144
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Review on parameters influencing the efficiency of the dual-medium thermocline storage system

, , , , , , , & show all
Article: 2350962 | Received 02 Nov 2023, Accepted 24 Apr 2024, Published online: 17 May 2024

References

  • Abdulla, A., and K. S. Reddy. 2017. “Effect of Operating Parameters on Thermal Performance of Molten Salt Packed-bed Thermocline Thermal Energy Storage System for Concentrating Solar Power Plants.” International Journal of Thermal Sciences 121: 30–44. https://doi.org/10.1016/j.ijthermalsci.2017.07.004.
  • Adebiyi, G. A., E. C. Nsofor, W. G. Steele, and A. A. Jalalzadeh-Azar. 1993. “Parametric Study on the Operating Efficiencies of a Packed bed for High-Temperature Sensible Heat Storage.” The American Society of Mechanical Engineers Advanced Energy Systems Division AES 30: 59–71.
  • Aly, S. L., and A. I. El-Sharkaw. 1990. “Effect of Storage Medium on Thermal Properties of Packed Beds.” Heat Recovery Systems and CHP 10 (5-6): 509–517. https://doi.org/10.1016/0890-4332(90)90201-T
  • Angelini, G., A. Lucchini, and G. Manzolini. 2014. “Comparison of Thermocline Molten Salt Storage Performances to Commercial Two-Tank Configuration.” Energy Procedia 49: 694–704. https://doi.org/10.1016/j.egypro.2014.03.075.
  • Arpino, F., N. Massarotti, A. Mauro, and L. Vanoli. 2014. “Modeling of Thermal Energy Storage: A Review of Different Systems.”
  • Bagre, B. 2021. “Assessment of Different Sands Potentiality to Formulate an Effective Thermal Energy Storage Material (TESM).” Journal de Physique de la SOAPHYS 2 (2020): 1–7. https://doi.org/10.46411/jpsoaphys.2020.01.08.
  • Bagre, B., et al. 2022. “Development of Sensible Heat Storage Materials Using Sand, Clay and Coal Bottom Ash.” Materials Sciences and Applications 13 (12): 603–626. https://doi.org/10.4236/msa.2022.1312038.
  • Bagre, B., Ibrahim Kolawole Muritala, Tizane Daho, Jacques Nébié, Téré Dabilgou, Eric Mensah Mortey, Issoufou Ourma, et al. 2023. “Modelling and Simulation of a Sustainable Thermal Energy Storage System for Concentrating Solar Power (CSP) Plant Using Eco-materials.” JP Journal of Heat and Mass Transfer (31): 147–161. https://doi.org/10.17654/0973576323010.
  • Baoshan, X., B. Nicolas, S. Jérôme, F. Yilin, and L. Lingai. 2022. “Wall Impact on Efficiency of Packed-bed Thermocline Thermal Energy Storage System.” Energy 247 (0360-5542): 123503. https://doi.org/10.1016/j.energy.2022.123503.
  • Bayón, R., and E. Rojas. 2013. “Simulation of Thermocline Storage for Solar Thermal Power Plants : From Dimensionless Results to Prototypes and Real-size Tanks.” International Journal of Heat and Mass Transfer 60: 713–721. https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.047.
  • Bayón, R., and E. Rojas. 2014. “Analytical Function Describing the Behaviour of a Thermocline Storage Tank: A Requirement for Annual Simulations of Solar Thermal Power Plants.” International Journal of Heat and Mass Transfer 68: 641–648. https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.070.
  • Bejan, A. 1978. “Two Thermodynamic Optima in the Design of Sensible Heat Units for Energy Storage.” Journal of Heat Transfer 100 (4): 708–712. https://doi.org/10.1115/1.3450882.
  • Bellenot, G. 2021. Etude de l ‘ influence de la distribution de fluide sur le comportement thermohydraulique d ‘ un réservoir de stockage thermique mono-cuve dual-media.
  • Bellenot, G., F. Bentivoglio, P. Marty, A. Bruch, and M. Coudrais-duhamel. 2019. “Thermocline Energy Storage : Influence of Fluid Distribution into Porous Media Thermocline Energy Storage.” AIP Conference Proceedings 200006 (July): 200006-1–200006-8. https://doi.org/10.1063/1.5117721.
  • Boubou, B., et al. 2021. “Review on Thermocline Storage Effectiveness for Concentrating Solar Power Plant.” Energy and Power Engineering 13 (10): 343–364. https://doi.org/10.4236/epe.2021.1310024.
