76
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Ab-initio calculation of magnetic properties of doped methylammonium lead chloride

&
Pages 406-419 | Received 20 Jul 2023, Accepted 27 Dec 2023, Published online: 10 Jan 2024

References

  • M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, and H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskite. Science 338 (2012), pp. 643–647.
  • Y. Chen, H.T. Yi, R. Haroldson, Y.N. Gartstein, Y.I. Rodionov, K.S. Tikhonov, A. Zakhidov, X.Y. Zhu, and V. Podzorov, Extended carrier lifetimes diffusion in hybrid perovskites revealed by hall effect and phot-conductivity measurement. Nat. Commun 7 (2016), pp. 12253.
  • L. Yue, B. Yan, M. Attridge, and Z. Wang, Light absorption in perovskite solar cell: fundamental and plasmonic enhancement infrared band absorption. Sol. Ener 124 (2016), pp. 143–152.
  • C. Motta, F.E. Mellouhi, and S. Sanvito, Charge carrier mobility in hybrid halide perovskites. Sci. Rep 5 (2015), pp. 12746.
  • T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287 (2000), pp. 1019–1022.
  • P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M.O. Guillen, B. Johansson, and G.A. Gehring, Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat. Mat 2 (2003), pp. 673–677.
  • H.S. Hsu, J.C.A. Huang, Y.H. Huang, Y.F. Liao, M.Z. Lin, C.H. Lee, J.F. Lee, S.F. Chen, L.Y. Lai, and C.P. Liu, Evidence of oxygen vacancy enhanced room-temperature ferromagnetism in Co doped ZnO. Appl. Phys. Lett 88 (2006), pp. 242507.
  • A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, and C.N.R. Rao, Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B 74 (2006), pp. 161306.
  • D. Sanyal, M. Chakrabarti, T.K. Roy, and A. Chakrabarti, The origin of ferromagnetism and defect-magnetization correlation in nanocrystalline ZnO. Phys. Lett. A 371 (2007), pp. 482–485.
  • Q. Hou, X. Jia, Z. Xu, C. Zhao, and L. Qu, Effects of Li doping and point defect on the magnetism of ZnO. Cera. Inter 44 (2018), pp. 1376–1383.
  • S. Roy, H. Luitel, and D. Sanyal, Origin of ferromagnetism in Cu doped rutile TiO2 e an ab-initio approach. Comp. Cond. Matter 13 (2017), pp. 127–130.
  • S. Roy, H. Luitel, and D. Sanyal, First-principles analysis of ferromagnetic properties of molybdenum doped wide-band-gap oxides. Phil. Mag. Lett 99 (2019), pp. 326–337.
  • X.F. Jia, Q.Y. Hou, Z.C. Xu, and L.F. Qu, Effect of Ce doping on the magnetic and optical properties of ZnO by the first principle. J. Mag. Mag. Mat 465 (2018), pp. 128–135.
  • C. Li and Q. Hou, Effects of Y doping with point defects on the ferromagnetic properties of ZnO(0001)-Zn polar surface. Appl. Surf. Sci 459 (2018), pp. 393–396.
  • H. Luitel, P. Chettri, A. Tiwari, and D. Sanyal, Experimental and first principle study of room temperature ferromagnetism in carbon-doped rutile TiO2. Mater. Res. Bull 110 (2019), pp. 13–17.
  • H. Luitel and D. Sanyal, Ferromagnetism in p-block-element doped ZnO: An ab-initio approach. Comp. Cond. Matter 19 (2019), pp. e00376.
  • H. Luitel and D. Sanyal, Ab-initio calculation of magnetic properties in B, Al, C, Si, N, P and As-doped rutile TiO2. Int. J. Mod. Phys. B 31 (2017), pp. 1750227.
  • S.A. Chambers, T.C. Droubay, C.M. Wang, K.M. Rosso, S.M. Heald, D.A. Schwartz, K.R. Kittilstved, and D.R. Gamelin, Ferromagnetism in oxide semiconductors. Mat. Today 9 (2006), pp. 28–35.
  • H. Luitel, S. Moshat, and D. Sanyal, Ferromagnetic ordering in cobalt doped methylammonium lead bromide: An ab-initio study. Comp. Cond. Matter 22 (2020), pp. e00444.
  • S. Sil, H. Luitel, M. Chakrabarty, P.P. Ray, J. Dhar, B. Bandyopadhyay, and D. Sanyal, Defect induced room temperature ferromagnetism in methylammonium lead iodide perovskite. Phys. Lett. A 384 (2020), pp. 126278.
