109
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Numerical study to compare effective elastic, piezoelectric, and thermal properties of a gyroid triply periodic minimal surface and 0–3 piezoelectric composites with lead-free Ba(Ti0.8Zr0.2)O3 - x(Ba0.7Ca0.3)TiO3 reinforcement

, , , , , & show all
Pages 364-388 | Received 13 Jul 2023, Accepted 03 Jan 2024, Published online: 21 Jan 2024

References

  • R. Fries and A.J. Moulson, Fabrication and properties of an anisotropic PZT/polymer 0–3 composite. J. Mater. Sci.: Mater. Electron. 5(4) (1994), pp. 238–243. doi:10.1007/BF00186193
  • N.W. Hagood and A.A. Bent. Development of piezoelectric fiber composites for structural actuation. (1993).
  • S.R. Anton and H.A. Sodano, A review of power harvesting using piezoelectric materials (2003-2006). Smart Mater. Struct. 16(3) (2007), pp. R1–R1. doi:10.1088/0964-1726/16/3/R01
  • R.E. Newnham, D.P. Skinner, and L.E. Cross, Connectivity and piezoelectric-pyroelectric composites. Mater. Res. Bull. 13(5) (1978), pp. 525–536. doi:10.1016/0025-5408(78)90161-7
  • K.C. Cheng, H.L.W. Chan, C.L. Choy, Q. Yin, H. Luo, and Z. Yin, Single crystal PMN-0.33PT/epoxy 1-3 composites for ultrasonic transducer applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(9) (2003), pp. 1177–1183. doi:10.1109/TUFFC.2003.1235328
  • A.V. Krivoruchko and V.Y. Topolov, On the remarkable performance of novel 2-2-type composites based on [0 1 1] poled 0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO 3 single crystals. J. Phys. D: Appl. Phys. 40(22) (2007), pp. 7113–7120. doi:10.1088/0022-3727/40/22/038
  • T. Ritter, Single crystal pzn/pt-polymer composites for ultrasound transducer applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(4) (2000), pp. 792–800. doi:10.1109/58.852060
  • V.Y. Topolov, C.R. Bowen, S.V. Glushanin, and A.E. Panich, Electromechanical coupling in the novel 2-2 parallel-connected PMN-0.33PT single-domain crystal/polymer composite. Ferroelectr 393(1) (2009), pp. 27–37. doi:10.1080/00150190903412689
  • F. Wang, F. Wang, C. He, Y. Tang, X. Zhao, and H. Luo, Single-crystal 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3/epoxy 1-3 piezoelectric composites prepared by the lamination technique. Mater. Chem. Phys. 105(2-3) (2007), pp. 273–277. doi:10.1016/j.matchemphys.2007.04.060
  • A. Safari, Development of piezoelectric composites for transducers. J. Phys. III France 4(7) (1994), pp. 1129–1149.
