734
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Extended Lissamphibia: a tale of character non-independence, analytical parameters and islands of trees

ORCID Icon
Article: 2321620 | Received 15 Jun 2023, Accepted 18 Feb 2024, Published online: 02 Apr 2024

References

  • Abel, P., & Werneburg, I. (2021). Morphology of the temporal skull region in tetrapods: research history, functional explanations, and a new comprehensive classification scheme. Biological Reviews, 96(5), 2229–2257. https://doi.org/10.1111/brv.12751
  • Aberer, A. J., Krompass, D., & Stamatakis, A. (2012). Pruning rogue taxa improves phylogenetic accuracy: an efficient algorithm and webservice. Systematic Biology, 62(1), 162–166. https://doi.org/10.1093/sysbio/sys078
  • Anderson, J. S., Reisz, R. R., Scott, D., Fröbisch, N. B., & Sumida, S. S. (2008). A stem batrachian from the Early Permian of Texas and the origin of frogs and salamanders. Nature, 453(7194), 515–518. https://doi.org/10.1038/nature06865
  • Beaulieu, J. M., & O’Meara, B. C. (2014). Hidden Markov models for studying the evolution of binary morphological characters. In L. Z. Garamszegi (Ed.), Modern phylogenetic comparative methods and their application in evolutionary biology (pp. 395–408). Springer. https://doi.org/10.1007/978-3-662-43550-2
  • Bolt, J. R. (1969). Lissamphibian origins: possible protolissamphibian from the Lower Permian of Oklahoma. Science, 166(3907), 888–891. https://doi.org/10.1126/science.166.3907.888
  • Bolt, J. R., & Chatterjee, S. (2000). A new temnospondyl amphibian from the Late Triassic of Texas. Journal of Paleontology, 74(4), 670–683.(2000)074 < 0670:ANTAFT > 2.0.CO;2 https://doi.org/10.1666/0022-3360
  • Boulenger, G. (1883). XXIX.—Description of a new genus of Cœcilæ. Journal of Natural History, 11(63), 202–203. https://doi.org/10.1080/00222938309459129
  • Brazeau, M., & Desjardins, C. (2020). Morphy (Version 0.2) [Computer software]. https://doi.org/10.5281/zenodo.3974824
  • Brazeau, M. D., Guillerme, T., & Smith, M. R. (2019). An algorithm for morphological phylogenetic analysis with inapplicable data. Systematic Biology, 68(4), 619–631. https://doi.org/10.1093/sysbio/syy083
  • Burmeister, H. (1849). Die Labyrinthodonton aus dem bunten Sandstein von Bernburg. G. Reimer, Berlin, iv + 69 pp., 4 pls.
  • Cai, L., Xi, Z., Lemmon, E. M., Lemmon, A. R., Mast, A., Buddenhagen, C. E., Liu, L., & Davis, C. C. (2021). The perfect storm: gene tree estimation error, incomplete lineage sorting, and ancient gene flow explain the most recalcitrant ancient angiosperm clade, Malpighiales. Systematic Biology, 70(3), 491–507. https://doi.org/10.1093/sysbio/syaa083
  • Caparros, M., & Prat, S. (2021). A phylogenetic networks perspective on reticulate human evolution. iScience 24(4), 102359. https://www.sciencedirect.com/science/article/pii/S2589004221003278 https://doi.org/10.1016/j.isci.2021.102359
  • Carroll, R. L., & Gaskill, P. (1971). A captorhinomorph reptile from the Lower Permian of Europe. Journal of Paleontology, 45(3), 450–463.
  • Chernomor, O., Minh, B. Q., & von Haeseler, A. (2015). Consequences of common topological rearrangements for partition trees in phylogenomic inference. Journal of Computational Biology 22(12), 1129–1142. https://doi.org/10.1089/cmb.2015.0146
  • Colless, D. (1980). Congruence between morphometric and allozyme data for Menidia species: a reappraisal. Systematic Zoology, 29(3), 288–299. https://doi.org/10.2307/2412663
  • Cope, E. D. (1868). Synopsis of the extinct Batrachia of North America. Proceedings of the Academy of Natural Sciences of Philadelphia, 20, 208–221.