  • Bradshaw, R. W., and N. P. Siegel. 2016. “ES2008-54174”, 1–7.
  • Brosseau, D., J. W. Kelton, D. Ray, M. Edgar, K. Chisman, and B. Emms. 2005. “Testing of Thermocline Filler Materials and Molten-Salt Heat Transfer Fluids for Thermal Energy Storage Systems in Parabolic Trough Power Plants.” Journal of Solar Energy Engineering 127 (1): 109–116. https://doi.org/10.1115/1.1824107.
  • Bruch, A., J. F. Fourmigué, and R. Couturier. 2014. “Experimental and Numerical Investigation of a Pilot-Scale Thermal oil Packed bed Thermal Storage System for CSP Power Plant.” Solar Energy 105: 116–125. https://doi.org/10.1016/j.solener.2014.03.019.
  • Bruch, A., J. F. Fourmigue, R. Couturier, and S. Molina. 2014. “Experimental and Numerical Investigation of Stability of Packed Bed Thermal Energy Storage for CSP Power Plant.” Energy Procedia 49: 743–751. https://doi.org/10.1016/j.egypro.2014.03.080.
  • Bruch, A., Sophie Molina, T Esence, J.F Fourmigué, and R Couturier 2017. “Experimental Investigation of Cycling Behaviour of Pilot-Scale Thermal oil Packed-bed Thermal Storage System.” Renewable Energy 103 (2016): 277–285. https://doi.org/10.1016/j.renene.2016.11.029.
  • Calderón-Vásquez, I., et al. 2021. “Review on Modeling Approaches for Packed-bed Thermal Storage Systems.” Renewable and Sustainable Energy Reviews 143 (February): 110902-1–110902-22. https://doi.org/10.1016/j.rser.2021.110902.
  • Calvet, N., et al. 2013. “Compatibility of a Post-Industrial Ceramic with Nitrate Molten Salts for Use as Filler Material in a Thermocline Storage System.” Applied Energy 109: 387–393. https://doi.org/10.1016/j.apenergy.2012.12.078.
  • Calvet, N., A. Gil, J. Rodríguez-aseguinolaza, A. Faik, and B. D. Aguanno. 2015. “Thermophysical Characterization of a By-product from the Steel Industry to be used as a Sustainable and Low-cost Thermal Energy Storage Material.” Energy 89 (2015): 601–609. https://doi.org/10.1016/j.energy.2015.05.153.
  • Capocelli, M., G. Caputo, M. De Falco, I. Balog, and V. Piemonte. 2019. “Numerical Modeling of a Novel Thermocline Thermal Storage for Concentrated Solar Power.” Journal of Solar Energy Engineering 141 (October): 1–8. https://doi.org/10.1115/1.4043082.
  • Cárdenas, B., et al. 2019. “Techno-economic Optimization of a Packed-bed for Utility-scale Energy Storage.” Applied Thermal Engineering 153 (February): 206–220. https://doi.org/10.1016/j.applthermaleng.2019.02.134.
  • Cárdenas, B., T. R. Davenne, J. P. Rouse, and S. D. Garvey. 2018. “Effect of Design Parameters on the Exergy Efficiency of a Utility-Scale Packed bed.” Journal of Energy Storage 18 (December 2018): 267–284. https://doi.org/10.1016/j.est.2018.05.005.
  • Cascetta, M., G. Cau, P. Puddu, and F. Serra. 2014. “Numerical Investigation of a Packed Bed Thermal Energy Storage System with Different Heat Transfer Fluids.” Energy Procedia 45: 598–607. https://doi.org/10.1016/j.egypro.2014.01.064.
  • Chang, Z. S., X. Li, C. Xu, C. Chang, and Z. F. Wang. 2015. “The Design and Numerical Study of a 2MWh Molten Salt Thermocline Tank.” Energy Procedia 69: 779–789. https://doi.org/10.1016/j.egypro.2015.03.094.
  • Clauser, C., E. Huenges, and L. Bodenforschung. 1995. “Thermal Conductivity of Rocks and Minerals.” J 0xj.
  • Cocco, D., and F. Serra. 2015. “Performance Comparison of two-Tank Direct and Thermocline Thermal Energy Storage Systems for 1 MWe Class Concentrating Solar Power Plants.” Energy 81: 526–536. https://doi.org/10.1016/j.energy.2014.12.067.
