939
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Review of recent process developments in the field of carbon dioxide (CO2) capture from power plants flue gases and the future perspectives

, &
Article: 2317137 | Received 08 Aug 2023, Accepted 06 Feb 2024, Published online: 02 Mar 2024

References

  • Alhassan, M., M. Auta, K. Abdulsalami, Jossey Sabo, and Musa Umaru. 2016. “CO2 Capture Using Amine-Impregnated Activated Carbon from Jatropha Curcas Shell.” British Journal of Applied Science & Technology 14: 1–11. https://doi.org/10.9734/BJAST/2016/24253.
  • Assen, Ayalew H., Youssef Belmabkhout, Karim Adil, Adil Lachehab, Hicham Hassoune, and Himanshu Aggarwal. 2021. “Advances on CO2 Storage. Synthetic Porous Solids, Mineralization and Alternative Solutions.” Chemical Engineering Journal 419: 129569. https://doi.org/10.1016/j.cej.2021.129569.
  • Ayittey, Foster Kofi, Agus Saptoro, Perumal Kumar, and Mee Kee Wong. 2021. “Energy-saving Process Configurations for Monoethanolamine-Based CO2 Capture System.” Asia-Pacific Journal of Chemical Engineering 16 (1): e2576. https://doi.org/10.1002/apj.2576.
  • Bahamon, Daniel, and Lourdes F. Vega. 2016. “Systematic Evaluation of Materials for Post-Combustion CO2 Capture in a Temperature Swing Adsorption Process.” Chemical Engineering Journal 284: 438–447. https://doi.org/10.1016/j.cej.2015.08.098.
  • Barbera, Elena, Andrea Mio, Alessandro Massi Pavan, Alberto Bertucco, and Maurizio Fermeglia. 2022. “Fuelling Power Plants by Natural Gas: An Analysis of Energy Efficiency, Economical Aspects and Environmental Footprint Based on Detailed Process Simulation of the Whole Carbon Capture and Storage System.” Energy Conversion and Management 252: 115072. https://doi.org/10.1016/j.enconman.2021.115072.
  • Bekun, Festus Victor, Andrew Adewale Alola, and Samuel Asumadu Sarkodie. 2019. “Toward a Sustainable Environment: Nexus Between CO2 Emissions, Resource Rent, Renewable and Nonrenewable Energy in 16-EU Countries.” Science of The Total Environment 657: 1023–1029. https://doi.org/10.1016/j.scitotenv.2018.12.104.
  • Brunetti, Adele, Enrico Drioli, Young Moo Lee, and Giuseppe Barbieri. 2014. “Engineering Evaluation of CO2 Separation by Membrane Gas Separation Systems.” Journal of Membrane Science 454: 305–315. https://doi.org/10.1016/j.memsci.2013.12.037.
  • Chauvy, Remi, Lionel Dubois, Diane Thomas, and Guy De Weireld. 2022. “Environmental Impacts of the Production of Synthetic Natural Gas from Industrial Carbon Dioxide.” Sustainable Production and Consumption 30: 301–315. https://doi.org/10.1016/j.spc.2021.12.004.
  • Darde, V., K. Thomsen, J. Willy, and Erling H. Stenby. 2010. “Chilled Ammonia Process for CO2 Capture.” International Journal of Greenhouse Gas Control 4 (2): 131–136. https://doi.org/10.1016/j.ijggc.2009.10.005.
  • Dave, N., T. Do, G. Puxty, R. Rowland, P.H.M. Feron, and M.I. Attalla. 2009. “CO2 Capture by Aqueous Amines and Aqueous Ammonia– A Comparison.” Energy Procedia 1 (1): 949–954. https://doi.org/10.1016/j.egypro.2009.01.126.
  • Dhoke, Chaitanya, Abdelghafour Zaabout, Schalk Cloete, and Shahriar Amini. 2021. “Review on Reactor Configurations for Adsorption-Based CO2 Capture.” Industrial & Engineering Chemistry Research 60 (10): 3779–3798. https://doi.org/10.1021/acs.iecr.0c04547.