  • Cope, E. D. (1882). Third contribution to the history of the Vertebrata of the Permian formation of Texas. Proceedings of the American Philosophical Society, 20(112), 447–461.
  • Cope, E. D. (1895). A batrachian armadillo. American Naturalist, 29(998), 1896a.
  • De Laet, J. (2015). Parsimony analysis of unaligned sequence data: maximization of homology and minimization of homoplasy, not minimization of operationally defined total cost or minimization of equally weighted transformations. Cladistics, 31(5), 550–567. https://doi.org/10.1111/cla.12098
  • Dias-Da-Silva, S., & Marsicano, C. (2006). Sangaia, a replacement generic name for the rhytidosteid temnospondyl Cabralia, a preoccupied name. Journal of Vertebrate Paleontology, 26(4), 1004–1004.(2006)26[1004:SARGNF]2.0.CO;2 https://doi.org/10.1671/0272-4634
  • Dilkes, D. W. (1990). A new trematopsid amphibian (Temnospondyli: Dissorophoidea) from the Lower Permian of Texas. Journal of Vertebrate Paleontology, 10(2), 222–243. https://doi.org/10.1080/02724634.1990.10011809
  • Dos Santos, C. M., & Falaschi, R. L. (2007). Missing data in phylogenetic analysis: comments on support measures. Darwiniana, 45(Sup), 25–26.
  • Efremov, I. (1937). On the stratification of continental Permian and Triassic the Soviet Union based on the terrestrial vertebrate fauna. Doklady Akademii Nauk SSSR, Nov. Ser., 16(2), 125–132.
  • Elworth, R. A. L., Ogilvie, H. A., Zhu, J., & Nakhleh, L. (2019). Advances in computational methods for phylogenetic networks in the presence of hybridization. In T. Warnow (Ed.), Bioinformatics and phylogenetics (pp. 317–360). Springer International Publishing. https://link.springer.com/chapter/101007/978-3-030-10837-3_13
  • Farris, J. S., Albert, V. A., Källersjö, M., Lipscomb, D., & Kluge, A. G. (1996). Parsimony jackknifing outperforms neighbor-joining. Cladistics, 12(2), 99–124. https://doi.org/10.1111/j.1096-0031.1996.tb00196.x
  • Feller, A. E., & Hedges, S. B. (1998). Molecular evidence for the early history of living amphibians. Molecular Phylogenetics and Evolution, 9(3), 509–516. https://doi.org/10.1006/mpev.1998.0500
  • Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39(4), 783–791. https://doi.org/10.2307/2408678
  • Fisher von Waldheim, G. (1813), Zoognosia tabulis synopticis illustrata: in usum praelectionum Academiae imperialis medico-chirugicae mosquensis edita, Typis Nicolai S. Vsevolozsky, Moscow, xiv + 465 pp.
  • Fitzinger, L. J. (1826). Neue Classification der Reptilien nach ihren Natürlichen Verwandschaften: Nebst einer Verwandschafts-Tafel und einem Verzeichnisse der Reptilien-Sammlung des K. K. Zoologishen Museums zu Wien. J. G. Heubner.
  • Forey, P. L., & Kitching, I. J. (2000). Experiments in coding multistate characters. In R. Scotland & R. T. Pennington (Eds.), Homology and systematics: Coding characters for phylogenetic analyses (pp. 54–80). CRC Press.
  • Fox, R. C., & Naylor, B. G. (1982). A reconsideration of the relationships of the fossil amphibian Albanerpeton. Canadian Journal of Earth Sciences, 19(1), 118–128. https://doi.org/10.1139/e82-009
  • Fraas, E. (1889). Die Labyrinthodonten der schwäbischen Trias. Palaeontographica (1846–1933), 36, 1–158.