  • Eames, P. C., and B. Norton. 1998. “The Effect of Tank Geometry on Thermally Stratified Sensible Heat Storage Subject to low Reynolds Number Flows.” International Journal of Heat and Mass Transfer 41 (14): 2131–2142. https://doi.org/10.1016/S0017-9310(97)00349-9.
  • Erregueragui, Z., N. Boutammachte, and A. Bouatem. 2016. “Packed-bed Thermal Energy Storage Analysis: Quartzite and Palm- Oil Performance.” Energy Procedia 99 (March): 370–379. https://doi.org/10.1016/j.egypro.2016.10.127.
  • Esence, T., A. Bruch, J. F. Fourmigué, and B. Stutz. 2019. “A Versatile one-Dimensional Numerical Model for Packed-bed Heat Storage Systems.” Renewable Energy 133: 190–204. https://doi.org/10.1016/j.renene.2018.10.012.
  • Esence, T., A. Bruch, S. Molina, B. Stutz, and J. F. Fourmigué. 2017. “A Review on Experience Feedback and Numerical Modeling of Packed-bed Thermal Energy Storage Systems.” Solar Energy 153: 628–654. https://doi.org/10.1016/j.solener.2017.03.032.
  • Esence, T., T. Desrues, J. Fourmigué, G. Cwicklinski, A. Bruch, and B. Stutz. 2019. “Experimental Study and Numerical Modelling of High Temperature gas/Solid Packed-bed Heat Storage Systems.” Energy 180 (2019): 61–78. https://doi.org/10.1016/j.energy.2019.05.012.
  • Faas, S. E., L. R. Thorne, E. A. Fuchs, and N. D. Gilbertsen. 1986. “10 MW/sub e/ Solar Thermal Central Receiver Pilot Plant: Thermal Storage Subsystem Evaluation. Final Report Other Inf. Portions this Doc. are Illegible Microfich. Prod. Orig. copy available until Stock is exhausted, p. Medium: X; Size: Pages: 113.
  • Farmahini-Farahani, M. 2012. “Investigation of Four Geometrical Parameters on Thermal Stratification of Cold Water Tanks by Exergy Analysis.” International Journal of Exergy 10 (3): 332–345. https://doi.org/10.1504/IJEX.2012.046814.
  • Fasquelle, T. 2017. Modélisation et caractérisation expérimentale d’une boucle solaire cylindro-parabolique intégrant un stockage de type thermocline., Thèse de Doctorat de Physique, Université de Perpignan Via Domitia.
  • Fasquelle, T., Q. Falcoz, P. Neveu, and J. F. Hoffmann. 2018a. “Numerical Simulation of a 50 MWe Parabolic Trough Power Plant Integrating a Thermocline Storage Tank.” Energy Conversion and Management 172 (July): 9–20. https://doi.org/10.1016/j.enconman.2018.07.006.
  • Fasquelle, T., Q. Falcoz, P. Neveu, and J. F. Hoffmann. 2018b. “A Temperature Threshold Evaluation for Thermocline Energy Storage in Concentrated Solar Power Plants.” Applied Energy 212 (2018): 1153–1164. https://doi.org/10.1016/j.apenergy.2017.12.105.
  • Fernández-torrijos, M., C. Sobrino, and J. A. Almendros-ibáñez. 2017. “Simplified Model of a Dual-Media Molten-Salt Thermocline Tank with a Multiple Layer Wall.” Solar Energy 151: 146–161. https://doi.org/10.1016/j.solener.2017.04.072.
  • Flueckiger, S. M., and S. V. Garimella. 2012. “Second-law Analysis of Molten-Salt Thermal Energy Storage in Thermoclines.” Solar Energy 86 (5): 1621–1631. https://doi.org/10.1016/j.solener.2012.02.028.
  • Galione, P., C. Pérez-segarra, I. Rodríguez, S. Torras, and J. Rigola. 2015. “Numerical Evaluation of Multi-Layered Solid-PCM Thermocline-Like Tanks as Thermal Energy Storage Systems for CSP Applications.” Energy Procedia 69: 832–841. https://doi.org/10.1016/j.egypro.2015.03.099.
  • García Mari, P., E. Gasque Albalate, M. Gutiérrez Colomer, R. P. Ibáñez Solís, and F. González Altozano. 2013. “A New Inlet Device that Enhances Thermal Stratification During Charging in a Hot Water Storage Tank.” Journal of the American Chemical Society. 123 (10): 2176–2181. https://doi.org/10.1016/j.applthermaleng.2013.08.023.The.
