1,286
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A new polyglyphanodontian lizard with a complete lower temporal bar from the Upper Cretaceous of southern China

ORCID Icon, & ORCID Icon
Article: 2281494 | Received 08 Dec 2022, Accepted 06 Nov 2023, Published online: 04 Dec 2023

References

  • Alifanov, V. R. (1988). [New lizards (Lacertilia, Teiidae) from the Upper Cretaceous of Mongolia]. Trudy Sovmestnoi Sovetsko-Mongol’skoi Paleontologicheskoi Ekspeditsii, 34, 90–100 [in Russian].
  • Alifanov, V. R. (1993a). New lizards of the Macrocephalosauridae (Sauria) from the Upper Cretaceous of Mongolia, critical remarks on the systematics of the Teiidae (sensu Estes, 1983). Paleontological Journal, 27, 70–90.
  • Alifanov, V. R. (1993b). Some peculiarities of the Cretaceous and Palaeogene lizard faunas of the Mongolian People’s Republic. Kaupia, 3, 9–13.
  • Alifanov, V. R. (1993c). The Upper Cretaceous lizard fauna of Mongolia, and the problems of the first interamerican contact. Paleontological Journal, 27, 79–85.
  • Alifanov, V. R. (2000). Macrocephalosaurs and the early evolution of lizards of Central Asia. Trudi Paleontologicheskoyo Instituta, 272, 1–126 [in Russian].
  • Anderson, R. A., & Vitt, L. J. (1990). Sexual selection versus alternative causes of sexual dimorphism in teiid lizards. Oecologia, 84, 145–157. https://doi.org/10.1007/BF00318265
  • Burbrink, F. T., Grazziotin, F. G., Pyron, R. A., Cundall, D., Donnellan, S., Irish, F., Keogh, J. S., Kraus, F., Murphy, R. W., Noonan, B., Raxworthy, C. J., Ruane, S., Lemmon, A. T., Lemmon, E. M., & Zaher, H. (2020). Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. Systematic Biology, 69, 502–520. https://doi.org/10.1093/sysbio/syz062
  • Carothers, J. H. (1984). Sexual selection and sexual dimorphism in some herbivorous lizards. The American Naturalist, 124, 244–254. https://doi.org/10.1086/284266
  • Christensen, K., & Melstrom, K. M. (2021). Quantitative analyses of squamate dentition demonstrate novel morphological patterns. PLoS ONE, 16(9), e0257427. https://doi.org/10.1371/journal.pone.0257427
  • Conrad, J. L. (2008). Phylogeny and systematics of Squamata (Reptilia) based on morphology. Bulletin of the American Museum of Natural History, 310, 1–182. https://doi.org/10.1206/310.1
  • Cooper, J. S., Poole, D. F. G., & Lawson, R. (1970). The dentition of agamid lizards with special reference to tooth replacement. Journal of Zoology, London, 162, 85–98. https://doi.org/10.1111/j.1469-7998.1970.tb01259.x
  • Cooper, W. E., & Vitt, L. J. (2002). Distribution, extent, and evolution of plant consumption by lizards. Journal of Zoology, 257, 487–517. https://doi.org/10.1017/S0952836902001085
  • Curtis, N., Jones, M. E. H., Shi, J., O'Higgins, P., Evans, S. E., & Fagan, M. J. (2011). Functional relationship between skull form and feeding mechanics in Sphenodon, and implications for diapsid skull development. PLoS ONE, 6, e29804. https://doi.org/10.1371/journal.pone.0029804
  • Dilkes, D. W. (1998). The Early Triassic rhynchosaur Mesosuchus browni and the interrelationships of basal archosauromorph reptiles. Philosophical Transactions of the Royal Society of London B, 353, 501–541. https://doi.org/10.1098/rstb.1998.0225
  • Estes, R. (1969). Relationships of two Cretaceous lizards (Sauria, Teiidae). Breviora, 317, 1–8.
  • Estes, R. (1983). Sauria Terrestria, Amphisbaenia. Handbuch der Paläoherpetologie/Encyclopedia of Paleontology, Part 10A. Gustav Fischer.