  • DinAli, Magd N., and Ibrahim Dincer. 2019. “Development of a New Trigenerational Integrated System for Dimethyl-Ether, Electricity and Freshwater Production.” Energy Conversion and Management 185: 850–865. https://doi.org/10.1016/j.enconman.2019.01.106.
  • Dubois, Lionel, and Diane Thomas. 2017. “Comparison of Various Configurations of the Absorption-Regeneration Process Using Different Solvents for the Post-Combustion CO2 Capture Applied to Cement Plant flue Gases.” International Journal of Greenhouse Gas Control 69: 20–35.
  • Edrisi, Abdolaziz, Zohreh Mansoori, and Bahram Dabir. 2016. “Urea Synthesis Using Chemical Looping Process – Techno-Economic Evaluation of a Novel Plant Configuration for a Green Production.” International Journal of Greenhouse Gas Control 44: 42–51. https://doi.org/10.1016/j.ijggc.2015.10.020.
  • Etheridge, D., L. Steele, R. Langenfelds, R.J. Francey, J-M Barnola, and V.I. Morgan. 1996. “Natural and Anthropogenic Changes in Atmospheric CO2 Over the Last 1000 Years from Air in Antarctic Ice and Firn.” Journal of Geophysical Research: Atmospheres 101 (D2): 4115–4128. https://doi.org/10.1029/95JD03410.
  • Figueroa, José D., Timothy Fout, Sean Plasynski, Howard McIlvried, and Rameshwar D. Srivastava. 2008. “Advances in CO2 Capture Technology—The U.S. Department of Energy’s Carbon Sequestration Program.” International Journal of Greenhouse Gas Control 2 (1): 9–20. https://doi.org/10.1016/S1750-5836(07)00094-1.
  • Giordano, Lorena, Denis Roizard, Roda Bounaceur, and Eric Favre. 2017. “Evaluating the Effects of CO2 Capture Benchmarks on Efficiency and Costs of Membrane Systems for Post-Combustion Capture: A Parametric Simulation Study.” International Journal of Greenhouse Gas Control 63: 449–461. https://doi.org/10.1016/j.ijggc.2017.05.002.
  • Haas, S., N. Weber, Andrew Berry, and E. Erich. 2014. “Limestone Powder Carbon Dioxide Scrubber as the Technology for Carbon Capture and Usage.” Cement International 12 (3): 34–45.
  • Harkin, Trent, Andrew Hoadley, and Barry Hooper. 2009. “Process Integration Analysis of a Brown Coal-Fired Power Station with CO2 Capture and Storage and Lignite Drying.” Energy Procedia 1 (1): 3817–3825. https://doi.org/10.1016/j.egypro.2009.02.183.
  • He, Q., L. Ji, B. Yu, Shuiping Yan, Yanlin Zhang, and Shuaifei Zhao. 2018. “Renewable Aqueous Ammonia from Biogas Slurry for Carbon Capture: Chemical Composition and CO2 Absorption Rate.” International Journal of Greenhouse Gas Control 77: 46–54. https://doi.org/10.1016/j.ijggc.2018.07.027.
  • He, Xuezhong, Arne Lindbråthen, Taek-Joong Kim, and May-Britt Hägg. 2017a. “Pilot Testing on Fixed-Site-Carrier Membranes for CO2 Capture from Flue Gas.” International Journal of Greenhouse Gas Control 64: 323–332. https://doi.org/10.1016/j.ijggc.2017.08.007.
  • He, X., D. Nieto, L. Arne, and May-Britt Hägg. 2017b. Membrane System Design for CO2 Capture: From Molecular Modeling to Process Simulation. Process Systems and Materials for CO2 Capture: Modelling,.
  • Iribarren, Diego, Fontina Petrakopoulou, and Javier Dufour. 2013. “Environmental and Thermodynamic Evaluation of CO2 Capture, Transport and Storage with and Without Enhanced Resource Recovery.” Energy 50: 477–485. https://doi.org/10.1016/j.energy.2012.12.021.
  • Karaszova, M., B. Zach, P. Zuzana, et al. 2019. “Post Combustion Carbon Capture by Membrane Separation.” Rev Sep Purif Technol 238 (1-2): 116448.