  • Geissbühler, L., V. Becattini, G. Zanganeh, S. Zavattoni, M. Barbato, and A. Haselbacher. 2018. “Pilot-scale Demonstration of Advanced Adiabatic Compressed air Energy Storage, Part 1: Plant Description and Tests with Sensible Thermal-Energy Storage.” Journal of Energy Storage 17: 129–139. https://doi.org/10.1016/j.est.2018.02.004.
  • Gil, A., et al. 2010. “State of the Art on High Temperature Thermal Energy Storage for Power Generation. Part 1—Concepts, Materials and Modellization.” Renewable and Sustainable Energy Reviews 14 (1): 31–55. https://doi.org/10.1016/j.rser.2009.07.035.
  • Gutierrez, A., Laia Miró, Antoni Gil, Javier Rodríguez-Aseguinolaza, Camila Barreneche, Nicolas Calvet, Xavier Py, et al. 2016. “Industrial Waste Materials and By-products as Thermal Energy Storage (TES) Materials: A Review.” AIP Conference Proceedings. 1734 (1): 050019-1–050019-9. https://doi.org/10.1063/1.4949117.
  • Haller, M. Y., C. A. Cruickshank, W. Streicher, S. J. Harrison, E. Andersen, and S. Furbo. 2009. “Methods to Determine Stratification Efficiency of Thermal Energy Storage Processes – Review and Theoretical Comparison.” Solar Energy 83 (10): 1847–1860. https://doi.org/10.1016/j.solener.2009.06.019.
  • Hänchen, M., S. Brückner, and A. Steinfeld. 2011. “High-temperature Thermal Storage Using a Packed bed of Rocks – Heat Transfer Analysis and Experimental Validation.” Applied Thermal Engineering 31 (10): 1798–1806. https://doi.org/10.1016/j.applthermaleng.2010.10.034.
  • Hasan, F. M., and M. A. Theeb. 2021. “Effect of Diffuser Height on Thermocline in Stratified Chilled Water Storage Tank.” Journal of Applied Fluid Mechanics 14 (2): 429–438. https://doi.org/10.47176/jafm.14.02.31450.
  • Hernandez, A. B., I. Uriz, I. Ortega-Fernández, J. Rodriguez-Aseguinolaza, A. Ortuondo, and A. Faik. 2018. “Solid Packed Bed Thermal Energy Storage for ORC Electric Generation in Fresnel Type CSP Plants.” AIP Conference Proceeding 2033 (November): 090013-1–090013-8. https://doi.org/10.1063/1.5067107.
  • Hoffmann, J. 2015. “Stockage thermique pour centrale solaire thermodynamique à concentration mettant en oeuvre des matériaux naturels ou recyclés.” (Thèse de Doctorat de Physique). Université de Perpignan Via Domitia.
  • Hoffmann, J. F., et al. 2018. “Temperature Dependence of Thermophysical and Rheological Properties of Seven Vegetable Oils in View of their Use as Heat Transfer Fluids in Concentrated Solar Plants.” Solar Energy Materials and Solar Cells 178 (December 2018): 129–138. https://doi.org/10.1016/j.solmat.2017.12.037.
  • Hoffmann, J. F., T. Fasquelle, V. Goetz, and X. Py. 2016. “A Thermocline Thermal Energy Storage System with Filler Materials for Concentrated Solar Power Plants: Experimental Data and Numerical Model Sensitivity to Different Experimental Tank Scales.” Applied Thermal Engineering 100: 753–761. https://doi.org/10.1016/j.applthermaleng.2016.01.110.
  • Hoffmann, J. F., T. Fasquelle, V. Goetz, and X. Py. 2017. “Experimental and Numerical Investigation of a Thermocline Thermal Energy Storage Tank.” Applied Thermal Engineering 114: 896–904. https://doi.org/10.1016/j.applthermaleng.2016.12.053.
  • Ibrahim, D., and R. Marc. 2011. A Thermal Energy Storage Systems and Applications.
  • Ismail, K. A. R., and R. Stuginsky. 1999. “A Parametric Study on Possible Fixed bed Models for PCM and Sensible Heat Storage.” Applied Thermal Engineering 19 (7): 757–788. https://doi.org/10.1016/S1359-4311(98)00081-7.