  • Estes, R., & Price, L. (1973). Iguanid lizard from the Upper Cretaceous of Brazil. Science, 180, 748–751. https://doi.org/10.1126/science.180.4087.748
  • Evans, S. E. (1980). The skull of a new eosuchian reptile from the Lower Jurassic of South Wales. Zoological Journal of the Linnean Society, 70, 203–264.
  • Evans, S. E. (1991). A new lizard-like reptile (Diapsida: Lepidosauromorpha) from the Middle Jurassic of England. Zoological Journal of the Linnean Society, 103, 391–412. https://doi.org/10.1111/j.1096-3642.1991.tb00910.x
  • Evans, S. E. (2003). At the feet of the dinosaurs: The origin, evolution and early diversification of squamate reptiles (Lepidosauria: Diapsida). Biological Reviews, 78, 513–551.
  • Evans, S. E., & Borsuk-Białynicka, M. (2009). A small lepidosauromorph reptile from the Early Triassic of Poland. Palaeontologica Polonica, 65, 179–202.
  • Evans, S. E., & Jones, M. E. H. (2010). The origins, early history and diversification of lepidosauromorph reptiles. In S. Bandyopadhyay (Ed.), New aspects of Mesozoic biodiversity. Lecture notes in Earth sciences, 132 (pp. 27–44). Springer.
  • Evans, S. E., & Manabe, M. (2008). A herbivorous lizard from the Early Cretaceous of Japan. Palaeontology, 51, 487–498. https://doi.org/10.1111/j.1475-4983.2008.00759.x
  • Folie, A., & Codrea, V. (2005). New lissamphibians and squamates from the Maastrichtian of Hateg Basin, Romania. Acta Palaeontogia Polonica, 50, 57–71.
  • Fontana, M. A. (2014). A redescription and phylogenetic analysis of the Cretaceous fossil lizard Polyglyphanodon sternbergi Gilmore 1940. [Unpublished MSc thesis]. George Washington University, 109 pp.
  • Ford, D. P., Evans, S. E., Choiniere, J. N., Fernandez, V., & Benson, R. B. J. (2021). A re-assessment of the enigmatic diapsid Paliguana whitei and the early history of Lepidosauromorpha. Proceedings of the Royal Society B, 288, 20211084. https://doi.org/10.1098/rspb.2021.1084
  • Gauthier, J. A., Kearney, M., Maisano, J. A., Rieppel, O., & Behlke, A. D. B. (2012). Assembling the squamate tree of life: Perspectives from the phenotype and the fossil record. Bulletin of the Peabody Museum of Natural History, 53, 3–308. https://doi.org/10.3374/014.053.0101
  • Gilmore, C. W. (1942). Osteology of Polyglyphanodon, an Upper Cretaceous lizard from Utah. Proceedings of the US National Museum, 92(3148), 229–265. https://doi.org/10.5479/si.00963801.92-3148.229
  • Gilmore, C. W. (1943). Fossil lizards of Mongolia. Bulletin of the American Museum of Natural History, 81, 361–384.
  • Goloboff, P. A., & Catalano, S. A. (2016). TNT version 1.5, including full implementation of phylogenetic morphometrics. Cladistics, 32, 221–238. https://doi.org/10.1111/cla.12160
  • Greaves, W. C. (1974). Functional implications of mammalian jaw joint positions. Forma et Functio, 7, 363–376.
  • Griffiths, E. F., Ford, D. P., Benson, R. B. J., & Evans, S. E. (2021). New information on the Jurassic lepidosauromorph Marmoretta oxoniensis. Papers in Palaeontology, 7, 2255–2278. https://doi.org/10.1002/spp2.1400
  • Gu, X. R. (1991). The magnetic stratum of Late Cretaceous redbeds in Jitai Basin. Jiangxi Province Geological Science and Technology, Jiangxi, 18, 185–188.
