  • Sinou, C., Forest, F., Lewis, G. P., & Bruneau, A. (2009). The genus Bauhinia s.l. (Leguminosae): A phylogeny based on the plastid trnL–trnF region. Botany, 87, 947–960. https://doi.org/10.1139/B09-065
  • Smith, T., Kumar, K., Rana, R. S., Folie, A., Solé, F., Noiret, C., Steeman, T., Sahni, A., & Rose, K. D. (2016). New Early Eocene vertebrate assemblage from western India reveals a mixed fauna of European and Gondwana affinities. Geoscience Frontiers, 7, 969–1001. https://doi.org/10.1016/j.gsf.2016.05.001
  • Spicer, R. A., Su, T., Valdes, P. J., Farnsworth, A., Wu, F.-X., Shi, G., Spicer, T. E. V., & Zhou, Z. (2021). Why ‘the uplift of the Tibetan Plateau’ is a myth. National Science Review, 8, nwaa091. https://doi.org/10.1093/nsr/nwaa091
  • Steven J. Phillips, Miroslav Dudík, Robert E. Schapire. (2022). Maxent software for modeling species niches and distributions (Version 3.4.1). http://biodiversityinformatics.amnh.org/open_source/maxent/
  • Stojnić, S., Viscosi, V., Marković, M., Ivanković, M., Orlović, S., Tognetti, R., Cocozza, C., Vasić, V., & Loy, A. (2022). Spatial patterns of leaf shape variation in European beech (Fagus sylvatica L.) provenances. Trees, 36, 497–511. https://doi.org/10.1007/s00468-021-02224-6
  • Su, T., Spicer, R. A., Wu, F.-X., Farnsworth, A., Huang, J., Del Rio, C., Deng, T., Ding, L., Deng, W.-Y.-D., Huang, Y.-J., Hughes, A., Jia, L.-B., Jin, J.-H., Li, S.-F., Liang, S.-Q., Liu, J., Liu, X.-Y., Sherlock, S., Spicer, T., Srivastava, G., Tang, H., Valdes, P., Wang, T.-X., Widdowson, M., Wu, M.-X., Xing, Y.-W., Xu, C.-L., Yang, J., Zhang, C., Zhang, S.-T., Zhang, X.-W., Zhao, F., & Zhou, Z.-K. (2020). A Middle Eocene lowland humid subtropical “Shangri-La” ecosystem in central Tibet. Proceedings of the National Academy of Sciences, 117, 32989–32995. https://doi.org/10.1073/pnas.2012647117
  • Suchard, M. A., Lemey, P., Baele, G., Ayres, D. L., Drummond, A. J., & Rambaut, A. (2018). Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 4(1), vey016. https://doi.org/10.1093/ve/vey016
  • Tao, J., Whyte, P., Aigner, J., Jablonski, N., Taylor, G., Walker, D., & Wang, P. (1988). The Paleogene flora and palaeoclimate of Liuqu Formation in Xizang (Tibet). The Paleoenvironment of East Asia from the Mid-Tertiary: University of Hong Kong, Hong Kong, Centre of Asian Studies Occasional Papers and Monographs, 77, 520–522.
  • Tian, Y., Spicer, R. A., Huang, J., Zhou, Z., Su, T., Widdowson, M., Jia, L., Li, S., Wu, W., Xue, L., Luo, P., & Zhang, S. (2021). New Early Oligocene zircon U-Pb dates for the ‘Miocene’ Wenshan Basin, Yunnan, China: Biodiversity and paleoenvironment. Earth and Planetary Science Letters, 565, 116929. https://doi.org/10.1016/j.epsl.2021.116929
  • Valdes, P. J., Armstrong, E., Badger, M. P. S., Bradshaw, C. D., Bragg, F., Crucifix, M., Davies-Barnard, T., Day, J. J., Farnsworth, A., Gordon, C., Hopcroft, P. O., Kennedy, A. T., Lord, N. S., Lunt, D. J., Marzocchi, A., Parry, L. M., Pope, V., Roberts, W. H. G., Stone, E. J., Tourte, G. J. L., & Williams, J. H. T. (2017). The BRIDGE HadCM3 family of climate models: HadCM3@Bristol v1.0. Geoscientific Model Development, 10, 3715–3743. https://doi.org/10.5194/gmd-10-3715-2017
  • Valdes, P. J., Scotese, C. R., & Lunt, D. J. (2021). Deep ocean temperatures through time. Climate of the Past, 17, 1483–1506. https://doi.org/10.5194/cp-17-1483-2021
  • Wang, Q., Song, Z., Chen, Y., Shen, S., & Li, Z. (2014). Leaves and fruits of Bauhinia (Leguminosae, Caesalpinioideae, Cercideae) from the Oligocene Ningming Formation of Guangxi, South China and their biogeographic implications. BMC Evolutionary Biology, 14, 88. https://doi.org/10.1186/1471-2148-14-88