  • N. Jayasundere and B.V. Smith, Dielectric constant for binary piezoelectric 0-3 composites. J. Appl. Phys. 73(5) (1993), pp. 2462–2466. doi:10.1063/1.354057
  • J.A. Mitchell and J.N. Reddy, A study of embedded piezoelectric layers in composite cylinders. J. Appl. Mech. 62(1) (1995), pp. 166–173. doi:10.1115/1.2895898
  • E.C. Nelli Silva, J.S. Ono Fonseca, and N. Kikuchi, Optimal design of periodic piezo-composites. Comput. Methods. Appl. Mech. Eng. 159(1-2) (1998), pp. 49–77. doi:10.1016/S0045-7825(98)80103-5
  • M. Wilm, S. Ballandras, V. Laude, and T. Pastureaud, A full 3D plane-wave-expansion model for 1-3 piezoelectric composite structures. J. Acoust. Soc. Am. 112(3) (2002), pp. 943–952. doi:10.1121/1.1496081
  • V.J. Challis, A.P. Roberts, and A.H. Wilkins, Design of three dimensional isotropic microstructures for maximized stiffness and conductivity. Int. J. Solids Struct. 45(14-15) (2008), pp. 4130–4146. doi:10.1016/j.ijsolstr.2008.02.025
  • W.T. Góźdź and R. Hołyst, Triply periodic surfaces and multiply continuous structures from the Landau model of microemulsions. Physical Review E – Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 54(5) (1996), pp. 5012–5027. doi:10.1103/PhysRevE.54.5012
  • L. Han and S. Che, An overview of materials with triply periodic minimal surfaces and related geometry: From biological structures to self-assembled systems. Adv. Mater. 30(17) (2018), pp. 1705708–1705708. doi:10.1002/adma.201705708
  • S. Torquato and A. Donev, Minimal surfaces and multifunctionality. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 460(2047) (2004), pp. 1849–1856. doi:10.1098/rspa.2003.1269
  • S. Torquato, S. Hyun, and A. Donev, Multifunctional composites: optimizing microstructures for simultaneous transport of heat and electricity. Phys. Rev. Lett. 89(26) (2002), pp. 266601–266601. doi:10.1103/PhysRevLett.89.266601
  • O. Al-Ketan and R.K. Abu Al-Rub, Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices. Adv. Eng. Mater. 21(10) (2019), pp. 1900524–1900524. doi:10.1002/adem.201900524
  • O. Al-Ketan and R.K. Abu Al-Rub, MSLattice: A free software for generating uniform and graded lattices based on triply periodic minimal surfaces. Mater. Des. Process. Commun. 3(6) (2021), pp. e205–e205. doi:10.1002/mdp2.205
  • D.W. Abueidda, R.K. Abu Al-Rub, A. S. Dalaq, D-W. Lee, K.A. Khan, and I. Jasiuk, Effective conductivities and elastic moduli of novel foams with triply periodic minimal surfaces. Mech. Mater. 95 (2016), pp. 102–115. doi:10.1016/j.mechmat.2016.01.004
  • Z. Chen, Y.M. Xie, X. Wu, Z. Wang, Q. Li, and S. Zhou, On hybrid cellular materials based on triply periodic minimal surfaces with extreme mechanical properties. Mater. Des. 183 (2019), pp. 108109–108109. doi:10.1016/j.matdes.2019.108109
  • A.S. Dalaq, D.W. Abueidda, R.K. Abu Al-Rub, and I.M. Jasiuk, Finite element prediction of effective elastic properties of interpenetrating phase composites with architectured 3D sheet reinforcements. Int. J. Solids Struct. 83 (2016), pp. 169–182. doi:10.1016/j.ijsolstr.2016.01.011
  • S.C. Kapfer, S.T. Hyde, K. Mecke, C.H. Arns, and G.E. Schröder-Turk, Minimal surface scaffold designs for tissue engineering. Biomaterials 32(29) (2011), pp. 6875–6882. doi:10.1016/j.biomaterials.2011.06.012
  • H. Xu, Y.M. Xie, R. Chan, and S. Zhou, Piezoelectric properties of triply periodic minimum surface structures. Compos. Sci. Technol. 200 (2020), pp. 108417. doi:10.1016/j.compscitech.2020.108417
  • R. Vaish, Piezoelectric and pyroelectric materials selection. Int. J. Appl. Ceram. Technol. 10(4) (2013), pp. 682–689. doi:10.1111/j.1744-7402.2012.02765.x