  • Herrel, A., Spithoven, L., Van Damme, R., & De Vree, F. (2002). Sexual dimorphism of head size in Gallotia galloti: Testing the niche divergence hypothesis by functional analysis. Functional Ecology, 13, 289–297. https://doi.org/10.1046/j.1365-2435.1999.00305.x
  • Jones, M. E. H. (2008). Skull shape and feeding strategy in Sphenodon and other Rhynchocephalia (Diapsida: Lepidosauria). Journal of Morphology, 269, 945–966.
  • Jones, M. E. H., Curtis, N., O'Higgins, P., Fagan, M. J., & Evans, S. E. (2009). The head and neck muscles associated with feeding in Sphenodon (Reptilia: Lepidosauria: Rhynchocephalia). Palaeontologia Electronica, 12, 7A. http://palaeo-electronica.org/2009_2/179/index.html
  • Jones, M. E. H., & Lappin, A. K. (2009). Bite force performance of the last rhynchocephalian (Lepidosauria: Sphenodon). Journal of the Royal Society of New Zealand, 39, 71–83. https://doi.org/10.1080/03014220909510565
  • Karin, B. R., Gamble, T., & Jackman, T. R. (2020). Optimizing phylogenomics with rapidly evolving long axons: Comparison with anchored hybrid enrichment and ultraconserved elements. Molecular Biology and Evolution, 37, 904–922. https://doi.org/10.1093/molbev/msz263
  • Kearney, M. (2003). The phylogenetic position of Sineoamphisbaena hexatabularis reexamined. Journal of Vertebrate Paleontology, 23, 394–403. https://doi.org/10.1671/0272-4634(2003)023[0394:TPPOSH]2.0.CO;2
  • Klembara, J., Dobiasova, K., Hain, M., & Yaryhin, O. (2017). Skull anatomy and ontogeny of the legless lizard Pseudopus apodus (Pallas, 1775): Heterochronic influences on form. The Anatomical Record, 300, 460–502. https://doi.org/10.1002/ar.23532
  • Langer, M. C. (1998). Gilmoreteiidae new family and Gilmoreteiuis new genus (Squamata, Scincomorpha): Replacement names for Macrocephalosaurus Gilmore, 1943. Comunicações do Museu de Ciências e Tecnologia da PUCRS (Pontificia Universidade Católica do Rio Grande do Sul), Serie Zoologia, Porto Alegre, 11, 13–18.
  • Lee, M. S. Y. (2009). Hidden support from unpromising data sets strongly unites snakes with anguimorph lizards. Journal of Evolutionary Biology, 22, 1308–1316. https://doi.org/10.1111/j.1420-9101.2009.01751.x
  • Longrich, N. R., Bhullar, B. A. S., & Gauthier, J. A. (2012). Mass extinction of lizards and snakes at the Cretaceous–Paleogene boundary. Proceedings of the National Academy of Sciences of the USA, 109, 21396–21401. https://doi.org/10.1073/pnas.1211526110
  • Lü, J. C., Ji, S. A., Dong, Z. M., & Wu, X. C. (2008). An Upper Cretaceous lizard with a lower temporal bar. Naturwissenschaften, 95, 663–669. https://doi.org/10.1007/s00114-008-0364-1
  • Melstrom, K. M. (2017). The relationship between diet and tooth complexity in living dentigerous saurians. Journal of Morphology, 278, 500–522. https://doi.org/10.1002/jmor.20645
  • Metzger, K. A., & Herrel, A. (2005). Correlations between lizard cranial shape and diet: A quantitative, phylogenetically informed analysis. Biological Journal of the Linnean Society, 86, 433–466. https://doi.org/10.1111/j.1095-8312.2005.00546.x
  • Mo, J., Xu, X., & Evans, S. E. (2009). The evolution of the lepidosaurian lower temporal bar: New perspectives from the Late Cretaceous of South China. Proceedings of the Royal Society B, 277, 331–336. https://doi.org/10.1098/rspb.2009.0030
  • Moazen, M., Curtis, N., O'Higgins, P., Evans, S. E., & Fagan, M. J. (2009). Biomechanical assessment of evolutionary changes in the lepidosaurian skull. Proceedings of the National Academy of Sciences of the USA, 106, 8273–8277. https://doi.org/10.1073/pnas.0813156106
  • Mount, G. G., & Brown, J. M. (2022). Comparing likelihood ratios to understand genome-wide variation in phylogenetic support. Systematic Biology, 71, 973–985. https://doi.org/10.1093/sysbio/syac014
  • Müller, J. (2003). Early loss and multiple return of the lower temporal arcade in diapsid reptiles. Naturwissenschaften, 90, 473–476. https://doi.org/10.1007/s00114-003-0461-0
  • Nydam, R. L. (1999). Polyglyphanodontinae (Squamata: Teiidae) from the medial and late Cretaceous: New taxa from Utah, USA and Baja California del Norte, Mexico. Miscellaneous Publications Utah Geological Survey, 99(1), 303–317.