  • Jemmal, Y., N. Zari, and M. Maaroufi. 2016. “Thermophysical and Chemical Analysis of Gneiss Rock as low Cost Candidate Material for Thermal Energy Storage in Concentrated Solar Power Plants.” Solar Energy Materials and Solar Cells 157: 377–382. https://doi.org/10.1016/j.solmat.2016.06.002.
  • Karim, M. A. 2011. “Experimental Investigation of a Stratified Chilled-Water Thermal Storage System.” Applied Thermal Engineering 31 (11-12): 1853–1860. https://doi.org/10.1016/j.applthermaleng.2010.12.019.
  • Kocak, B., and H. Paksoy. 2020. “Performance of Laboratory Scale Packed-bed Thermal Energy Storage Using new Demolition Waste Based Sensible Heat Materials for Industrial Solar Applications.” Solar Energy 211 (November): 1335–1346. https://doi.org/10.1016/j.solener.2020.10.070.
  • Kuravi, S., J. Trahan, D. Y. Goswami, M. M. Rahman, and E. K. Stefanakos. 2013. “Thermal Energy Storage Technologies and Systems for Concentrating Solar Power Plants.” Progress in Energy and Combustion Science 39 (4): 285–319. https://doi.org/10.1016/j.pecs.2013.02.001.
  • Laube, T., L. Marocco, K. Niedermeier, J. Pacio, and T. Wetzel. 2020. “Thermodynamic Analysis of High-Temperature Energy Storage Concepts Based on Liquid Metal Technology.” Energy Technology 8 (3): 1900908-1–1900908-10. https://doi.org/10.1002/ente.201900908.
  • Li, S., Y. Li, X. Zhang, and C. Wen. 2013. “Experimental Study on the Discharging Performance of Solar Storage Tanks with Different Inlet Structures.” International Journal of Low-Carbon Technologies 8 (3): 203–209. https://doi.org/10.1093/ijlct/cts023.
  • Li, S. H., Y. X. Zhang, Y. Li, and X. S. Zhang. 2014. “Experimental Study of Inlet Structure on the Discharging Performance of a Solar Water Storage Tank.” Energy and Buildings 70: 490–496. https://doi.org/10.1016/j.enbuild.2013.11.086.
  • Liu, M., M. Belusko, N. H. Steven Tay, and F. Bruno. 2014. “Impact of the Heat Transfer Fluid in a Flat Plate Phase Change Thermal Storage Unit for Concentrated Solar Tower Plants.” Solar Energy 101: 220–231. https://doi.org/10.1016/j.solener.2013.12.030.
  • Lou, W., Y. Fan, and L. Luo. 2020. “Single-tank Thermal Energy Storage Systems for Concentrated Solar Power: Flow Distribution Optimization for Thermocline Evolution Management.” Journal of Energy Storage 32 (August): 101749. https://doi.org/10.1016/j.est.2020.101749.
  • Mawire, A., and M. McPherson. 2009. “Experimental and Simulated Temperature Distribution of an Oil-pebble Bed Thermal Energy Storage System with a Variable Heat Source.” Applied Thermal Engineering 29 (5-6): 1086–1095. https://doi.org/10.1016/j.applthermaleng.2008.05.028.
  • Medrano, M., A. Gil, I. Martorell, X. Potau, and L. F. Cabeza. 2010. “State of the art on High-Temperature Thermal Energy Storage for Power Generation. Part 2—Case Studies.” Renewable and Sustainable Energy Reviews 14 (1): 56–72. https://doi.org/10.1016/j.rser.2009.07.036.
  • Melanson, M. M., and A. G. Dixon. 1985. “Solid Conduction in low dt/dp Beds of Spheres, Pellets and Rings.” International Journal of Heat and Mass Transfer 28 (2): 383–394. https://doi.org/10.1016/0017-9310(85)90071-7.
  • Mira-Hernández, C., S. M. Flueckiger, and S. V. Garimella. 2014. “Numerical Simulation of Single- and Dual-Media Thermocline Tanks for Energy Storage in Concentrating Solar Power Plants.” Energy Procedia 49: 916–926. https://doi.org/10.1016/j.egypro.2014.03.099.
  • Modi, A., and F. Haglind. 2014. “Performance Analysis of a Kalina Cycle for a Central Receiver Solar Thermal Power Plant with Direct Steam Generation.” Applied Thermal Engineering 65 (1-2): 201–208. https://doi.org/10.1016/j.applthermaleng.2014.01.010.