  • Kirchner, Julia S., Karsten A. Lettmann, Bernhard Schnetger, Jörg-Olaf Wolff, and Hans-Jürgen Brumsack. 2020. “Carbon Capture via Accelerated Weathering of Limestone: Modeling Local Impacts on the Carbonate Chemistry of the Southern North Sea.” International Journal of Greenhouse Gas Control 92: 102855. https://doi.org/10.1016/j.ijggc.2019.102855.
  • Lee, S., and S. Park. 2015. “A Review on Solid Adsorbents for Carbon Dioxide Capture.” Journal of Industrial and Engineering Chemistry 23: 1–11. https://doi.org/10.1016/j.jiec.2014.09.001.
  • Leonzio, Grazia, Paul S. Fennell, and Nilay Shah. 2022. “Comparative Study of Different Sorbents in the Context of Direct Air Capture (DAC): Evaluation of Key Performance Indicators and Comparisons.” Applied Sciences 12 (5): 2618. https://doi.org/10.3390/app12052618.
  • Le Quéré, Corinne, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Judith Hauck, Julia Pongratz, Penelope A. Pickers, et al. 2018. “Global Carbon Budget 2018.” Earth System Science Data 10: 2141–2194. https://doi.org/10.5194/essd-10-2141-2018.
  • Liu, W., Y.C. Lin, L. Jiang, Y. Ji, J.Y. Yong, and X.J. Zhang. 2022. “Thermodynamic Exploration of Two-Stage Vacuum-Pressure Swing Adsorption for Carbon Dioxide Capture.” Energy 241: 122901. https://doi.org/10.1016/j.energy.2021.122901.
  • Mason, Jarad A., Kenji Sumida, Zoey R. Herm, Rajamani Krishna, and Jeffrey. R. Long. 2011. “Evaluating Metal-Organic Frameworks for Post-Combustion Carbon Dioxide Capture via Temperature Swing Adsorption.” Energy & Environmental Science 4 (8): 3030–3040. https://doi.org/10.1039/c1ee01720a.
  • Mores, Patricia L., Ana M. Arias, Nicolás J. Scenna, Miguel C. Mussati, and Sergio F. Mussati. 2019. “Cost-Based Comparison of Multi-Stage Membrane Configurations for Carbon Capture from Flue Gas of Power Plants.” International Journal of Greenhouse Gas Control 86: 177–190. https://doi.org/10.1016/j.ijggc.2019.04.021.
  • Muriithi, Grace N., Leslie F. Petrik, and Frédéric J. Doucet. 2019. “Synthesis, Characterisation and CO2 Adsorption Potential of NaA and NaX Zeolites and Hydrotalcite Obtained from the Same Coal Fly Ash.” Journal of CO2 Utilization 36: 220–230.
  • Ouzzine, Mohammed, Jarosław Serafin, and Joanna Sreńscek-Nazzal. 2021. “Single Step Preparation of Activated Biocarbons Derived from Pomegranate Peels and Their CO2 Adsorption Performance.” Journal of Analytical and Applied Pyrolysis 160: 105338. https://doi.org/10.1016/j.jaap.2021.105338.
  • Peters, G.P., C. Le Quéré, R.M. Andrew, J.G. Canadell, P. Friedlingstein, T. Ilyina, R.B. Jackson, et al. 2017. “Towards Real-Time Verification of CO2 Emissions.” Nature Climate Change 7: 848–852.
  • Petrakopoulou, Fontina, and George Tsatsaronis. 2013. “Can Carbon Dioxide Capture and Storage from Power Plants Reduce the Environmental Impact of Electricity Generation?” Energy & Fuels 28 (8): 5327–5338.
  • Petrakopoulou, Fontina, George Tsatsaronis, Alicia Boyano, and Tatiana Morosuk. 2012. “Post-combustion CO2 Capture with Monoethanolamine in a Combined-Cycle Power Plant: Exergetic, Economic and Environmental Assessment.” In Greenhouse Gases Emission, Measurement, and Management, 464–467. InTech Open Access Company.