  • Frost, D. R. 2023. Amphibian species of the world: an online reference (Version 6.2) [Data set]. Retrieved November 18, 2023, from https://amphibiansoftheworld.amnh.org/index.php. American Museum of Natural History, New York, USA. https://doi.org/10.5531/db.vz.0001
  • Frost, D. R., Grant, T., Faivovich, J., Bain, R. H., Haas, A., Haddad, C. F. B., De Sa, R. O., Channing, A., Wilkinson, M., Donnellan, S. C., Raxworthy, C. J., Campbell, J. A., Blotto, B. L., Moler, P., Drewes, R. C., Nussbaum, R. A., Lynch, J. D., Green, D. M., & Wheeler, W. C. (2006). The amphibian tree of life. Bulletin of the American Museum of Natural History, 297, 1–291. https://doi.org/10.1206/0003-0090(2006)297[0001:TATOL]2.0.CO;2
  • Gardner, J. D. (2001). Monophyly and affinities of albanerpetontid amphibians (Temnospondyli; Lissamphibia). Zoological Journal of the Linnean Society, 131(3), 309–352. https://doi.org/10.1111/j.1096-3642.2001.tb02240.x
  • Gee, B. M. (2022). The disadvantage of derivation: conserved systematic flaws in primary data have repeatedly biased the phylogenetic inference of Temnospondyli (Tetrapoda, Amphibia). bioRxiv preprint. https://doi.org/10.1101/2022.06.22.496729
  • Goloboff, P. A., & Arias, J. S. (2019). Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterion. Cladistics, 35(6), 695–716. https://doi.org/10.1111/cla.12380
  • Goloboff, P. A., De Laet, J., Ríos-Tamayo, D., & Szumik, C. A. (2021). A reconsideration of inapplicable characters, and an approximation with step-matrix recoding. Cladistics 37(5), 596–629. https://doi.org/10.1111/cla.12456
  • Goloboff, P. A., Pittman, M., Pol, D., & Xu, X. (2019). Morphological data sets fit a common mechanism much more poorly than DNA sequences and call into question the Mkv model. Systematic Biology, 68(3), 494–504. https://doi.org/10.1093/sysbio/syy077
  • Goloboff, P. A., Torres, A., & Arias, J. S. (2018). Weighted parsimony outperforms other methods of phylogenetic inference under models appropriate for morphology. Cladistics, 34(4), 407–437. https://doi.org/10.1111/cla.12205
  • Goloboff, P. A., Torres Galvis, A., & Arias, J. S. (2018). Parsimony and model-based phylogenetic methods for morphological data: Comments on O’Reilly et al. Palaeontology, 61(1), 625–630. https://doi.org/10.1111/pala.12353
  • Gray, J. E. (1825). A synopsis of the genera of reptiles and Amphibia, with a description of some new species. Annals of Philosophy, 10, 193–217.
  • Haeckel, E. (1866), Generelle Morphologie der Organismen (Volume 2). G. Reimer, Berlin, clx + 462 pp.
  • Harris, S. R. (2005). Character construction in morphological phylogenetics and the affinities of turtles [PhD thesis]. University of Bristol.
  • Hawkins, J. A., Hughes, C. E., & Scotland, R. W. (1997). Primary homology assessment, characters and character states. Cladistics, 13(3), 275–283. https://doi.org/10.1111/j.1096-0031.1997.tb00320.x
  • Hendy, M. D., Steel, M. A., Penny, D., & Henderson, I. M. (1988). Families of trees and consensus. In H. H. Bock (Ed.), Classification and related methods of data analysis (pp. 355–362). Elsevier.
