599
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Objective identification of Lepidocyclina (Foraminifera) species from the Eocene of Cuba based on growth-invariant morphometric characters

&
Article: 2287728 | Received 08 Feb 2023, Accepted 15 Nov 2023, Published online: 02 Feb 2024

References

  • Adams, C. G. (1983). Speciation, phylogenesis, tectonism, climate and eustasy: factors in the evolution of Cenozoic larger foraminiferal bioprovinces. The Emergence of the Biosphere: Systematic Association, 23, 255–289.
  • Adams, C. G. (1987). On the classification of the Lepidocyclinidae (Foraminiferida) with redescriptions of the unrelated Paleocene genera Actinosiphon and Orbitosiphon. Micropaleontology, 33, 289–317. https://doi.org/10.2307/1485571
  • Agnini, C., Fornaciari, E., Raffi, I., Catanzariti, R., Pälike, H., Backman, J., & Rio, D. (2014). Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes. Newsletters on Stratigraphy, 47(2), 131–181. https://doi.org/10.1127/0078-0421/2014/0042
  • Benedetti, A., Di Carlo, M., & Pignatti, J. (2010). Embryo size variation in larger foraminiferal lineages: stratigraphy versus paleoecology in Nephrolepidina praemarginata (R. Douvillé, 1908) from the Majella Mt. (Central Apennines). Journal of Mediterranean Earth Sciences, 2, 19–29.
  • Benedetti, A. & Pignatti, J. (2013). Conflicting evolutionary and biostratigraphical trends in Nephrolepidina praemarginata (Douvillé, 1908) (Foraminiferida). Historical Biology, 25, 363–383. https://doi.org/10.1080/08912963.2012.713949
  • Benedetti, A. & Schiavinotto, F. (2023). Evolutionary trends in the Mediterranean Nephrolepidina: new chronosubspecies and biostratigraphic constraints. Historical Biology, 35(4), 518–536. https://doi.org/10.1080/08912963.2022.2054711
  • Berggren, W. A., Kent, D. V., Swisher III, C. C., & Aubry, M. P. (1995). A revised Cenozoic geochronology and chronostratigraphy. Geocronology Timescales and Global Stratigraphic Correlation, SEPM Special Publication, 54, 129–212.
  • BouDagher-Fadel M. K., & Price, G. D. (2010). Evolution and paleogeographic distribution of the lepidocyclinids. Journal of Foraminiferal Research, 40, 79–108. https://doi.org/10.2113/gsjfr.40.1.79
  • Brönnimann, P., & Rigassi, D. (1963). Contribution to the geology and paleontology of the area of the city of La Habana, Cuba, and its surroundings. Eclogae Geologicae Helvetiae, 56(1), 193–480.
  • Butterlin, J. (1981). Claves para la determinación de macroforaminíferos de México y del Caribe, del Cretácico Superior al Mioceno Medio. Instituto Mexicano del Petróleo.
  • Butterlin, J. (1987). Origine et évolution des Lépidocyclines de la région des Caraıbes. Comparaisons et relations avec les Lépidocyclines des autres regions du Monde. Revue de Micropaléontologie, 29, 203–219.
  • Caudri, C. M. B. (1996). The larger Foraminifera of Trinidad (West Indies). Eclogae Geologicae Helvetiae, 89(3), 1137–1310.
  • Chaproniere, G. C. H. (1980). Biometrical studies of early Neogene larger Foraminiferida from Australia and New Zealand. Alcheringa, 4, 153–181. https://doi.org/10.1080/03115518008618929
  • Cole, W. S. (1941). Stratigraphic and paleontologic studies of wells in Florida. Florida Geological Survey Bulletin, 19, 1–53.
  • Cole, W. S. (1944). Stratigraphic and paleontologic studies of wells in Florida No. 3. Florida Geological Survey Bulletin, 29, 1–168.
  • Cole, W. S. (1945). Stratigraphic and paleontologic studies of wells in Florida No. 4. Florida Geological Survey Bulletin, 28, 1–160.
  • Cole, W. S. (1952). Eocene and Oligocene larger foraminifera from the Panama Canal Zone and vicinity. US Geological Survey Professional Paper, 244, 1–41.
  • Cole, W. S. (1956). Jamaican larger Foraminifera. Bulletins of American Paleontology, 36, 203–233.
  • Cole, W. S. (1960). Variability in embryonic chambers of Lepidocyclina. Micropaleontology, 6, 133–144. https://doi.org/10.2307/1484465
  • Cole, W. S. (1963). Illustrations of the conflicting interpretations of the biology and classification of certain larger Foraminifera. Bulletins of American Paleontology, 46, 6–63.
