192
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

The synergy between texture evolution and grain refinement in a BCC steel

, , , &
Pages 273-299 | Received 23 Aug 2023, Accepted 27 Nov 2023, Published online: 12 Dec 2023

References

  • R.K. Ray, J.J. Jonas, and R.E. Hook, Cold rolling and annealing textures in low carbon and extra low carbon steels. Int. Mater. Rev 39 (1994), pp. 129–172.
  • M. Holscher, D. Raabe, and K. Lucke, Rolling and recrystallization textures of bcc steels. Steel Res. 62 (1991), pp. 567–575. doi:10.1002/srin.199100451.
  • W.B. Hutchinson, Development and control of annealing textures in low-carbon steels. Int. Metals Rev 29 (1984), pp. 25–42.
  • S. Biswas, S. Samanta, A.K. Singh, B. Bhattacharya, and S.B. Singh, An overview on the texture evolution of cold rolled IF steels and Zn coating during galvanizing and galvannealing. Ref. Modu. Mater. Sci. and Mater. Eng (2019), pp. 1–8. doi:10.1016/b978-0-12-803581-8.11526-7.
  • Keeler, M. Kimchi, and P.J. Mooney. AHSS Apllication Guidelines Version 6.0. World Auto Steel. 6, 2017, pp. 1–314.
  • S. Suwas and R.K. Ray. Crystallographic Texture of Materials. Springers, London. ISBN 978-1-4471-6314-5, 2014, pp. 1–265.
  • J. Gil Sevillano, P. van Houtte, and E. Aernoudt, Large strain work hardening and textures. Prog. Mater. Sci 25 (1980), pp. 69–134.
  • Y. Estrin and A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 61 (2013), pp. 782–817.
  • B. Peeters, M. Seefeldt, C. Teodosiu, S.R. Kalidindi, P. Van Houtte, and E. Aernoudt, Work-hardening/softening behaviour of b.c.c. polycrystals during changing strain paths: I. An integrated model based on substructure and texture evolution, and its prediction of the stress-strain behaviour of an if steel during two-stage strain paths. Acta Mater. 49 (2001), pp. 1607–1619.
  • B.L. Li, A. Godfrey, Q.C. Meng, Q. Liu, and N. Hansen, Microstructural evolution of IF-steel during cold rolling. Acta Mater. 52 (2004), pp. 1069–1081.
  • K. Shen and B.J. Duggan, Microbands and crystal orientation metastability in cold rolled interstitial-free steel. Acta Mater. 55 (2007), pp. 1137–1144.
  • A. Bhowmik, S. Biswas, S. Suwas, R.K. Ray, and D. Bhattacharjee, Evolution of grain-boundary microstructure and texture in interstitial-free steel processed by equal-channel angular extrusion. Metall. Mater. Trans. A 40 (2009), pp. 2729–2742.
  • S. Li, A.A. Gazder, I.J. Beyerlein, E.V. Pereloma, and C.H.J. Davies, Effect of processing route on microstructure and texture development in equal channel angular extrusion of interstitial-free steel. Acta Mater. 54 (2006), pp. 1087–1100.
  • A. Bhowmik, S. Biswas, S.S. Dhinwal, A. Sarkar, R.K. Ray, D. Bhattacharjee, and S. Suwas, Microstructure and texture evolution in interstitial-free (IF) steel processed by multi-axial forging. Mater. Sci. Forum 702–703 (2012), pp. 774–777.
  • S. Suwas, S. Biswas, A. Bhowmik, D.S. Singh, D. Bhattacharjee, and R.K. Ray. A method to process interstitial-free (IF) steels by adapting multi-axial. PCT/IN2009/000607, 2010.
  • D.A. Hughes and N. Hansen, Microstructure and strength of nickel at large strains. Acta Mater. 48 (2000), pp. 2985–3004.
  • D.A. Hughes, Q. Liu, D.C. Chrzan, and N. Hansen, Scaling of microstructural parameters: misorientations of deformation induced boundaries. Acta Mater. 45 (1997), pp. 105–112.
  • Q.Z. Chen, A.H.W. Ngan, and B.J. Duggan, Microstructure evolution in an interstitial-free steel during cold rolling at low strain levels. Proc. R. Society A: Math., Phy. Eng. Sci 459 (2003), pp. 1661–1685.
  • B.L. Li, A. Godfrey, Q.C. Meng, Q. Liu, and N. Hansen, Microstructural evolution of IF-steel during cold rolling. Scr. Mater 50 (2004), pp. 879–883.