  • G. Vats and R. Vaish, Piezoelectric material selection for transducers under fuzzy environment. J. Adv. Ceram. 2(2) (2013), pp. 141–148. doi:10.1007/s40145-013-0053-1
  • G. Vats and R. Vaish, Selection of lead-free piezoelectric ceramics. Int. J. Appl. Ceram. Technol. 11(5) (2014), pp. 883–893. doi:10.1111/ijac.12063
  • S. Priya, H-C. Song, Y. Zhou, R. Varghese, A. Chopra, S-G. Kim, I. Kanno, L. Wu, D.S. Ha, and J. Ryu, et al., A review on piezoelectric energy harvesting: materials, methods, and circuits. Energy Harvesting and Systems 4(1) (2017), pp. 3–39. doi:10.1515/ehs-2016-0028
  • P.K. Panda and B. Sahoo, PZT to lead free piezo ceramics: A review. Ferroelectrics 474(1) (2015), pp. 128–143. doi:10.1080/00150193.2015.997146
  • W. Liu and X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103(25) (2009), pp. 257602. doi:10.1103/PhysRevLett.103.257602
  • Y. Zhang, M. Xie, J. Roscow, and C. Bowen, Dielectric and piezoelectric properties of porous lead-free 0.5Ba(Ca0.8Zr0.2)O3-0.5(Ba0.7Ca 0.3)TiO3 ceramics. Mater. Res. Bull. 112 (2019), pp. 426–431. doi:10.1016/j.materresbull.2018.08.031
  • K.K. Sappati and S. Bhadra, Piezoelectric polymer and paper substrates: A review. Sensors 18(11) (2018. doi:10.3390/s18113605
  • R.W. Whatmore, Pyroelectric devices and materials. Rep. Prog. Phys. 49(12) (1986), pp. 1335–1386. doi:10.1088/0034-4885/49/12/002
  • F.-C. Chiu and Y.-J. Chen, Evaluation of thermal, mechanical, and electrical properties of PVDF/GNP binary and PVDF/PMMA/GNP ternary nanocomposites. Compos. – A: Appl. Sci. Manuf. 68 (2015), pp. 62–71. doi:10.1016/j.compositesa.2014.09.019
  • W. Zhou, J. Zuo, and W. Ren, Thermal conductivity and dielectric properties of Al/PVDF composites. Compos. – A: Appl. Sci. Manuf. 43(4) (2012), pp. 658–664. doi:10.1016/j.compositesa.2011.11.024
  • C. Multiphysics. COMSOL Material Library®. Material Library User’s Guide, V5.3, 1998–2017. Version 5.3.
  • Y. Tian, S. Li, Y. Li, Y. Gong, X. Ji, S. Sun, and Q. Jing, Diversiform electrical and thermal expansion properties of (1 − x)Ba0.95Ca0.05Ti0.94Zr0.06O3–(x)Dy lead-free piezoelectric ceramics influenced by defect complexes. J. Mater. Sci. 53(16) (2018), pp. 11228–11241. doi:10.1007/s10853-018-2428-8
  • Y. He, Heat capacity, thermal conductivity, and thermal expansion of barium titanate-based ceramics. Thermochim. Acta 419(1) (2004), pp. 135–141. doi:10.1016/j.tca.2004.02.008
  • K.S. Srikanth, S. Patel, and R. Vaish, Functional cementitious composites for pyroelectric applications. J. Electron. Mater. 47(4) (2018), pp. 2378–2385. doi:10.1007/s11664-018-6071-6
  • S. Nemat-Nasser, M. Lori, and S.K. Datta, Micromechanics: overall properties of heterogeneous materials. J. Appl. Mech. 63(2) (1996), pp. 561–561. doi:10.1115/1.2788912
  • K.A. Brakke, The surface evolver. Exp. Math. 1(2) (1992), pp. 141–165. doi:10.1080/10586458.1992.10504253
  • N. Yang, Z. Quan, D. Zhang, and Y. Tian, Multi-morphology transition hybridization CAD design of minimal surface porous structures for use in tissue engineering. CAD Comput. Aided Des. 56 (2014), pp. 11–21. doi:10.1016/j.cad.2014.06.006
  • D.-J. Yoo, Computer-aided porous scaffold design for tissue engineering using triply periodic minimal surfaces. Int. J. Prec. Eng. Manuf. 12(1) (2011), pp. 61–71. doi:10.1007/s12541-011-0008-9
  • O. Al-Ketan and R.K. Abu Al-Rub, MSLattice: A free software for generating uniform and graded lattices based on triply periodic minimal surfaces. Mater. Des. Process. Commun. 3(6) (2021), pp. e205.