  • Cole, W. S., & Ponton, G. M. (1934). New species of Fabularia, Asterocyclina, and Lepidocyclina from the Florida Eocene. American Midland Naturalist, 15(2), 138–147. https://doi.org/10.2307/2420242
  • Coletti, G., Bosio, G., Collareta, A., Malinverno, E., Bracchi, V. A., Di Celma, C., Basso, D., Stainbank, S., Spezzaferri, S., Cannings, T. & Bianucci, G. (2019). Biostratigraphic, evolutionary, and paleoenvironmental significance of the southernmost lepidocyclinids of the Pacific coast of South America (East Pisco Basin, southern Peru). Journal of South American Earth Sciences, 96, 102372. https://doi.org/10.1016/j.jsames.2019.102372
  • Cushman, J. A. (1918). The larger fossil foraminifera of the Panama Canal Zone. Bulletin of the US National Museum, 103, 89–102.
  • Cushman, J. A. (1920). The American species of Orthophragmina and Lepidocyclina. USGS Professional Paper, 125-D, 39–105.
  • de Mello e Sousa, S. H., Fairchild, T. R., & Tibana, P. (2003). Cenozoic biostratigraphy of larger foraminifera from the Foz do Amazonas basin, Brazil. Micropaleontology, 49(3), 253–266. https://doi.org/10.2113/49.3.253
  • Douvillé, H. (1917). Les Orbitoides de l'Ile de la Trinité. Comptes Rendus hebdomadaires des Séances de l'Académie des Sciences, 164, 841–849.
  • Drooger, C. W. (1993). Radial Foraminifera; morphometrics and evolution: Verhandelingen der Koninklijke Akademie van Wetenschappen. Afdeeling Natuurkunde. Eerste Reeks, 41, 1–242.
  • Drooger, C. W., & Freudenthal, T. (1964). Associations of Miogypsina and Lepidocyclina at some European localities. Eclogae geologica helvetica, 57, 509–528.
  • Dunn, O. J. (1964). Multiple comparisons using rank sums. Technometrics, 6, 241–252. https://doi.org/10.1080/00401706.1964.10490181
  • Eames, F. E., Banner, F. T., Blow, W. H., & Clarke, W. J. (1962). Fundamentals of mid-Tertiary stratigraphical correlation. Cambridge University Press.
  • Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2), 179–188. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
  • Frost, S. H., & Langenheim, R. L. (1974). Cenozoic reef biofacies. Tertiary larger foraminifera and scleractinian corals from Chiapas, Mexico. Northern Illinois University Press, DeKalb.
  • García-Delgado, D., & Torres-Silva, A. I. (1997). Sistema Paleógeno. In K. E. Nuñez & G. F. Furrazola-Bermúdez (Eds.), Estudios sobre Geología de Cuba (pp. 115–140). Centro Nacional de Información Geológica.
  • Grimsdale, T. F. (1959). Evolution in the American Lepidocyclinidae (Cainozoic Foraminifera): An interim view. Proceedings Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam, Series B, 62, 8–33.
  • Gümbel, C. W. (1868). Beiträge zur Foraminiferenfauna der Nordalpinen Eocängebilde. Abhandlungen der Mathematisch-Physicalischen Classe der Koniglich Bayerischen Akademie der Wissenschaften, 10, 581–730.
  • Hammer, Ø. (2021). PAST. Paleontological Statistics (Version 4.06). Natural History Museum, University Oslo.
  • Hohenegger, J. (2011). Growth-invariant meristic characters tools to reveal phylogenetic relationships in Nummulitidae (Foraminifera). Turkish Journal of Earth Sciences, 20(6), 655–681. https://doi.org/10.3906/yer-0910-43
  • Hohenegger, J. (2014). Species as the basic units in evolution and biodiversity: Recognition of species in the Recent and geological past as exemplified by larger foraminifera. Gondwana Research, 25(2), 707–728. https://doi.org/10.1016/j.gr.2013.09.009
  • Hohenegger, J., & Torres-Silva, A. I. (2017). Growth-invariant and growth-independent characters in equatorial sections of Heterostegina shells relieve phylogenetic and paleobiogeographic interpretations. Palaios, 32(1), 30–43. https://doi.org/10.2110/palo.2015.092
  • Hohenegger, J., & Torres-Silva, A. I. (2020). Methods for testing ontogenetic changes of neanic chamberlets in lepidocyclinids. Journal of Foraminiferal Research, 50(2), 182–194. https://doi.org/10.2113/gsjfr.50.2.182
  • Hohenegger, J., Torres-Silva, A. I., & Eder, W. (2022). Interpreting morphologically homogeneous (Paleo-)populations as ecological species enables comparison of living and fossil organism groups, exemplified by nummulitid foraminifera. Journal of Earth Science, 33, 1362–1377. https://doi.org/10.1007/s12583-021-1567-z
  • Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417–441, 498–520. https://doi.org/10.1037/h0070888
  • Hottinger, L. (1997). Shallow benthic foraminiferal assemblages as signals for depth of their deposition and their limitations. Bulletin de la Société géologique de France, 168(4), 491–505.