  • S.K. Mishra, P. Pant, K. Narasimhan, A.D. Rollett, and I. Samajdar, On the widths of orientation gradient zones adjacent to grain boundaries. Scr. Mater 61 (2009), pp. 273–276.
  • L.S. Tóth, Y. Estrin, R. Lapovok, and C. Gu, A model of grain fragmentation based on lattice curvature. Acta Mater. 58 (2010), pp. 1782–1794.
  • A.K. Singh, D.K. Chouhan, B. Bhattacharya, and S. Biswas, High strength-ductility combination by quenching and partitioning of a low carbon microalloyed dual-phase steel. Mater. Sci. Eng. A 870 (2023), pp. 144854.
  • V. Schlippenbach, F. Emren, and K. Locke, Investigation of the development of the cold rolling texture in deep drawing steels by ODF-analysis. Acta Mater. 34 (1986), pp. 1289–1301.
  • M.Z. Quadir and B.J. Duggan, A microstructural study of the origins of γ recrystallization textures in 75% warm rolled IF steel. Acta Mater. 54 (2006), pp. 4337–4350.
  • D. Daniel and J.J. Jonas, Measurement and prediction of plastic anisotropy in deep-drawing steels. Metall. Trans A 21 (1990), pp. 331–343.
  • T. Clausmeyer, G. Gerstein, S. Bargmann, B. Svendsen, A.H. Van Den Boogaard, and B. Zillmann, Experimental characterization of microstructure development during loading path changes in bcc sheet steels. J Mater. Sci 48 (2013), pp. 674–689.
  • J.Y. Kang, B. Bacroix, H. Réglé, K.H. Oh, and H.C. Lee, Effect of deformation mode and grain orientation on misorientation development in a body-centered cubic steel. Acta Mater. 55 (2007), pp. 4935–4946.
  • K. Zhang, I.V. Alexandrov, A.R. Kilmametov, R.Z. Valiev, and K. Lu, The crystallite-size dependence of structural parameters in pure ultrafine-grained copper. J. Phys. D: Appl. Phys 30 (1997), pp. 3008–3015.
  • C.N. Tome and R.A. Lebensohn. Manual for code visco-plastic self consistent (VPSC). version 7d, Los Alamos Labs, 2012.
  • ASTM Standard E9-09, Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature, Annual Book of ASTM Standards, 2012, pp. 92–100.
  • A. Kundu and D.P. Field, Geometrically necessary dislocation density evolution in interstitial free steel at small plastic strains. Metall. Mater. Trans. A 49 (2018), pp. 3274–3282.
  • B. Beausir and J.J. Fundenberger. ATEX software, University of Lorraine – Metz, 2017, http://www.atex-software.eu/.
  • G.K. Williamson and R.E. Smallman, III, Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum. Philos. Mag 1 (1956), pp. 34–46.
  • D.K. Chouhan, S. Biswas, A.K. Singh, and A.J. Shukla, High tensile strength-ductility combination in cold multiaxial plane-strain forged and rolled nanostructured Titanium. Materialia 11 (2020), pp. 100698.
  • R.B. Singh, N.K. Mukhopadhyay, G.V.S. Sastry, and R. Manna, Development of high-strength bulk ultrafine-grained low carbon steel produced by equal-channel angular pressing. Metall. Mater. Trans. A 48 (2017), pp. 5449–5466.
  • A. Molinari, G.R. Canova, and S. Ahzi, A self consistent approach of the large deformation polycrystal viscoplasticity. Acta Metall. 35 (1987), pp. 2983–2994.
  • A. Molinari and L.S. Tóth, Tuning a self consistent viscoplastic model by finite element results-I. modeling. Acta Metall. Mater 42 (1994), pp. 2453–2458.
  • J.W. Hutchinson, Bounds and self-consistent estimates for creep of polycrystalline materials. Proc. R. Soc. London, A Math. Phys. Sci 348 (1976), pp. 101–127.
  • S. Takajo, C.N. Tomé, S.C. Vogel, and I.J. Beyerlein, Texture simulation of a severely cold rolled low carbon steel using polycrystal modeling. Int. J. Plast 109 (2018), pp. 137–152.
  • J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. A Math. Phys. Eng. Sci 241 (1957), pp. 376–396.
  • C.S. White, C.A. Bronkhorst, and L. Anand, An improved isotropic kinematic hardening model for moderate deformation metal plasticity. J. Mech. Mater 10 (1990), pp. 127–147.