  • Nydam, R. L., & Cifelli, R. L. (2002). Lizards from the Lower Cretaceous (Aptian–Albian) Antlers and Cloverly Formations. Journal of Vertebrate Paleontology, 22, 286–298. https://doi.org/10.1671/0272-4634(2002)022[0286:LFTLCA]2.0.CO;2
  • Nydam, R. L., Eaton, J. G., & Sankey, J. (2007). New taxa of transversely-toothed lizards (Squamata; Scincomorpha) and new information on the evolutionary history of ‘teiids’. Journal of Paleontology, 81, 538–549. https://doi.org/10.1666/03097.1
  • Oppel, M. (1811). Die Ordnungen, Familien und Gattungen der Reptilian als Prodrom eitner Naturgeschichte derselben. Joseph Lindauer.
  • Peng, H. (2020). Longhushan, Jiangxi. Pp. In H. Peng (Ed.), China Danxia (pp. 299–343). Springer.
  • Pyron, R. A. (2017). Novel approaches for phylogenetic inference from morphological data and total- evidence dating in squamate reptiles (lizards, snakes, and amphisbaenians). Systematic Biology, 66, 38–56. https://doi.org/10.1093/sysbio/syw068
  • Pyron, R. A., Burbrink, F. T., & Wiens, J. J. (2013). A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology, 13, 93. https://doi.org/10.1186/1471-2148-13-93
  • Reeder, T. W., Townsend, T. M., Mulcahy, D. G., Noonan, B. P., Wood, P. L. J., & Sites, J. W. J. (2015). Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa. PloS ONE, 10, e0118199. https://doi.org/10.1371/journal.pone.0118199
  • Reilly, S. M., Brayer, L. D., & White, T. D. (2001). Prey processing in amniotes: Biomechanical and behavioural patterns of food reduction. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 128, 397–415. https://doi.org/10.1016/s1095-6433(00)00326-3
  • Rieppel, O. (1980). The trigeminal jaw adductor musculature of Tupinambis, with comments on the phylogenetic relationships of the Teiidae (Reptilia; Lacertilia). Zoological Journal of the Linnean Society, 69, 1–29. https://doi.org/10.1111/j.1096-3642.1980.tb01930.x
  • Rieppel, O., & Gronowski, R. W. (1981). The loss of the lower temporal arcade in diapsid reptiles. Zoological Journal of the Linnean Society, 72, 203–217. https://doi.org/10.1111/j.1096-3642.1981.tb01570.x
  • Romer, A. S. (1956). Osteology of the reptiles. University of Chicago Press.
  • Schaerlaeken, V., Herrel, A., Aerts, P., & Ross, C. F. (2008). The functional significance of the lower temporal bar in Sphenodon punctatus. Journal of Experimental Biology, 211, 3908–3914.