  • Hottinger, L. (1998). Shallow benthic foraminifera at the Paleocene-Eocene boundary. Strata, 9, 61–64.
  • Iturralde‐Vinent, M. A. (1994). Cuban geology: a new plate‐tectonic synthesis. Journal of Petroleum Geology, 17(1), 39–69. https://doi.org/10.1111/j.1747-5457.1994.tb00113.x
  • Iturralde‐Vinent, M. A. (1995). Cuencas sedimentarias del Paleoceno-Eoceno de Cuba. Boletín de la Sociedad Venezolana de Geología, 20(1–2), 75–80.
  • Kantshev, I., Boyanov, I., Popov, N., Cabrera, R., Goranov, A., Iolkicev, I., Kanszirski, M., & Stancheva, M. (1976). Geología de la provincia de Las Villas. Resultado de las investigaciones y levantamiento geológico a escala, 1:250 000 [Unpublished report]. Academia de Ciencias de Cuba y Bulgaria, Instituto de Geología y Paleontología.
  • Less, G., Frijia, G., Özcan, E., Saraswati, P. K., Parente, M., & Kumar, P. (2018). Nummulitids, lepidocyclinids and Sr-isotope data from the Oligocene of Kutch (western India) with chronostratigraphic and paleobiogeographic evaluations. Geodinamica Acta, 30, 183–211. https://doi.org/10.1080/09853111.2018.1465214
  • Locker, S. (1967). Neue Coccolithophoriden (Flagellata) aus dem Alttertiär Norddeutschlands. Geologie, 16, 361–364.
  • Martini, E. (1971). Standard Tertiary and Quaternary calcareous nannoplankton zonation. In A. Farinacci (Ed.), Proceedings of the Second Planktonic Conference, Roma 1970 (pp. 739–785). Tecnoscienza.
  • Mitchell, S. F., Robinson, E., Özcan, E., Jiang, M. M., & Robinson, N. (2022). A larger benthic foraminiferal zonation for the Eocene of the Caribbean and Central American region. Carnets de Géologie, 22(11), 409–565. https://doi.org/10.2110/carnets.2022.2211
  • Molina, E., Torres-Silva, A. I., Ćorić, S., & Briguglio, A. (2016). Integrated biostratigraphy across the Eocene/Oligocene boundary at Noroña, Cuba, and the question of the extinction of orthophragminids. Newsletters on Stratigraphy, 49(1), 27–40. https://doi.org/10.1127/nos/2015/0069
  • Morton S. G. (1833). Supplement to the "Synopsis of the organic remains of the ferruginous sand formation of the United States," contained in vols. XVII and XVIII of this journal. American Journal of Science and Arts, 23, 288–294.
  • Orue-Etxebarria, X., Pujalte, V., Bernola, G., Apellaniz, E., Baceta, J. I., Payros, A., & Tosquella, J. (2001). Did the Late Paleocene thermal maximum affect the evolution of larger foraminifers? Evidence from calcareous plankton of the Campo Section (Pyrenees, Spain). Marine Micropaleontology, 41(1), 45–71. https://doi.org/10.1016/S0377-8398(00)00052-9
  • Pearson, P. N., Olsson, R. K., Huber, B. T., Hemleben C., & Breggren, W. A. (Eds.). (2006). Atlas of Eocene planktonic Foraminifera. Cushman Foundation for Foraminiferal Research, Special Publication, 41, 513 pp.
  • Robinson, E. (1996). Using larger foraminifers in high resolution biostratigraphy: an example from the Eocene of the Gulf of Mexico and northern Caribbean. Palaios, 11(3), 220–229. https://doi.org/10.2307/3515231
  • Robinson, E. (2004). Zoning the White Limestone Group of Jamaica using larger foraminiferal genera: a review and proposal. In S. K. Donovan (Ed.), The Mid-Cainozoic White Limestone Group of Jamaica (pp. 39–75) Cainozoic Research, 3(1–2).
  • Robinson, E., & Wright, R. M. (1993). Jamaican Paleogene larger foraminifera. In R. M. Wright & E. Robinson (Eds.), Biostratigraphy of Jamaica (pp. 283–345). Geological Society of America Memoir.
