146
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Evaluation of disclination Frank vector in ridge kink microstructure

, , , &
Pages 321-342 | Received 13 Sep 2023, Accepted 21 Dec 2023, Published online: 07 Jan 2024

References

  • V.V. Kaminskii, E. Abe, Y. Kawamura, L.M. Dorogin, and A.E. Romanov, Kinking in LPSO Mg-Zn-Y alloys and other layered materials. Rev. Adv. Mater. Technol. 4(2) (2022), pp. 15–31.
  • L. Benabou, Finite strain analysis of wood species under compressive failure due to kinking. Int. J. Solids Struct. 49(3–4) (2012), pp. 408–419.
  • M.S. Paterson and L.E. Weiss, Experimental folding in rocks. Nature 195(4846) (1962), pp. 1046–1048.
  • J. Kim, S. Sandlobes, and D. Raabe, On the room temperature deformation mechanisms of a Mg-Y-Zn alloy with long-period-stacking ordered structures. Acta Mater. 82 (2015), pp. 414–423.
  • M.W. Barsoum, L. Farber, and T. El-Raghy, Dislocations, kink bands, and room-temperature plasticity of Ti3SiC2. Metall. Mater. Trans. A 30(7) (1999), pp. 1727–1738.
  • T. Schaden, F.D. Fischer, and H. Clemens, Numerical modelling of kinking in lamellar γ-TiAl based alloys. Adv. Eng. Mater. 8(7) (2006), pp. 1109–1113.
  • T. Nizolek, N.A. Mara, I.J. Beyerlein, J.T. Avallone, and T.M. Pollock, Enhanced plasticity via kinking in cubic metallic nanolaminates. Adv. Eng. Mater. 17(6) (2014), pp. 781–785.
  • R. Racek and G. Lesoult, Ripening of Sn-Cd eutectic microstructures. J. Cryst. Growth 16(3) (1972), pp. 223–226.
  • Z. Liu, Q. Zheng, and J.Z. Liu, Stripe kink microstructures formed in mechanical peeling of highly oriented pyrolytic graphite. Appl. Phys. Lett. 96(20) (2010), pp. 201909.
  • M.A. Wadee, G. Hunt, and M. Peletier, Kink band instability in layered structures. J. Mech. Phys. Solids 52(5) (2004), pp. 1071–1091.
  • Y. Kawamura, K. Hayashi, A. Inoue, and T. Masumoto, Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa. Mater. Trans. 42(7) (2001), pp. 1172–1176.
  • M. Yamasaki, T. Anan, S. Yoshimoto, and Y. Kawamura, Mechanical properties of warm-extruded Mg-Zn-Gd alloy with coherent 14H long periodic stacking ordered structure precipitate. Scr. Mater. 53 (2005), pp. 799–803.
  • M. Yamasaki, K. Nyu, and Y. Kawamura, Corrosion behavior of rapidly solidified Mg-Zn-Y alloy ribbons. Mater. Sci. Forum 419–422(2) (2003), pp. 937–942.
  • A. Inoue, Y. Kawamura, M. Masushita, K. Hayashi, and J. Koike, Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg-Zn-Y system. J. Mater. Res. 16(7) (2001), pp. 1894–1900.
  • M. Yamasaki, M. Matsushita, K. Hagihara, H. Izuno, E. Abe, and Y. Kawamura, Highly ordered 10-type long-period stacking order phase in a Mg-Zn-Y ternary alloy. Scr. Mater. 78–79 (2014), pp. 13–16.
  • E. Abe, Y. Kawamura, K. Hayashi, and A. Inoue, Long-period ordered structure in a high-strength nanocrystalline Mg-1 at% Zn-2 at% Y alloy studied by atomic-resolution Z-contrast STEM. Acta Mater. 50(15) (2002), pp. 3845–3857.
  • D.H. Ping, K. Hono, Y. Kawamura, and A. Inoue, Local chemistry of a nanocrystalline high-strength Mg 97 Y 2 Zn 1 alloy. Philos. Mag. Lett. 82(10) (2002), pp. 543–551.
  • S. Yoshimoto, M. Yamasaki, and Y. Kawamura, Microstructure and mechanical properties of extruded Mg-Zn-Y alloys with 14H long period ordered structure. Mater. Trans. 47(4) (2006), pp. 959–965.
  • K. Hagihara, M. Yamasaki, Y. Kawamura, and T. Nakano, Strengthening of Mg-based long-period stacking ordered (LPSO) phase with deformation kink bands. Mater. Sci. Eng. A 763 (2019), pp. 138163.
  • K. Hagihara, Z. Li, M. Yamasaki, Y. Kawamura, and T. Nakano, Strengthening mechanism acting in extruded Mg-based long-period stacking ordered (LPSO)-phase alloys. Acta Mater. 163 (2019), pp. 226–239.