  • Hime, P. M., Lemmon, A. R., Lemmon, E. C. M., Prendini, E., Brown, J. M., Thomson, R. C., Kratovil, J. D., Noonan, B. P., Pyron, R. A., Peloso, P. L. V., Kortyna, M. L., Keogh, J. S., Donnellan, S. C., Mueller, R. L., Raxworthy, C. J., Kunte, K., Ron, S. R., Das, S., Gaitonde, N., …, Weisrock, D. W. (2021). Phylogenomics reveals ancient gene tree discordance in the amphibian tree of life. Systematic Biology, 70(1), 49–66. https://doi.org/10.1093/sysbio/syaa034
  • Höhna, S., & Drummond, A. J. (2011). Guided tree topology proposals for Bayesian phylogenetic inference. Systematic Biology, 61(1), 1–11. https://doi.org/10.1093/sysbio/syr074
  • Holland, B., & Moulton, V. (2003). Consensus networks: a method for visualising incompatibilities in collections of trees. In G. Benson & R. D. M. Page (Eds.), International workshop on algorithms in bioinformatics (pp. 165–176). Springer.
  • Hopkins, M. J., & St. John, K. (2021). Incorporating hierarchical characters into phylogenetic analysis. Systematic Biology, 70(6), 1163–1180. https://doi.org/10.1093/sysbio/syab005
  • Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23(2), 254–267. https://doi.org/10.1093/molbev/msj030
  • Huson, D. H., & Kloepper, T. H. (2007). Beyond galled trees – decomposition and computation of galled networks. In T. Speed & H. Huang (Eds.), Annual international conference on research in computational molecular biology RECOMB 2007 (pp. 211–249), Springer.
  • Huson, D. H., Klöpper, T., Lockhart, P. J., & Steel, M. A. (2005). Reconstruction of reticulate networks from gene trees. p. 233–249. In: S. Miyano, J. Merisov, S. Kasif, S. Istrail, P. A. Pevzner, & M. Waterman (Eds.). Annual international conference on research in computational molecular biology RECOMB 2005, Springer.
  • Huson, D. H., Rupp, R., & Scornavacca, C. (2010). Phylogenetic networks: concepts, algorithms and applications. Cambridge University Press.
  • Ivachnenko, M. (1978a). Urodeles from the Triassic and Jurassic of Soviet Central Asia. Paleontological Journal, 12, 362–368.
  • Ivakhnenko, M. (1978b). Caudates from the Triassic and Jurassic of Middle Asia. Paleontologicheskii Zhurnal, 3, 84–89.
  • Jäger, G. F. (1828). Über die Fossile Reptilien, welche in Würtemberg aufgefunden worden sind. J. B. Metzler.
  • Jenkins Jr, P. A., & Walsh, D. M. (1993). An Early Jurassic caecilian with limbs. Nature 365(6443), 246–250. https://doi.org/10.1038/365246a0
  • Kitching, J. (1957). A new small stereospondylous labyrinthodont from the Triassic beds of South Africa. Palaeontology Africana, 5, 67–82.
  • Kligman, B. T., Gee, B. M., Marsh, A. D., Nesbitt, S. J., Smith, M. E., Parker, W. G., & Stocker, M. R. (2023). Triassic stem caecilian supports dissorophoid origin of living amphibians. Nature, 614, 1–6. https://doi.org/10.1038/s41586-022-05646-5
  • Lakner, C., van der Mark, P., Huelsenbeck, J. P., Larget, B., & Ronquist, F. (2008). Efficiency of Markov chain Monte Carlo tree proposals in Bayesian phylogenetics. Systematic Biology, 57(1), 86–103. https://doi.org/10.1080/10635150801886156
  • Lanyon, S. M. (1985). Detecting internal inconsistencies in distance data. Systematic Zoology, 34(4), 397–403. https://doi.org/10.2307/2413204
  • Larson, A., & Dimmick, W. W. (1993). Phylogenetic relationships of the salamander families: an analysis of congruence among morphological and molecular characters. Herpetological Monographs, 7, 77–93. https://doi.org/10.2307/1466953
  • Latreille, P. A. (1800). Histoire naturelle des salamandres de France: précédée d’un tableau méthodique des autres reptiles indigènes. Chez Villier.