  • Wang, T., Del Rio, C., Manchester, S. R., Liu, J., Wu, F., Deng, W., Su, T., & Zhou, Z. (2021). Fossil fruits of Illigera (Hernandiaceae) from the Eocene of central Tibetan Plateau. Journal of Systematics and Evolution, 59, 1276–1286. https://doi.org/10.1111/jse.12687
  • Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D., Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D., Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H., Röhl, U., Tian, J., Wilkens, R. H., Wilson, P. A., & Zachos, J. C. (2020). An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science, 369, 1383–1387. https://doi.org/10.1126/science.aba6853
  • Xu, C., Su, T., Huang, J., Huang, Y., Li, S., Zhao, Y., & Zhou, Z. (2019). Occurrence of Christella (Thelypteridaceae) in Southwest China and its indications of the paleoenvironment of the Qinghai–Tibetan Plateau and adjacent areas. Journal of Systematics and Evolution, 57, 169–179. https://doi.org/10.1111/jse.12452
  • Yang, K., Wu, J., Li, X., Pang, X., Yuan, Y., Qi, G., & Yang, M. (2022). Intraspecific leaf morphological variation in Quercus dentata Thunb.: A comparison of traditional and geometric morphometric methods, a pilot study. Journal of Forestry Research, 33, 1751–1764. https://doi.org/10.1007/s11676-022-01452-x
  • Yu, Y., Blair, C., & He, X. (2020). RASP 4: Ancestral state reconstruction tool for multiple genes and characters. Molecular Biology and Evolution, 37, 604–606. https://doi.org/10.1093/molbev/msz257
  • Yuan, J., Deng, C., Yang, Z., Krijgsman, W., Thubtantsering  , Qin, H., Shen, Z., Hou, Y., Zhang, S., Yu, Z., Zhao, P., Zhao, L., Wan, B., He, H., & Guo, Z. (2022). Triple-stage India-Asia collision involving arc-continent collision and subsequent two-stage continent-continent collision. Global and Planetary Change, 212, 103821. https://doi.org/10.1016/j.gloplacha.2022.103821
  • Zachos, J. C., Shackleton, N. J., Revenaugh, J. S., Pälike, H., & Flower, B. P. (2001). Climate response to orbital forcing across the Oligocene-Miocene boundary. Science, 292, 274–278. https://doi.org/10.1126/science.1058288
  • Zhang, D., Gao, F., Jakovlić, I., Zou, H., Zhang, J., Li, W. X., & Wang, G. T. (2020). PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources, 20, 348–355. https://doi.org/10.1111/1755-0998.13096
  • Zhang, Z., Ramstein, G., Schuster, M., Li, C., Contoux, C., & Yan, Q. (2014). Aridification of the Sahara desert caused by Tethys sea shrinkage during the Late Miocene. Nature, 513, 401–404. https://doi.org/10.1038/nature13705
  • Zhao, Y., Zhang, R., Jiang, K.-W., Qi, J., Hu, Y., Guo, J., Zhu, R., Zhang, T., Egan, A. N., Yi, T.-S., Huang, C.-H., & Ma, H. (2021). Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae. Molecular Plant, 14, 748–773. https://doi.org/10.1016/j.molp.2021.02.006
  • Zhou, Z., Liu, J., Chen, L., Spicer, R. A., Li, S., Huang, J., Zhang, S., Huang, Y., Jia, L., Hu, J., & Su, T. (2023). Cenozoic plants from Tibet: An extraordinary decade of discovery, understanding and implications. Science China Earth Sciences, 66, 205–226. https://doi.org/10.1007/s11430-022-9980-9
  • Zhou, Z., Wang, T., Huang, J., Liu, J., Deng, W., Li, S., Deng, C., & Su, T. (2020). Fossil leaves of Berhamniphyllum (Rhamnaceae) from Markam, Tibet and their biogeographic implications. Science China Earth Sciences, 63, 224–234. https://doi.org/10.1007/s11430-019-9477-8
  • Zhou, Z., Yang, X., & Yang, Q. (2006). Land bridge and long-distance dispersal—Old views, new evidence. Chinese Science Bulletin, 51, 1030–1038. https://doi.org/10.1007/s11434-006-1030-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.