  • Qadir, Abdul, Lucy Carter, Tony Wood, and A. Abbas. 2015. “Economic and Policy Evaluation of SPCC (Solar-Assisted Post-Combustion Carbon Capture) in Australia.” Energy 93: 294–308.
  • Rao, B., S. Rubin, and B. Berkenpas. 2004. An integrated modeling framework for carbon management technologies: Vol 1-Technical Documentation.
  • Rattanaphan, S., T. Rungrotmongkol, and P. Kongsune. 2020. “Biogas Improving by Adsorption of CO2 on Modified Waste Tea Activated Carbon.” Renewable Energy 145: 622–631. https://doi.org/10.1016/j.renene.2019.05.104.
  • Rau, H., K. Caldeira, and G. Kevin. 1999. “Enhanced Carbonate Dissolution: A Means of Sequestering Waste CO2 as Ocean Bicarbonate.” Energy Conversion and Management 40 (17): 1803–1813. https://doi.org/10.1016/S0196-8904(99)00071-0.
  • Rau, Greg H., Kevin G. Knauss, William H. Langer, and Ken Caldeira. 2007. “Reducing Energy-Related CO2 Emissions Using Accelerated Weathering of Limestone.” Energy 32 (8): 1471–1477. https://doi.org/10.1016/j.energy.2006.10.011.
  • Renforth, P., and G. Henderson. 2017. “Assessing Ocean Alkalinity for Carbon Sequestration.” Reviews of Geophysics 55 (3): 636–674. https://doi.org/10.1002/2016RG000533.
  • Reza, S., A. Alireza, G. Roghayeh, et al. 2022. “Exergoenvironmental Analysis and Thermoeconomic Optimization of an Industrial Post-Combustion CO2 Capture and Utilization Installation.” Journal of CO2 Utilization 59 (2): 101927.
  • Romeo, Luis M., Pilar Lisbona, and Yolanda Lara. 2019. “Combined Carbon Capture Cycles: An Opportunity for Size and Energy Penalty Reduction.” International Journal of Greenhouse Gas Control 88: 290–298. https://doi.org/10.1016/j.ijggc.2019.06.023.
  • Romeo, Luis M., Diego Minguell, Reza Shirmohammadi, and José M. Andrés. 2020. “Comparative Analysis of the Efficiency Penalty in Power Plants of Different Amine-Based Solvents for CO2 Capture.” Industrial & Engineering Chemistry Research 59 (21): 10082–10092. https://doi.org/10.1021/acs.iecr.0c01483.
  • Santori, Giulio, Charithea Charalambous, Maria-Chiara Ferrari, and Stefano Brandani. 2018. “Adsorption Artificial Tree for Atmospheric Carbon Dioxide Capture, Purification and Compression.” Energy 162: 1158–1168. https://doi.org/10.1016/j.energy.2018.08.090.
  • Serafin, Jarosław, Mohammed Ouzzine, Orlando F. Cruz Junior, and Joanna Sreńscek-Nazzal. 2021. “Preparation of Low-Cost Activated Carbons from Amazonian Nutshells for CO2 Storage.” Biomass and Bioenergy 144: 105925. https://doi.org/10.1016/j.biombioe.2020.105925.
  • Serafin, Jarosław, Joanna Sreńscek-Nazzal, Adrianna Kamińska, Oliwia Paszkiewicz, and Beata Michalkiewicz. 2022. “Management of Surgical Mask Waste to Activated Carbons for CO2 Capture.” Journal of CO2 Utilization 59: 101970. https://doi.org/10.1016/j.jcou.2022.101970.
  • Shah, Chirantan, Shishir Raut, Harshal Kacha, Harshil Patel, and Manan Shah. 2021. “Carbon Capture Using Membrane-Based Materials and its Utilization Pathways.” Chemical Papers 75 (6): 1–17.
  • Siddiqui, Osamah, Haris Ishaq, Ghassan Chehade, and Ibrahim Dincer. 2020. “Performance Investigation of a New Renewable Energy-Based Carbon Dioxide Capturing System with Aqueous Ammonia.” International Journal of Energy Research 44 (3): 2252–2263. https://doi.org/10.1002/er.5087.