  • S. Moshat, H. Luitel, and D. Sanyal, Half-metallic ferromagnetism in molybdenum doped methylammonium lead halides (MAPbX3, X = Cl, Br, I) system: first-principles study. J. Mag. Mag. Mater 519 (2021), pp. 167463.
  • S. Moshat and D. Sanyal, Ab-initio studies of electronic and magnetic properties of titanium doped methylammonium lead halides. Comp. Cond. Mat 28 (2021), pp. e00570.
  • L. Wang, K. Wang, G. Xiao, Q. Zeng, and B. Zou, Pressure-induced structural evolution and band gap shifts of organometal halide perovskite-based methylammonium lead chloride. J. Phys. Chem. C 7 (2016), pp. 5273–5279.
  • J.F. Wagner, Transparent optoelectronics. Science 300 (2003), pp. 1245–1246.
  • Z. Xu and B.M. Sadler, Ultraviolet communications: potential and state-of-the-art. IEEE Commun. Mag 46 (2008), pp. 67–73.
  • G.M. Bernard, A. Goyal, M. Miskolzie, R. Mckay, Q. Wu, R.E. Wasylishen, and V.K. Michaelis, Methylammonium lead chloride: a sensitive sample for an accurate NMR thermometer. J. Mag. Res 283 (2017), pp. 14–21.
  • G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47 (1993), pp. 558–561.
  • G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci 6 (1996), pp. 15–50.
  • G. Kresse and J. Hafner, Ab-initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49 (1994), pp. 14251–14269.
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett 77 (1996), pp. 3865–3868.
  • W. Kohn and L.J. Sham, Self-Consistent equations including exchange and correlation effects. Phys. Rev 140 (1965), pp. A1133–A1138.
  • A. Poglitsch and D. Weber, Dynamic disorder in methylammonium trihalogenoplumbates (II) by observed millimeter-wave spectroscopy. J. Chem. Phys 87 (1987), pp. 6373–6378.
  • Z. Zhu, Q. Sun, Z. Zhang, J. Dai, G. Xing, S. Li, X. Huang, and W. Huang, Metal halide perovskites: stability and sensing-ability. J. Mat. Chem. C 6 (2018), pp. 10121–10137.
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13 (1976), pp. 5188–5192.
  • Y. Tian, Y. Li, M. He, I.A. Putra, H. Peng, B. Yao, S.A. Cheong, and T. Wu, Bound magnetic polarons and p-d exchange interaction in ferromagnetic insulating Cu-doped ZnO. Appl. Phys. Lett 98 (2011), pp. 162503.
  • L.V.C. Assali, W.V.M. Machado, and J.F. Justo, Structural and electronic properties of 3d transition metal impurities in silicon carbide. Phys. Rev. B 69 (2004), pp. 155212.
  • C.G.V. de Walle and J. Neugebauer, First-principles calculations for defects and impurities: applications to III- nitrides. J. Appl. Phys 95 (2004), pp. 3851–3879.
  • X. Bai, L. Meng, N. Zhou, J. Zheng, X.-F. Yu, P.K. Chu, J.-J. Xiao, B. Zou, and J. Li, In situ preparation of Mn-doped perovskite nanocrystalline films and application to white light emitting devices. J. Coll. Inter. Sci 606 (2022), pp. 1163–1169.
  • Y. Zhou, J. Chen, O.M. Bakr, and H.-T. Sun, Metal doped lead halide perovskite: synthesis, properties and optoelectronic applications. Chem. Mater 30 (2018), pp. 6589–6613.
  • K. Sato, P.H. Dederics, and H.K. Yoshida, Curie temperature of III-V diluted magnetic semiconductors calculated from first principles. Europhys. Lett 61 (2003), pp. 403–408.
  • R.F.W. Bader, A quantum theory of molecular structure and its applications. Chem. Rev 91 (1991), pp. 5188–5192.
  • J. Zhao, X. Wang, Y. Pan, Y. Xu, Y. Li, J. Chen, J. Wu, Q. Li, Z. Zhao, X. Zhang, J. Akram, B.S. Bae, H. Yang, and W. Lei, Photo-diode based on CH3NH3PbCl3 perovskite single crystals by epitaxial growth for ultraviolet photo-detection. Front. Phys 9 (2021), pp. 659782.
  • L. Kronik, M. Jain, and J.R. Chelikowski, Electronic structure and spin polarization of MnxGa1-xN. Phys. Rev. B 66 (2002), pp. 041203 (R).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.