  • P. Gaudenzi, On the electromechanical response of active composite materials with piezoelectric inclusions. Computers and Structures 65(2) (1997), pp. 157–168. doi:10.1016/S0045-7949(96)00375-6
  • M. Melnykowycz, X. Kornmann, C. Huber, M. Barbezat, and A J. Brunner, Performance of integrated active fiber composites in fiber reinforced epoxy laminates. Smart Mater. Struct. 15(1) (2006), pp. 204–212. doi:10.1088/0964-1726/15/1/050
  • C. Poizat and M. Sester, Effective properties of composites with embedded piezoelectric fibres. Comput. Mater. Sci. 16(1-4) (1999), pp. 89–97. doi:10.1016/S0927-0256(99)00050-6
  • R. Guinovart-Díaz, J. Bravo-Castillero, R. Rodrıguez-Ramos, and F.J. Sabina, Closed-form expressions for the effective coefficients of fibre-reinforced composite with transversely isotropic constituents. I: elastic and hexagonal symmetry. J. Mech. Phys. Solids 49(7) (2001), pp. 1445–1462. doi:10.1016/S0022-5096(01)00005-9
  • F.J. Sabina, R. Rodrıguez-Ramos, J. Bravo-Castillero, and R. Guinovart-Dıaz, Closed-form expressions for the effective coefficients of a fibre-reinforced composite with transversely isotropic constituents. II: Piezoelectric and hexagonal symmetry. J. Mech. Phys. Solids 49(7) (2001), pp. 1463–1479. doi:10.1016/S0022-5096(01)00006-0
  • H. Berger, S. Kari, U. Gabbert, R. Rodriguez-Ramos, J. Bravo-Castillero, R. Guinovart-Diaz, F.J. Sabina, and G.A. Maugin, Unit cell models of piezoelectric fiber composites for numerical and analytical calculation of effective properties. Smart Mater. Struct. 15(2) (2006), pp. 451–458. doi:10.1088/0964-1726/15/2/026
  • S. Karmakar, R. Kiran, V. Singh Chauhan, and R. Vaish, Effect of porosity on energy harvesting performance of 0.5Ba(Ca0.8Zr0.2)O3 − 0.5(Ba0.7Ca0.3)TiO3 ceramics: A numerical study. Energy Technology 8(5) (2020), pp. 1901302. doi:10.1002/ente.201901302
  • R. Kiran, A. Kumar, V.S. Chauhan, R. Kumar, and R. Vaish, Finite element study on performance of piezoelectric bimorph cantilevers using porous/ceramic 0–3 polymer composites. J. Electron. Mater. 47(1) (2018), pp. 233–241. doi:10.1007/s11664-017-5751-y
  • N. Magouh, M. Dietze, H. Bakhti, C-H. Solterbeck, L. Azrar, and M. Es-Souni, Finite element analysis and EMA predictions of the dielectric and pyroelectric properties of 0-3 Pz59/PVDF-TrFE composites with experimental validation. Sens. Actuators, A 310 (2020), pp. 112073. doi:10.1016/j.sna.2020.112073
  • H.S. Tzou and R. Ye, Piezothermoelasticity and precision control of piezoelectric systems: Theory and finite element analysis. J. Vib. Acoust. 116(4) (1994), pp. 489–495. doi:10.1115/1.2930454
  • D. Singh, S. Sharma, S. Karmakar, R. Kumar, V.S. Chauhan, and R. Vaish, A finite element computational framework for enhanced photostrictive performance in 0–3 composites. Int. J. Mech. Mater. Des. 17(3) (2021), pp. 609–632. doi:10.1007/s10999-021-09550-0
  • P.M. Suquet, Elements of homogenization for inelastic solid mechanics, homogenization techniques for composite media. Lect. Notes Phys. 272(November) (1987), pp. 193–278. doi:10.1007/3-540-17616-0_15
  • Z. Xia, Y. Zhang, and F. Ellyin, A unified periodical boundary conditions for representative volume elements of composites and applications. Int. J. Solids Struct. 40(8) (2003), pp. 1907–1921. doi:10.1016/S0020-7683(03)00024-6