  • Motte, F., S. L. Bugler-Lamb, and Q. Falcoz. 2015. “Thermocline Storage Filled with Structured Ceramics. Numerical Consistency of the Developed Numerical Model and First Observations.” High Temperature Materials and Processes 34 (4): 353–365. https://doi.org/10.1515/htmp-2014-0057.
  • Motte, F., S. L. Bugler-lamb, Q. Falcoz, and X. Py. 2014. “Numerical Study of a Structured Thermocline Storage Tank Using Vitrified Waste as Filler Material.” Energy Procedia 49: 935–944. https://doi.org/10.1016/j.egypro.2014.03.101.
  • Nandi, B. R., S. Bandyopadhyay, and R. Banerjee. 2018. “Numerical Modeling and Analysis of Dual Medium Thermocline Thermal Energy Storage.” Journal of Energy Storage 16: 218–230. https://doi.org/10.1016/j.est.2018.01.020.
  • Nellis, G., and S. Klein. 1977. Heat Transfer.
  • Nicolas, L. F., et al. 2019. “Flexibility and Robustness of a High-Temperature Air/Ceramic Thermocline Heat Storage Pilot.” Journal of Energy Storage 21 (August 2018): 393–404. https://doi.org/10.1016/j.est.2018.11.034.
  • Odenthal, C., W. Steinmann, S. Zunft, G. Aerospace, and L. Höhe. 2020a. “Analysis of a Horizontal Flow Closed Loop Thermal Energy Storage System in Pilot Scale for High Temperature Applications – Part I: Experimental Investigation of the Plant.” Applied Energy 263 (January): 114573. https://doi.org/10.1016/j.apenergy.2020.114573.
  • Odenthal, C., W. Steinmann, S. Zunft, G. Aerospace, and L. Höhe. 2020b. “Analysis of a Horizontal Flow Closed Loop Thermal Energy Storage System in Pilot Scale for High Temperature Applications – Part II: Numerical Investigation.” Applied Energy 263 (January): 114576. https://doi.org/10.1016/j.apenergy.2020.114576.
  • Ortega-fernández, I., I. Loroño, A. Faik, I. Uriz, J. Rodríguez-Aseguinolaza, and B. D’Aguanno 2017. “Parametric Analysis of a Packed Bed Thermal Energy Storage System.” AIP Conference Proceedings 1850 (1): 080021-1–080021-8. https://doi.org/10.1063/1.4984442.
  • Pacheco, J. E., S. K. Showalter, and W. J. Kolb. 2001. “Development of a Molten-Salt Thermocline Thermal Storage System for Parabolic Trough Plants.” Solar Energy Conference 124 (2002): 453–460. https://doi.org/10.1115/sed2001-158.
  • Py, X., N. Calvet, A. Meffre, P. Echegut, C. Bessada, and S. Ory. 2011. “Recycled Material for Sensible Heat Based Thermal Energy Storage to be Used in Concentrated Solar Thermal Power Plants.” Journal of Solar Energy Engineering 133 (3): 031008-1–031008-8. https://doi.org/10.1115/1.4004267.
  • Py, Y. L. X., and A. M. R. Olives. 2016. “Comparative LCA Between Current and Alternative Waste-Based TES for CSP.” Waste Biomass Valor 7 (2016): 1509–1519. https://doi.org/10.1007/s12649-016-9549-6.
  • Qin, F. G. F., et al. 2012. “Thermocline Stability Criterions in Single-Tanks of Molten Salt Thermal Energy Storage.” Applied Energy 97: 816–821. https://doi.org/10.1016/j.apenergy.2012.02.048.
  • Raymon, H., and G. Robert. 1997. “Solaar Thermal Power Systeme Phase I, CRDL ITEM2 Pilot Plant Preliminary Design Report.” 1, 10.
  • Reddy, K. S., and N. Pradeep. 2021. “Stability Analysis of the Thermocline Thermal Energy Storage System During High Flow Rates for Solar Process Heating Applications.” Solar Energy 226 (August 2021): 40–53. https://doi.org/10.1016/j.solener.2021.08.026.
  • Rodrigues, F. A., and M. J. S. De Lemos. 2020. “Effect of porous material properties on thermal efficiencies of a thermocline storage tank.” Applied Thermal Engineering 173 (February): 115194. https://doi.org/10.1016/j.applthermaleng.2020.115194.
  • Rosen, M. A. 1999. “Second-law Analysis of Aquifer Thermal Energy Storage Systems.” Energy 24 (2): 167–182. https://doi.org/10.1016/S0360-5442(98)00080-2.