  • K. Hagihara, T. Tokunaga, K. Nishiura, S. Uemichi, and S. Ohsawa, Control of kink-band formation in mille-feuille structured Al/Al2Cu eutectic alloys. Mater. Sci. Eng. A 825 (2021), pp. 141849.
  • E. Orowan, A type of plastic deformation new in Metals, Vol. 149, Nature Publishing Group, Cambridge, 1942, pp. 643–644.
  • D.C. Jillson, An experimental survey of deformation and Annealing Processes in zinc. J. Met. 188 (1950), pp. 1009–1018.
  • J.J. Gilman, Mechanism of ortho kink-band formation in compressed zinc monocrystals. J. Met. 6 (1954), pp. 621–629.
  • J.B. Hess and C.S. Barret, Structure and nature of kink bands in zinc. Met. Trans. 185 (1949), pp. 599–606.
  • T. Tokuzumi, M. Mitsuhara, S. Yamasaki, T. Inamura, T. Fujii, and H. Nakashima, Role of disclinations around kink bands on deformation behavior in Mg-Zn-Y alloys with a long-period stacking ordered phase. Acta Mater. 248 (2023), pp. 118785.
  • T. Inamura, Geometry of kink microstructure analysed by rank-1 connection. Acta Mater. 173 (2019), pp. 270–280.
  • F.R.N. Nabarro, Physics of strength and plasticity, The MIT Press, Cambridge, MA, 1969, pp. 97.
  • V. Volterra, Sur I’équilibre des corps élastiques multiplement connexes. Ann. Sci. Ec. Norm. Super. 24 (1907), pp. 401–517.
  • A.E. Romanov and V.I. Vladimirov, Disclinations in solids. Phys. Stat. Sol. (a) 78(11) (1983), pp. 11–34.
  • A.E. Romanov and A.L. Kolesnikova, Application of disclination concept to solid structures. Prog. Mater. Sci. 54 (2009), pp. 740–769.
  • R. De Wit, Continual theory of disclinations, Mir, Moskow, 1997.
  • S.H. Pranoto, S. Yokota, S. Kobayashi, and R. Tarumi, Mechanics and energetics of kink deformation studied by nonlinear continuum mechanics based on differential geometry. Mater. Trans. 64(9) (2023), pp. 2261–2269.
  • A.A. Nazarov and A.E. Romanov, On the average misorientation of general tilt boundaries. Philos. Mag. Lett. 60 (1989), pp. 187–193.
  • M. Murayama, J.M. Howe, H. Hidaka, and S. Takaki, Atomic-level observation of disclination dipoles in mechanically milled, nanocrystalline Fe. Science 295 (2002), pp. 2433–2435.
  • A. Yavari and A. Goriely, Riemann-Cartan geometry of nonlinear dislocation mechanics. Arch. Ration. Mech. Anal. 205 (2012), pp. 59–118.
  • A. Yavari and A. Goriely, Riemann-Cartan geometry of nonlinear disclination mechanics. Math. Mech. Solids. 18(1) (2011), pp. 91–102.
  • M.O. Katanaev, Geometric theory of defects. UFN 175 (2005), pp. 705–733 (in Russian).
  • S. Kobayashi and R. Tarumi, Geometrical modelling and numerical analysis of dislocation mechanics. ArXiv:2205.02443v2 (2022).
  • S. Kobayashi and R. Tarumi, Geometrical modeling and numerical analysis of edge dislocation. Bull. JSME 87(896) (2021), pp. 21–00031.
  • S. Kobayashi and R. Tarumi, Geometrical modeling and numerical analysis of screw dislocation. Bull. JSME 87(894) (2021), pp. 20–00409.
  • S. Kobayashi and R. Tarumi, Dislocation-based modeling and numerical analysis of kink deformations on the basis of linear elasticity. Mater. Trans. 61(5) (2020), pp. 862–869.
  • J.F. Nye, Some geometrical relations in dislocated crystals. Acta Metall. 1 (1953), pp. 153–162.
  • K. Kondo, Non-Riemannian geometry of imperfect crystals from a macroscopic viewpoint. Gakujutsu Bunken Fukyo-Kai 1 (1955), pp. 6–17.
  • L.W. Tu, Differential geometry, Springer International Publishing, New York, 2017, pp. 112–113.
  • D. Hull and D.J. Bacon, Introduction to dislocations, Butterworth Heinemann, 4th ed., Oxford, 2001, pp. 161.
  • J.C.M. Li, Disclination model of high angle grain boundaries. Surf. Sci. 31 (1972), pp. 12–26.
  • V.Y. Gertsman, A.A. Nazarov, A.E. Romanov, R.Z. Valiev, and V.I. Vladimirov, Disclination-structural unit model of grain boundaries. Philos. Mag. A 59 (1989), pp. 1113–1118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.