  • Schoch, R. R., & Sues, H.-D. (2018). A new lepidosauromorph reptile from the Middle Triassic (Ladinian) of Germany and its phylogenetic relationships. Journal of Vertebrate Paleontology, 38, e1444619. https://doi.org/10.1080/02724634.2018.1444619
  • Simões, T. R. (2012). Redescription of Tijubina pontei, and Early Cretaceous lizard (Reptilia; Squamata) from the Crato Formation of Brazil. Anais da Academia Brasileira de Ciencias, 84, 1. https://doi.org/10.1590/S0001-37652012000100008
  • Simões, T. R., Caldwell, M. W., & Kellner, A. W. A. (2015). A new Early Cretaceous lizard species from Brazil, and the phylogenetic position of the oldest known South American squamates. Journal of Systematic Palaeontology, 13, 601–614. https://doi.org/10.1080/14772019.2014.947342
  • Simões, T. R., Caldwell, M. W., Palci, A., & Nydam, R. L. (2017). Giant taxon-character matrices: Quality of character constructions remains critical regardless of size. Cladistics, 33, 198–219.
  • Simões, T. R., Caldwell, M. W., Talanda, M., Bernardi, M., Palci, A., Vernygora, O., Bernardini, F., Mancini, L., & Nydam, R. L. (2018). The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps. Nature, 557, 706–709. https://doi.org/10.1038/s41586-018-0093-3
  • Simões, T. R., Funston, G. F., Vafaeian, B., Nydam, R. L., Doschak, M. R., & Caldwell, M. W. (2016). Reacquisition of the lower temporal bar in sexually dimorphic fossil lizards provides a rare case of convergent evolution. Scientific Reports, 6, 24087. https://doi.org/10.1038/srep24087
  • Singhal, S., Colston, T. J., Grundler, M. R., Smith, S. A., Costa, G. C., Colli, G., Moritz, C., Pyron, R. A., & Rabosky, D. L. (2021). Congruence and conflict in the higher-level phylogenetics of squamate reptiles: An expanded phylogenomic perspective. Systematic Biology, 70, 542–557. https://doi.org/10.1093/sysbio/syaa054
  • Sobral, G., Simões T. R., & Schoch, R. R. (2020). A tiny new Middle Triassic stem-lepidosauromorph from Germany: Implications for the early evolution of lepidosauromorphs and the Vellberg fauna. Scientific Reports, 10, 2273. https://doi.org/10.1038/s41598-020-58883-x
  • Streicher, J. W., & Wiens, J. J. (2017). Phylogenomic analyses of more than 4000 nuclear loci resolve the origin of snakes among lizard families. Biology Letters, 13, 20170393. https://doi.org/10.1098/rsbl.2017.0393
  • Sues, H.-D. (2000). Evolution of herbivory in terrestrial vertebrates: Perspectives from the fossil record. Cambridge University Press.
  • Sulimski, A. (1972). Adamisaurus magnidentatus n. gen., n. sp. from the Upper Cretaceous of Mongolia. Results of the Polish–Mongolian palaeontological expeditions, Pt IV. Palaeontologia Polonica, 27, 33–40.
  • Sulimski, A. (1975). Macrocephalosauridae and Polyglyphanodonidae (Sauria) from the Late Cretaceous of Mongolia. Results of the Polish–Mongolian palaeontological expeditions. Palaeontologia Polonica, 33, 25–102.
  • Talanda, M., Fernandez, V., Panciroli, E., Evans, S. E., & Benson, R. B. J. (2022). Synchrotron tomography of a stem-lizard elucidates early squamate anatomy. Nature, 611, 99–104. https://doi.org/10.1038/s41586-022-05332-6
  • Throckmorton, G. S. (1978). Action of the pterygoideus muscle during feeding in the lizard Uromastix aegyptius (Agamidae). Anatomical Record, 190, 217–222. https://doi.org/10.1002/ar.1091900205
  • Townsend, T. M., Larson A., Louis, E., & Macey, J. R. (2004). Molecular phylogenetics of Squamata: The position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Systematic Biology, 53, 735–757. https://doi.org/10.1080/10635150490522340
  • Vidal, N., & Hedges, S. B. (2004). Molecular evidence for a terrestrial origin of snakes. Proceedings of the Royal Society of London, Series B, 271(Suppl.), S226–S229.