  • Sjostrom, Sharon, and Holly Krutka. 2010. “Evaluation of Solid Sorbents as a Retrot Technology for CO2 Capture.” Fuel 89 (6): 1298–1306. https://doi.org/10.1016/j.fuel.2009.11.019.
  • Soltanieh, M., K. Azar, and S. Mohammad. 2012. “Development of a Zero-Emission Integrated System for Coproduction of Electricity and Methanol Through Renewable Hydrogen and CO2 Capture.” International Journal of Greenhouse Gas Control 7: 145–152. https://doi.org/10.1016/j.ijggc.2012.01.008.
  • Veneman, Rens, Natalia Frigka, Wenying Zhao, Zhenshan Li, Sascha Kersten, and Wim Brilman. 2014. “Adsorption of CO2 and H2O on Supported Amine Sorbents.” International Journal of Greenhouse Gas Control 63: 2336–2345.
  • Versteeg, Peter, and Edward S. Rubin. 2011. “A Technical and Economic Assessment of Ammonia-Based Post-Combustion CO2 Capture at Coal-Fired Power Plants.” International Journal of Greenhouse Gas Control 4 (52): 1957–1964.
  • Wang, Lu, Ying Yang, Wenlong Shen, Xiangming Kong, Ping Li, Jianguo Yu, and Alirio E. Rodrigues. 2013. “CO2 Capture from Flue Gas in an Existing Coal-Fired Power Plant by Two Successive Pilot-Scale VPSA Units.” Industrial & Engineering Chemistry Research 52 (23): 7947–7955. https://doi.org/10.1021/ie4009716.
  • Wilson, Sean M.W., Fatma Al-Enzi, Vida A. Gabriel, and F. Handan Tezel. 2021. “Effect of Pore Size and Heterogeneous Surface on the Adsorption of CO2, N2, O2, and Ar on Carbon Aerogel, RF Aerogel, and Activated Carbons.” Microporous and Mesoporous Materials 322: 111089. https://doi.org/10.1016/j.micromeso.2021.111089.
  • Xu, Jiayou, Zhi Wang, Zhihua Qiao, Hongyu Wu, Songlin Dong, Song Zhao, and Jixiao Wang. 2019. “Post-combustion CO2 Capture with Membrane Process: Practical Membrane Performance and Appropriate Pressure.” Journal of Membrane Science 581: 195–213. https://doi.org/10.1016/j.memsci.2019.03.052.
  • Yang, Ying, Pradeep Shukla, Shaobin Wang, Victor Rudolph, Xiao-Ming Chen, and Zhonghua Zhu. 2013. “Significant Improvement of Surface Area and CO2 Adsorption of Cu BTC via Solvent Exchange Activation.” RSC Advances 3 (38): 17065. https://doi.org/10.1039/c3ra42519c.
  • Yu, Jingwen, and Shujuan Wang. 2015. “Modeling Analysis of Energy Requirement in Aqueous Ammonia-Based CO2 Capture Process.” International Journal of Greenhouse Gas Control 43 (6): 33–45.
  • Zahid, Umer, Ung Lee, Jinjoo An, Youngsub Lim, and Chonghun Han. 2014. “Economic Analysis for the Transport and Storage of Captured Carbon Dioxide in South Korea.” Environmental Progress & Sustainable Energy 33 (3): 978–992. https://doi.org/10.1002/ep.11832.
  • Zhang, Xiangping, Xuezhong He, and Truls Gundersen. 2013. “Post-combustion Carbon Capture with a Gas Separation Membrane: Parametric Study, Capture Cost, and Exergy Analysis.” Energy & Fuels 27 (8): 4137–4149. https://doi.org/10.1021/ef3021798.
  • Zhang, Z., H. Xu, W. Hua, and C.Y. Zhao. 2022. “Thermodynamics Analysis of Multi-Stage Temperature Swing Adsorption Cycle for Dilute CO2 Capture, Enrichment and Purification.” Energy Conversion and Management 265: 115794. https://doi.org/10.1016/j.enconman.2022.115794.