  • D.W. Abueidda, M. Bakir, R.K. Abu Al-Rub, J.S. Bergström, N.A. Sobh, and I. Jasiuk, Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures. Mater. Des. 122 (2017), pp. 255–267. doi:10.1016/j.matdes.2017.03.018
  • T. Gao, K. Liu, X. Wang, Z. Li, and Z. Wang, Elastic mechanical property hybridization of configuration-varying TPMS with geometric continuity. Mater. Des. 221 (2022), pp. 110995. doi:10.1016/j.matdes.2022.110995
  • Y. Zhang, M.-T. Hsieh, and L. Valdevit, Mechanical performance of 3D printed interpenetrating phase composites with spinodal topologies. Compos. Struct. 263 (2021), pp. 113693. doi:10.1016/j.compstruct.2021.113693
  • C. Bonatti and D. Mohr, Mechanical performance of additively-manufactured anisotropic and isotropic smooth shell-lattice materials: Simulations & experiments. J. Mech. Phys. Solids 122 (2019), pp. 1–26. doi:10.1016/j.jmps.2018.08.022
  • R. Liu, G. Yao, L. Sha, Z. Yu, P. Liang, C. Han, K. Zhu, L. Dong, Z. Xu, and J. Zhang, et al., Study on mechanical properties of polyurethane-enhanced triply periodic minimal composite structures inspired by rachis microstructure. Compos. Sci. Technol. 242 (2023), pp. 110197. doi:10.1016/j.compscitech.2023.110197
  • S. Yu, J. Sun, and J. Bai, Investigation of functionally graded TPMS structures fabricated by additive manufacturing. Mater. Des. 182 (2019), pp. 108021. doi:10.1016/j.matdes.2019.108021
  • S. Khaleghi, F.N. Dehnavi, M. Baghani, M. Safdari, K. Wang, and M. Baniassadi, On the directional elastic modulus of the TPMS structures and a novel hybridization method to control anisotropy. Mater. Des. 210 (2021), pp. 110074. doi:10.1016/j.matdes.2021.110074
  • N. Yang, M. Zhao, and H. Wei, Self-rotation-symmetry transformation for tuning anisotropy of single type lattice structures with minimal surfaces. Additive Manufacturing 78 (2023), pp. 103865. doi:10.1016/j.addma.2023.103865
  • D.W. Abueidda, A.S. Dalaq, R.K. Abu Al-Rub, and I. Jasiuk, Micromechanical finite element predictions of a reduced coefficient of thermal expansion for 3D periodic architectured interpenetrating phase composites. Compos. Struct. 133 (2015), pp. 85–97. doi:10.1016/j.compstruct.2015.06.082
  • O. Sigmund and S. Torquato, Composites with extremal thermal expansion coefficients. Appl. Phys. Lett. 69(21) (1996), pp. 3203–3205. doi:10.1063/1.117961
  • A.H. Muliana, A micromechanical model for predicting thermal properties and thermo-viscoelastic responses of functionally graded materials. Int. J. Solids Struct. 46(9) (2009), pp. 1911–1924. doi:10.1016/j.ijsolstr.2009.01.008
  • C.-X. Hu, H-J. Li, S-Y. Zhang, Y-S. Song, Numerical simulation on thermal expansion coefficient of 3D braided C/C composites. Rare Met. 33(1) (2014), pp. 99–106. doi:10.1007/s12598-013-0083-4
  • D.W. Abueidda, A.S. Dalaq, R.K. Abu Al-Rub, and H.A. Younes, Finite element predictions of effective multifunctional properties of interpenetrating phase composites with novel triply periodic solid shell architectured reinforcements. Int. J. Mech. Sci. 92 (2015), pp. 80–89. doi:10.1016/j.ijmecsci.2014.12.004
  • S. Li, D. Xiong, M. Liu, S. Bai, and X. Zhao, Thermophysical properties of SiC/Al composites with three dimensional interpenetrating network structure. Ceram. Int. 40(5) (2014), pp. 7539–7544. doi:10.1016/j.ceramint.2013.12.105

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.