  • Vidal, N., & Hedges, S. B. (2005). The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. Comptes Rendus Biologies, 328, 1000–1008. https://doi.org/10.1016/j.crvi.2005.10.001
  • Vullo, R., & Rage, J. C. (2018). The first Gondwanan borioteiioid lizard and the mid-Cretaceous dispersal event between North America and Africa. The Science of Nature, 105, 61. https://doi.org/10.1007/s00114-018-1588-3
  • Wen, C. H., Liu, X. M., Lü, B., Mao, X. G., Chen, J. S., Hou, S. M., Zhou, Z. B., Hou, J. L., & Wu, H. B. (2016). The Cretaceous redbeds in Shicheng Basin, Jiangxi province: Pedogenic and paleoenvironmental characteristics. Quaternary Sciences, 36, 1403–1416.
  • Whiteside, D. I. (1986). The head skeleton of the Rhaetian sphenodontid Diphydontosaurus avonis gen. et sp. nov., and the modernising of a living fossil. Philosophical Transactions of the Royal Society of London B, 312, 379–430.
  • Wiens, J. J., Hutter, C. R., Mulcahy, D. G., Noonan, B. P., Townsend, T. M., Sites, J. W., & Reeder, T. W. (2012). Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species. Biology Letters, 8, 1043–1046. https://doi.org/10.1098/rsbl.2012.0703
  • Xing, L. D., Li, D. Q., Klein, H., Lockley, M. G., Liang, Q. Q., Yang, J. T., Li, L. F., & You, W. Z. (2019). Lower Cretaceous turtle tracks from Hekou Group of northwest China. Cretaceous Research, 99, 269–274. https://doi.org/10.1016/j.cretres.2019.03.009
  • Xing, L. D., Niu, K. C., Ma, W., Zelenitsky, D. K., Yang, T. R., & Brusatte, S. L. (2021). An exquisitely preserved in‑ovo theropod dinosaur embryo sheds light on avian‑like prehatching postures. iScience, 25, 103516. https://doi.org/10.1016/j.isci.2021.103516
  • Xing, L. D., Niu, K. C., Wang, D. H., & Marquez, A. P. (2021). A partial articulated hadrosaurid skeleton from the Maastrichtian (Upper Cretaceous) of the Ganzhou area, Jiangxi Province, China. Historical Biology, 33, 2256–2259. https://doi.org/10.1080/08912963.2020.1782397
  • Xing, L. D., Niu, K. C., Yang, T. R., Wang, D. H., Miyashita, T. R., & Mallon, J. C. (2022). Hadrosauroid eggs and embryos from the Upper Cretaceous (Maastrichtian) of Jiangxi Province, China. BMC Ecology and Evolution, 22, 60. https://doi.org/10.1186/s12862-022-02012-x
  • Xing, L. D., Niu, K. C., Zhang, L. J., Yang, T. R., Zhang, J. P., Persons, W. S. IV., Romilio, A., Zhuang, Y. H., & Ran, H. (2020). Dinosaur eggs associated with crustacean trace fossils from the Upper Cretaceous of Jiangxi, China: Evidence for foraging behavior? Biosis: Biological Systems, 1, 54–59. https://doi.org/10.37819/biosis.001.002.0058
  • Xu, L., Wu X. C., Lu, J. C., Jia, S. H., Zhang, J. M., Pu, H. Y., & Zhang, X. L. (2014). A new lizard (Lepidosauria, Squamata) from the Upper Cretaceous of Henan, China. Acta Geologica Sinica (English Edition), 88, 1041–1050. https://doi.org/10.1111/1755-6724.12271
  • Zhang, X. Q., Zhang, S. J., Lin, X. Y., Huan, Q. J., & Li, H. L. (2021). Red beds and paleontology in the Nanxiong Basin. Huaxia Literature and Art Publishing House.
  • Zheng, Y., & Wiens, J. J. (2016). Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Molecular Phylogenetics and Evolution, 94, 537–547. https://doi.org/10.1016/j.ympev.2015.10.009
  • Zuo, Y. M., Wu, J. H., & Zhou, W. X. (1999). Lithostratigraphic division of volcanic terrain in Late Mesozoic in Jiangxi. Geological Reviews, 45, 742–750.