  • Laurin, M., & Soler-Gijón, R. (2001). The oldest stegocephalian from the Iberian Peninsula: evidence that temnospondyls were euryhaline. Comptes Rendus de l’Académie des Sciences-Series III-Sciences de la Vie, 324(5), 495–501. https://doi.org/10.1016/s0764-4469(01)01318-x
  • Leuckart, F. (1821). Einiges über die fischartigen Amphibien. Isis von Oken, 9, 257–265.
  • Lewis, P. O. (2001). A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology, 50(6), 913–925. https://doi.org/10.1080/106351501753462876
  • Maddin, H. C., Piekarski, N., Sefton, E. M., & Hanken, J. (2016). Homology of the cranial vault in birds: new insights based on embryonic fate-mapping and character analysis. Royal Society Open Science, 3(8), 160356. https://doi.org/10.1098/rsos.160356
  • Maddison, D. R. (1991). The discovery and importance of multiple islands of most-parsimonious trees. Systematic Biology, 40(3), 315–328. https://doi.org/10.1093/sysbio/40.3.315
  • Maddison, W. P. (1993). Missing data versus missing characters in phylogenetic analysis. Systematic Biology, 42(4), 576–581. https://doi.org/10.1093/sysbio/42.4.576
  • Margush, T., & McMorris, F. (1981). Consensus n-trees. Bulletin of Mathematical Biology, 43(2), 239–244. https://doi.org/10.1016/S0092-8240(81)90019-7
  • Marjanović, D., & Laurin, M. (2019). Phylogeny of Paleozoic limbed vertebrates reassessed through revision and expansion of the largest published relevant data matrix. PeerJ, 6, e5565. https://doi.org/10.7717/peerj.5565
  • Marjanović, D., Maddin, H. C., Olori, J. C., & Laurin, M. (2024). The new problem of Chinlestegophis and the origin of caecilians (Amphibia, Gymnophionomorpha) is highly sensitive to old problems of sampling and character construction. Fossil Record, 27(1), 55–94. https://doi.org/10.3897/fr.27.e109555
  • Müller, J. (1831). Beiträge zur Anatomie und Naturgeschichte der Amphibien. Zeitschrift für Physiologie, 4, 190–275.
  • Nixon, K. C., & Davis, J. I. (1991). Polymorphic taxa, missing values and cladistic analysis. Cladistics, 7(3), 233–241. https://doi.org/10.1111/j.1096-0031.1991.tb00036.x
  • Nodelman, U., Shelton, C. R., & Koller, D. (2002). Continuous time Bayesian networks. In A. Darwiche & N. Friedman (Eds.), UAI02: Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence (pp. 378–387). Morgan Kaufmann Publishers Inc.