  • Saraswati, P. K. (1994). Biometric study of Lepidocyclina (Nephrolepidina) from Kutch, Saurashtra and Quilon (India). Geological Society of India, 44, 79–90.
  • Saraswati, P. K. (1995). Biometry of early Oligocene Lepidocyclina from Kutch, India. Marine Micropaleontology, 26, 303–311. https://doi.org/10.1016/0377-8398(95)00018-6
  • Scheibner, C., Speijer, R. P., & Marzouk, A. M. (2005). Turnover of larger foraminifera during the Paleocene-Eocene Thermal Maximum and paleoclimatic control on the evolution of platform ecosystems. Geology, 33, 493–496. https://doi.org/10.1130/G21237.1
  • Schiavinotto, F. (1994a). Biometry of the neanic stage of Upper Chattian Nephrolepidina morgani (Lemoine & R. Douvillé). Geologica Romana, 29, 291–306.
  • Schiavinotto, F. (1994b). Neanic state biometry in Nephrolepidina praemarginata (R. Douvillé, 908). Bollettino della Società Geologica Italiana, 112, 805–824.
  • Schiavinotto, F. (2010). Neanic stage biometry in Nephrolepidina from the upper Oligocene of lonedo (lugo di Vicenza–northern Italy). Bollettino della Società Paleontologica Italiana, 49, 173–194.
  • Schiavinotto, F. (2016). Neanic acceleration in Nephrolepidina from the Oligo-Miocene Mt. Torretta section (L’Aquila, central Apennines): biometric results and evolutionary, taxonomic and biostratigraphic remarks. Journal of Mediterranean Earth Sciences, 8, 63–87.
  • Schiavinotto, F., & Benedetti, A. (2022). Nephrolepidina and unispiralled Miogypsinidae from the Oligo-Miocene toe-of-slope succession of Gran Sasso (L'Aquila, Central Apennines-Italy): biometric and evolutionary remarks. Micropaleontology, 67(5), 483–514. https://doi.org/10.47894/mpal.67.5.04
  • Serra-Kiel, J., Hottinger, L., Caus, E., Drobne, K., Ferrández, C., Jauhri, A. K., Less, G., Pavlovec, R., Pignatti, J., Samso, J. M., Schaub, H., Sirel, E., Strougo, A., Tambareau, Y., Tosquella, J., & Zakrevskaya, E. (1998). Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. Bulletin de la Société géologique de France, 169(2), 281–299.
  • Sirotti, A. (1982). Phylogenetic classification of Lepidocyclinidae: a proposal. Bollettino della Societa Paleontologica Italiana, 21, 99–112.
  • Tan, S. H. (1936). Lepidocyclina zeijlmansi nov. sp., eine poly-lepidine Orbitoidide von Zentral-Borneo, nebst Bemerkungen über die verschiedenen Einteilungsweisen der Lepidocyclinen. Ingenieur in Nederlandsch-Indie, Mijnbouw en Geologie, 1, 7–14.
  • Torres-Silva, A. I., Hohenegger, J., Ćorić, S., Briguglio, A., & Eder, W. (2017). Biostratigraphy and evolutionary tendencies of Eocene heterostegines in Western and Central Cuba based on morphometric analyses. Palaios, 32(1), 44–60. https://doi.org/10.2110/palo.2016.004
  • Torres-Silva, A. I., Eder, W., Hohenegger, J., & Briguglio, A. (2019). Morphometric analysis of Eocene nummulitids in western and central Cuba: taxonomy, biostratigraphy and evolutionary. Journal of Systematic Palaeontology, 17(7), 557–595. https://doi.org/10.1080/14772019.2018.1446462
  • Van der Vlerk, I. M. (1959). Problems and principles of Tertiary and Quaternary stratigraphy: Quarterly Journal of the Geological Society, 115, 49–64. https://doi.org/10.1144/GSL.JGS.1959.115.01.04
  • Van der Vlerk, I. M. (1963). Biometric research on Lepidocyclina. Micropaleontology, 9, 425–426. https://doi.org/10.2307/1484502
  • Van Wessen, E. J. (1978). Study of Lepidocyclinidae from South-East Asia, particularly from Java and Borneo. Utrecht Micropalaeontological Bullettin, 19, 1–163.
  • Varol, O. (1989). Palaeocene calcareous nannofossil biostratigraphy. In J. Crux & S. van Veck (Eds.), Nannofossils and their applications (pp. 267–310). Ellis Horwood.
  • Vaughan, T. W., & Cole, W. S. (1941). Preliminary report on the Cretaceous and Tertiary larger foraminifera of Trinidad British West Indies. Geological Society of America Special Papers, 30, 1–137.
  • Ward Jr., J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–244. https://doi.org/10.1080/01621459.1963.10500845