  • Rosen, M. A. 2001. “The Exergy of Stratified Thermal Energy Storages.” Solar Energy 71 (3): 173–185. https://doi.org/10.1016/S0038-092X(01)00036-6.
  • Rosen, M. A. 2012. “Appropriate Thermodynamic Efficiency Measures for Closed Systems for Energy Storage.” Energy Storage 114 (May 1992): 47–74.
  • Rosen, M. A., and I. Dincer. 1997. “ON Exergy and Environmental Impact.” International Journal of Energy Research 21 (7): 643–654. https://doi.org/10.1002/(SICI)1099-114X(19970610)21:7<643::AID-ER284>3.0.CO;2-I.
  • Rosen, M. A., R. Tang, and I. Dincer. 2004. “Effect of Stratification on Energy and Exergy Capacities in Thermal Storage Systems.” International Journal of Energy Research 28 (2): 177–193. https://doi.org/10.1002/er.960.
  • Sassine, N., F. Donzé, and A. Bruch. 2017. “Rock-Bed Thermocline Storage : A Numerical Analysis of Granular Bed Behavior and Interaction with Storage Tank.” AIP Conference Proceedings 1850 (1): 080023-1–080023-7. https://doi.org/10.1063/1.4984444.
  • Sassine, N., F. V. Donzé, B. Harthong, and A. Bruch. 2018. “Thermal Stress Numerical Study in Granular Packed bed Storage Tank.” Granular Matter 20 (3): 1–15. https://doi.org/10.1007/s10035-018-0817-y.
  • Schlipf, D., P. Schicktanz, H. Maier, and G. Schneider. 2015. “Using Sand and Other Small Grained Materials as Heat Storage Medium in a Packed Bed HTTESS.” Energy Procedia 69: 1029–1038. https://doi.org/10.1016/j.egypro.2015.03.202.
  • Shah, L. J., and S. Furbo. 2003. “Entrance Effects in Solar Storage Tanks.” Solar Energy 75 (4): 337–348. https://doi.org/10.1016/j.solener.2003.04.002.
  • Tian, Y., and C. Y. Zhao. 2013. “A Review of Solar Collectors and Thermal Energy Storage in Solar Thermal Applications.” Applied Energy 104: 538–553. https://doi.org/10.1016/j.apenergy.2012.11.051.
  • Tiskatine, R., et al. 2017. “Suitability and Characteristics of Rocks for Sensible Heat Storage in CSP Plants.” Solar Energy Materials and Solar Cells 169 (December 2017): 245–257. https://doi.org/10.1016/j.solmat.2017.05.033.
  • Touzo, A., et al. 2020. “Experimental and Numerical Analysis of a Packed-bed Thermal Energy Storage System Designed to Recover High Temperature Waste Heat: An Industrial Scale up.” Journal of Energy Storage 32 (May): 101894. https://doi.org/10.1016/j.est.2020.101894.
  • Touzo, A.. 2021. Intégration d’un stockage de chaleur de type thermocline à des procédés énergétiques. 2021PERP0016 . tel-03353418.
  • Van Lew, J. T., P. Li, C. L. Chan, W. Karaki, and J. Stephens. 2011. “Analysis of Heat Storage and Delivery of a Thermocline Tank Having Solid Filler Material.” Journal of Solar Energy Engineering 133 (2): 021003-1–021003-10. https://doi.org/10.1115/1.4003685.
  • Vannerem, S. 2022. “Étude numérique et expérimentale de l ‘ influence des conditions opératoires sur un stockage de type thermocline intégré à une centrale solaire thermodynamique Segolène Vannerem To cite this version : HAL Id : tel-03574574 Spécialité : Énergétique et géni”.
  • Vannerem, S., P. Neveu, and Q. Falcoz. 2021. “Experimental and Numerical Investigation of the Impact of Operating Conditions on Thermocline Storage Performance.” Renewable Energy 168: 234–246. https://doi.org/10.1016/j.renene.2020.12.061.
  • Vignarooban, K., X. Xu, A. Arvay, K. Hsu, and A. M. Kannan. 2015. “Heat Transfer Fluids for Concentrating Solar Power Systems – A Review.” Applied Energy 146: 383–396. https://doi.org/10.1016/j.apenergy.2015.01.125.
  • Wang, L., Z. Yang, and Y. Duan. 2015. “Influence of Flow Distribution on the Thermal Performance of Dual-Media Thermocline Energy Storage Systems.” Applied Energy 142: 283–292. https://doi.org/10.1016/j.apenergy.2014.12.024.