  • Olmstead, R. G., Bremer, B., Scott, K. M., & Palmer, J. D. (1993). A parsimony analysis of the Asteridae sensu lato based on rbcL sequences. Annals of the Missouri Botanical Garden, 80(3), 700–722. https://doi.org/10.2307/2399855
  • O’Reilly, J. E., Puttick, M. N., Parry, L., Tanner, A. R., Tarver, J. E., Fleming, J., Pisani, D., & Donoghue, P. C. (2016). Bayesian methods outperform parsimony but at the expense of precision in the estimation of phylogeny from discrete morphological data. Biology Letters, 12(4), 20160081. https://doi.org/10.1098/rsbl.2016.0081
  • Pardo, J. D., Small, B. J., & Huttenlocker, A. K. (2017). Stem caecilian from the Triassic of Colorado sheds light on the origins of Lissamphibia. Proceedings of the National Academy of Sciences, 114(27), E5389–E5395. https://doi.org/10.1073/pnas.1706752114
  • Pattengale, N., Aberer, A., Swenson, K., Stamatakis, A., & Moret, B. (2011). Uncovering hidden phylogenetic consensus in large data sets. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8(4), 902–911. https://doi.org/10.1109/TCBB.2011.28
  • Platnick, N. I., Griswold, C. E., & Coddington, J. A. (1991). On missing entries in cladistic analysis. Cladistics, 7(4), 337–343. https://doi.org/10.1111/j.1096-0031.1991.tb00042.x
  • Puttick, M. N., O’Reilly, J. E., Tanner, A. R., Fleming, J. F., Clark, J., Holloway, L., Lozano-Fernandez, J., Parry, L. A., Tarver, J. E., Pisani, D., & Donoghue, P. C. J. (2017). Uncertain-tree: discriminating among competing approaches to the phylogenetic analysis of phenotype data. Proceedings of the Royal Society B: Biological Sciences, 284(1846), 20162290. https://doi.org/10.1098/rspb.2016.2290
  • Pyron, R. A., & Wiens, J. J. (2011). A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Molecular Phylogenetics and Evolution, 61(2), 543–583. https://doi.org/10.1016/j.ympev.2011.06.012
  • R Core Team (2021). R: a language and environment for statistical computing, R Foundation for Statistical Computing. https://www.R-project.org/
  • Robinson, D. F., & Foulds, L. R. (1981). Comparison of phylogenetic trees. Mathematical Biosciences, 53(1–2), 131–147. https://doi.org/10.1016/0025-5564(81)90043-2
  • Romer, A. (1969). A temnospondylous amphibian from the Lower Carboniferous. Kirtlandia, 6, 1–20.
  • Romer, A. S. (1970). A new anthracosaurian labyrinthodont, Proterogyrinus scheelei, from the Lower Carboniferous. Kirtlandia, 10, 1–16.
  • Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542. https://doi.org/10.1093/sysbio/sys029
  • Ruta, M., & Coates, M. I. (2007). Dates, nodes and character conflict: addressing the lissamphibian origin problem. Journal of Systematic Palaeontology, 5(1), 69–122. https://doi.org/10.1017/S1477201906002008
  • San Mauro, D., Gower, D. J., Müller, H., Loader, S. P., Zardoya, R., Nussbaum, R. A., & Wilkinson, M. (2014). Life-history evolution and mitogenomic phylogeny of caecilian amphibians. Molecular Phylogenetics and Evolution, 73, 177–189. https://doi.org/10.1016/j.ympev.2014.01.009
  • Sanderson, M. J., McMahon, M. M., & Steel, M. (2011). Terraces in phylogenetic tree space. Science, 333(6041), 448–450. https://doi.org/10.1126/science.1206357
  • Santos, R. O., Laurin, M., & Zaher, H. 2020. A review of the fossil record of caecilians (Lissamphibia: Gymnophionomorpha) with comments on its use to calibrate molecular timetrees. Biological Journal of the Linnean Society, 131(4), 737–755. https://doi.org/10.1093/biolinnean/blaa148
  • Schoch, R. R. (2006). A complete trematosaurid amphibian from the Middle Triassic of Germany. Journal of Vertebrate Paleontology, 26(1), 29–43. https://doi.org/10.1671/0272-4634(2006)26[29:ACTAFT]2.0.CO;2
  • Schoch, R. R., Werneburg, R., & Voigt, S. (2020). A Triassic stem salamander from Kyrgyzstan and the origin of salamanders. Proceedings of the National Academy of Sciences, 117(21), 11584–11588. https://doi.org/10.1073/pnas.2001424117
  • Schultze, H.-P., Arratia, G., & Wilson, M. V. H. (2008). Nomenclature and homologization of cranial bones in actinopterygians. In G. Arratia, H.-P. Schultze & V. H. Wilson (Eds.), Mesozoic fishes 4: homology and phylogeny (pp. 23–48). Verlag Dr. Friedrich Pfeil.