  • A. Patra, T. Zhu, and D.L. McDowell, Constitutive equations for modeling non-Schmid effects in single crystal bcc-Fe at low and ambient temperatures. Int. J. Plast 59 (2014), pp. 1–14.
  • M. Knezevic, I.J. Beyerlein, M.L. Lovato, C.N. Tomé, A.W. Richards, and R.J. McCabe, A strain-rate and temperature dependent constitutive model for BCC metals incorporating non-Schmid effects: application to tantalum-tungsten alloys. Int. J. Plast 62 (2014), pp. 72–92.
  • D. Orlov, A. Pougis, R. Lapovok, L.S. Toth, I.B. Timokhina, P.D. Hodgson, A. Haldar, and D. Bhattacharjee, Asymmetric rolling of interstitial-free steel using differential roll diameters. Part I: mechanical properties and deformation textures. Metall. Mater. Trans. A 44 (2013), pp. 4346–4359.
  • L.S. Tóth, J.J. Jonas, D. Daniel, and R.K. Ray, Development of ferrite rolling textures in low- and extra low-carbon steels. Metall. Trans. A 21 (1990), pp. 2985–3000.
  • P. Ghosh, R.K. Ray, B. Bhattacharya, and S. Bhargava, Precipitation and texture formation in two cold rolled and batch annealed interstitial-free high strength steels. Scr. Mater 55 (2006), pp. 271–274.
  • P. Ghosh, B. Bhattacharya, and R.K. Ray, Comparative study of precipitation behavior and texture formation in cold rolled-batch annealed and cold rolled-continuous annealed interstitial free high strength steels. Scr. Mater 56 (2007), pp. 657–660.
  • L.S. Toth, S. Biswas, C. Gu, and B. Beausir, Notes on representing grain size distributions obtained by electron backscatter diffraction. Mater. Charact 84 (2013), pp. 67–71.
  • S. Biswas, D.S. Singh, B. Beausir, L.S. Toth, and S. Suwas, Thermal response on the microstructure and texture of ECAP and cold-rolled pure magnesium. Metall. Mater. Trans. A 46 (2015), pp. 2598–2613.
  • P.C. Gautam and S. Biswas, On the possibility to reduce ECAP deformation temperature in magnesium: deformation behaviour, dynamic recrystallization and mechanical properties. Mat. Sci. Eng. A 812 (2021), pp. 141103.
  • H. Gao and Y. Huang, Geometrically necessary dislocation and size-dependent plasticity. Scr. Mater 48 (2013), pp. 113–117.
  • G.I. Taylor, Plastic strain in metals. J. Institute of Metals 62 (1938), pp. 307–325.
  • F.J. Humphreys and M. Hatherly. Recrystallization and related annealing phenomenon, Elsevier. ISBN: 9780080441641, 2004, pp. 1–605.
  • D. Raabe, Z. Zhao, and W. Mao, On the dependence of in-grain subdivision and deformation texture of aluminum on grain interaction. Acta Mater. 50 (2002), pp. 4379–4394.
  • D. Raabe, Z. Zhao, S.J. Park, and F. Roters, Theory of orientation gradients in plastically strained crystals. Acta Mater. 50 (2002), pp. 421–440.
  • J.W. Christian, Some surprising features of the plastic deformation of body-centered cubic metals and alloys. Metall. Trans. A 14 (1983), pp. 1237–1256.
  • D. Hull and D.J. Bacon. Introduction to Dislocations, Elsevier. ISBN: 978-0-08-096672-4, 2011, pp. 118–124.
  • C. Marichal, H. Van Swygenhoven, S. Van Petegem, and C. Borca, {110} slip with {112} slip traces in bcc tungsten. Sci. Rep. 3 (2013), pp. 1–7.
  • S.L. Frederiksen and K.W. Jacobsen, Density functional theory studies of screw dislocation core structures in bcc metals. Philos. Mag 83 (2003), pp. 365–375.
  • D.K. Chouhan, A.K. Singh, S. Biswas, and C. Mondal, On the strain-hardening behavior and twin-induced grain refinement of CP-Ti under ambient temperature compression. Metall. Mater. Trans. A 50 (2019), pp. 2169–2188.
  • T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci 60 (2014), pp. 130–207.
  • M.J. Young, S.K. Choi, and P.F. Thomson, The effect of latent hardening on the texture of 3004 aluminum deformed in plane strain, predicted by an explicit dynamic finite element analysis. J. ASTM Int 3 (2006), pp. 1–14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.