  • Wang, G., S. Yu, S. Niu, Z. Chen, and P. Hu. 2020. “A Comprehensive Parametric Study on Integrated Thermal and Mechanical Performances of Molten-Salt-Based Thermocline Tank.” Applied Thermal Engineering 170 (September 2019): 115010. https://doi.org/10.1016/j.applthermaleng.2020.115010.
  • Wildin, M. W. 1996. “Experimental Results from Single-Pipe Diffusers for Stratified Thermal Energy Storage.” ASHRAE Transactions. 102 (2): 123–132.
  • Xie, B. 2022. Thermocline Study of Packed-bed Thermal Energy Storage System.
  • Xie, B., and B. Xie. 2022. “Thermocline Study of Packed-bed Thermal Energy Storage System, [En ligne].” Disponible sur. https://hal.archives-ouvertes.fr/tel-03798303.
  • Xu, C., X. Li, Z. Wang, Y. He, and F. Bai. 2013. “Effects of Solid Particle Properties on the Thermal Performance of a Packed-bed Molten-Salt Thermocline Thermal Storage System.” Applied Thermal Engineering 57 (1-2): 69–80. https://doi.org/10.1016/j.applthermaleng.2013.03.052.
  • Xu, C., Z. Wang, Y. He, X. Li, and F. Bai. 2012a. “Parametric Study and Standby Behavior of a Packed-bed Molten Salt Thermocline Thermal Storage System.” Renewable Energy 48: 1–9. https://doi.org/10.1016/j.renene.2012.04.017.
  • Xu, C., Z. Wang, Y. He, X. Li, and F. Bai. 2012b. “Sensitivity Analysis of the Numerical Study on the Thermal Performance of a Packed-bed Molten Salt Thermocline Thermal Storage System.” Applied Energy 92: 65–75. https://doi.org/10.1016/j.apenergy.2011.11.002.
  • Yang, Z., and S. V. Garimella. 2010. “Thermal Analysis of Solar Thermal Energy Storage in a Molten-Salt Thermocline.” Solar Energy 84 (6): 974–985. https://doi.org/10.1016/j.solener.2010.03.007.
  • Yang, Z., and S. V. Garimella. 2013. “Cyclic Operation of Molten-Salt Thermal Energy Storage in Thermoclines for Solar Power Plants.” Applied Energy 103: 256–265. https://doi.org/10.1016/j.apenergy.2012.09.043.
  • Yang, X., X. Yang, F. G. F. Qin, and R. Jiang. 2016. “Experimental Investigation of a Molten Salt Thermocline Storage Tank.” International Journal of Sustainable Emergy 35: 606–614. https://doi.org/10.1080/14786451.2014.930465.
  • Yin, H., J. Ding, R. Jiang, and X. Yang. 2017. “Thermocline Characteristics of Molten-Salt Thermal Energy Storage in Porous Packed-bed Tank.” Applied Thermal Engineering 110: 855–863. https://doi.org/10.1016/j.applthermaleng.2016.08.214.
  • Zanganeh, G., A. Pedretti, A. Haselbacher, and A. Steinfeld. 2015. “Design of Packed bed Thermal Energy Storage Systems for High-Temperature Industrial Process Heat.” Applied Energy 137: 812–822. https://doi.org/10.1016/j.apenergy.2014.07.110.
  • Zanganeh, G., A. Pedretti, S. Zavattoni, M. Barbato, and A. Steinfeld. 2012. “Packed-bed Thermal Storage for Concentrated Solar Power – Pilot-Scale Demonstration and Industrial-Scale Design.” Solar Energy 86 (10): 3084–3098. https://doi.org/10.1016/j.solener.2012.07.019.
  • Zhao, B. C., M. S. Cheng, C. Liu, and Z. M. Dai. 2018. “System-level Performance Optimization of Molten-Salt Packed-bed Thermal Energy Storage for Concentrating Solar Power.” Applied Energy 226 (May): 225–239. https://doi.org/10.1016/j.apenergy.2018.05.081.
  • Zunft, S., M. Hänel, M. Krüger, V. Dreißigacker, F. Göhring, and E. Wahl. 2011. “Jülich Solar Power Tower—Experimental Evaluation of the Storage Subsystem and Performance Calculation.” Journal of Solar Energy Engineering 133 (3): 1–5. https://doi.org/10.1115/1.4004358.