  • Schultze, H.-P., & Foreman, B. (1981). A new gymnarthrid microsaur from the Lower Permian of Kansas with a review of the tuditanomorph microsaurs (Amphibia). Occasional Papers of the Museum of Natural History, the University of Kansas, 91, 1–25.
  • Serra Silva, A. (2022). Post-processing of phylogenetic trees: On islands, clumps and (non-) effective overlap [PhD thesis]. University of Bristol. https://hdl.handle.net/1983/1e17b53f-107a-4ee8-9cea-9fe8ac2589e5
  • Serra Silva, A., & Wilkinson, M. (2021a). On defining and finding islands of trees and mitigating large island bias. Systematic Biology, 70(6), 1282–1294. https://doi.org/10.1093/sysbio/syab015
  • Serra Silva, A., & Wilkinson, M. (2021b). On defining and finding islands of trees and mitigating large island bias [Data set]. Dryad. https://doi.org/10.5068/D14X10
  • Sharkey, M. J., & Leathers, J. W. (2001). Majority does not rule: the trouble with majority-rule consensus trees. Cladistics, 17(3), 282–284. https://doi.org/10.1006/clad.2001.0174
  • Shishkin, M., & Rubidge, B. (2000). A relict rhinesuchid (Amphibia: Temnospondyli) from the Lower Triassic of South Africa. Palaeontology, 43(4), 653–670. https://doi.org/10.1111/1475-4983.00144
  • Simões, T. R., Vernygora, O. V., de Medeiros, B. A. S., & Wright, A. M. (2023). Handling logical character dependency in phylogenetic inference: extensive performance testing of assumptions and solutions using simulated and empirical data. Systematic Biology, 72(3), 662–680. https://doi.org/10.1093/sysbio/syad006
  • Siu-Ting, K., Pisani, D., Creevey, C. J., & Wilkinson, M. (2015). Concatabominations: identifying unstable taxa in morphological phylogenetics using a heuristic extension to safe taxonomic reduction. Systematic Biology, 64(1), 137–143. https://doi.org/10.1093/sysbio/syu066
  • Siu-Ting, K., Torres-Sánchez, M., San Mauro, D., Wilcockson, D., Wilkinson, M., Pisani, D., O’Connell, M. J., & Creevey, C. J. (2019). Inadvertent paralog inclusion drives artifactual topologies and timetree estimates in phylogenomics. Molecular Biology and Evolution, 36(6), 1344–1356. https://doi.org/10.1093/molbev/msz067
  • Sokal, R. R., & Rohlf, F. J. (1981). Taxonomic congruence in the Leptopodomorpha re-examined. Systematic Zoology, 30(3), 309–325. https://doi.org/10.2307/2413252
  • Sumrall, C. D., Brochu, C. A., & Merck, J. W. (2001). Global lability, regional resolution, and majority-rule consensus bias. Paleobiology, 27(2), 254–261.(2001)0272.0.CO;2 https://doi.org/10.1666/0094-8373
  • Suvorov, A., Kim, B. Y., Wang, J., Armstrong, E. E., Peede, D., D’Agostino, E. R. R., Price, D. K., Waddell, P. J., Lang, M., Courtier-Orgogozo, V., David, J. R., Petrov, D., Matute, D. R., Schrider, D. R., & Comeault, A. A. (2022). Widespread introgression across a phylogeny of 155 Drosophila genomes. Current Biology, 32(1), 111–123. https://doi.org/10.1016/j.cub.2021.10.052
  • Swofford, D. L. (2003). PAUP*: phylogenetic analysis using parsimony (*and other methods) (Version 4.0 a165). Sinauer Associates.
  • Tarasov, S. (2019). Integration of anatomy ontologies and evo-devo using structured Markov models suggests a new framework for modelling discrete phenotypic traits. Systematic Biology, 68(5), 698–716. https://doi.org/10.1093/sysbio/syz005
  • Tarasov, S. (2023). New phylogenetic Markov models for inapplicable morphological characters. Systematic Biology, 72(3), 681–693. https://doi.org/10.1093/sysbio/syad005
  • Thorley, J. L. (2000). Cladistic information, leaf stability and supertree construction [PhD thesis]. University of Bristol.
  • Thorley, J. L., & Wilkinson, M. (1999). Testing the phylogenetic stability of early tetrapods. Journal of Theoretical Biology, 200(3), 343. https://doi.org/10.1006/jtbi.1999.0999
  • Tschudi, J. J. (1838). Classification der Batrachier: mit Berucksichtigung der Fossilen Thiere dieser Abtheilung der Reptilien. Petitpierre.
  • van Hoepen, E. (1915). Stegocephalia of Senekal, O.F.S. Annals of the Transvaal Museum, 5(2), 125–149.
  • Vaughn, P. P. (1969). Further evidence of close relationship of the trematopsid and dissorophoid labyrinthodont amphibians with a description of a new genus and new species. Bulletin, Southern California Academy of Sciences, 68(3), 121–130.
  • von Meyer, H. (1844). Briefliche mittheilung an Prof. Bronn. Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde, 1844, 336–337.
  • von Zittel, K. A. (1887). Handbuch der Palæontologie, Palæzoologie, Vertebrata (Pisces, Amphibia, Reptilia, Aves) (Volume 3). R. Oldenbourg.
  • Wagler, J. (1827). Untitled footnote Isis von Oken, 20, 726.
  • Warren, A., & Hutchinson, M. (1990). Lapillopsis, a new genus of temnospondyl amphibians from the Early Triassic of Queensland. Alcheringa, 14(2), 149–158. https://doi.org/10.1080/03115519008527816
  • Watson, D. M. S. (1958). A new labyrinthodont (Paracyclotosaurus) from the Upper Trias of New South Wales. Bulletin of the British Museum of Natural History, London (Geology), 3, 233–263.
  • Watson, D. M. S. (1962). The evolution of the labyrinthodonts. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 245(723), 219–265.
  • Wilkinson, M. (1995a). Coping with abundant missing entries in phylogenetic inference using parsimony. Systematic Biology, 44(4), 501–514. https://doi.org/10.2307/2413657
  • Wilkinson, M. (1995b). More on reduced consensus methods. Systematic Biology, 44(3), 435–439. https://doi.org/10.2307/2413604
  • Wilkinson, M. (1995c). A comparison of two methods of character construction. Cladistics, 11(3), 297–308. https://doi.org/10.1016/0748-3007(95)90017-9
  • Wilkinson, M. (2003). Missing entries and multiple trees: instability, relationships, and support in parsimony analysis. Journal of Vertebrate Paleontology, 23(2), 311–323. https://doi.org/10.1671/0272-4634(2003)023[0311:MEAMTI]2.0.CO;2
  • Wilkinson, M. (2006). Identifying stable reference taxa for phylogenetic nomenclature. Zoologica Scripta, 35(1), 109–112. https://doi.org/10.1111/j.1463-6409.2005.00213.x
  • Wilkinson, M., & Crotti, M. (2017). Comments on detecting rogue taxa using RogueNaRok. Systematics and Biodiversity, 15(4), 291–295. https://doi.org/10.1080/14772000.2016.1252440
  • Williston, S. (1910). Cacops desmospondylus; new genera of Permian vertebrates. Bulletin of the Geological Society of America, 21(1), 249–284. https://doi.org/10.1130/GSAB-21-249
  • Williston, S. W. (1914). Broiliellus, a new genus of amphibians from the Permian of Texas. The Journal of Geology, 22(1), 49–56. https://doi.org/10.1086/622132
  • Wright, A. M., & Hillis, D. M. (2014). Bayesian analysis using a simple likelihood model outperforms parsimony for estimation of phylogeny from discrete morphological data. PLoS One, 9(10), e109210. https://doi.org/10.1371/journal.pone.0109210