116
Views
2
CrossRef citations to date
0
Altmetric
Original Research

Evaluation of Tamarix nilotica Fractions in Combating Candida albicans Infections

, ORCID Icon, ORCID Icon, , , , , & show all
Pages 241-251 | Received 10 Mar 2023, Accepted 06 Jun 2023, Published online: 04 Jul 2023

References

  • Gizaw A, Marami LM, Teshome I, et al. Phytochemical screening and in vitro antifungal activity of selected medicinal plants against candida albicans and aspergillus niger in west Shewa zone, Ethiopia. Adv Pharmacol Sci. 2022;2022:1–8. doi: 10.1155/2022/3299146
  • Köhler JR, Casadevall A, Perfect J. The spectrum of fungi that infects humans. Cold Spring Harb Perspect Med. 2015;5(1):a019273. doi: 10.1101/cshperspect.a019273
  • d’Enfert C, Kaune A-K, Alaban L-R, et al. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Rev. 2021;45(3):fuaa060. doi: 10.1093/femsre/fuaa060
  • Espino M, Solari M, de Los Ángelesfernández M, et al. NADES-mediated folk plant extracts as novel antifungal agents against Candida albicans. J Pharm Biomed Anal. 2019;167:15–20. doi: 10.1016/j.jpba.2019.01.026
  • Najee H, Kamerzan C, Marutescu L, et al. Antifungal activity of some medicinal plant extracts against Candida albicans nosocomial isolates. Rom Biotechnol Lett. 2018;23:14073.
  • Talapko J, Juzbašić M, Matijević T, et al. Candida albicans—the virulence factors and clinical manifestations of infection. Journal Of Fungi. 2021;7(2):79. doi: 10.3390/jof7020079
  • Pappas P, Lionakis M, Arendrup MC, et al. Invasive candidiasis. Nat Rev Dis Primers. 2018;4(1):18026. doi: 10.1038/nrdp.2018.26
  • Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4(2):119–128. doi: 10.4161/viru.22913
  • Nobile CJ, Johnson AD. Candida albicans biofilms and human disease. Annu Rev Microbiol. 2015;69(1):71. doi: 10.1146/annurev-micro-091014-104330
  • Whaley SG, Berkow EL, Rybak JM, et al. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Front Microbiol. 2017;7:2173. doi: 10.3389/fmicb.2016.02173
  • Bahramsoltani R, Kalkhorani M, Zaidi SMA, et al. The genus Tamarix: traditional uses, phytochemistry, and pharmacology. J Ethnopharmacol. 2020;246:112245. doi: 10.1016/j.jep.2019.112245
  • Qasem JR. Prospects of wild medicinal and industrial plants of saline habitats in the Jordan valley. Pak J Bot. 2015;47(2):551–570.
  • Setshedi KTA, Newete SW. The impact of exotic Tamarix species on riparian plant biodiversity. Agriculture. 2020;10(9):395. doi: 10.3390/agriculture10090395
  • González E, Sher AA, Anderson RM, et al. Vegetation response to invasive Tamarix control in southwestern US rivers: a collaborative study including 416 sites. Ecol Appl. 2017;27(6):1789–1804. doi: 10.1002/eap.1566
  • Bencherif K, Trodi F, Hamidi M, et al. Biological overview and adaptability strategies of Tamarix plants, T. articulata and T. gallica to abiotic Stress. In: Plant stress biology. Springer Singapore; 2020. p. 401–433. doi: 10.1007/978-981-15-9380-2_14
  • Fellah O, Hameurlaine S, Gherraf N, et al. Anti-proliferative activity of ethyl acetate extracts of Tamarix gallica L. grown at different climatic conditions in Algeria. Acta Scientifica Naturalis. 2018;5(2):23–31. doi: 10.2478/asn-2018-0017
  • Elekhnawy EA, Sonbol FI, Elbanna TE, et al. Evaluation of the impact of adaptation of Klebsiella pneumoniae clinical isolates to benzalkonium chloride on biofilm formation. Egypt J Med Hum Genet. 2021;22(1):1–6. doi: 10.1186/s43042-021-00170-z
  • Orabi MA, Zidan SA, Attia GH, et al. Ellagitannins and simple phenolics from the halophytic plant Tamarix nilotica. Nat Prod Res. 2021;36(1):177–185. doi: 10.1080/14786419.2020.1774757
  • Khalid M, Bilal M, Munir H, et al. In-vitro evaluation of anti-bacterial, anti-biofilm and cytotoxic activity of naturally inspired Juglans regia, Tamarix aphylla L., and acacia modesta with medicinal potentialities. J Pure Appl Microbiol. 2020;14(2):1133–1142. doi: 10.22207/JPAM.14.2.08
  • Negm WA, El-Aasr M, Kamer AA, et al. Investigation of the antibacterial activity and efflux pump inhibitory effect of cycas thouarsii R. Br. Extract against Klebsiella pneumoniae clinical isolates. Pharmaceuticals. 2021;14(8):756. doi: 10.3390/ph14080756
  • Attallah NGM, El-Sherbeni SA, El-Kadem AH, et al. Elucidation of the metabolite profile of Yucca gigantea and assessment of its cytotoxic, antimicrobial, and anti-inflammatory activities. Molecules. 2022;27(4):1329. doi: 10.3390/molecules27041329
  • Elmongy EI, Negm WA, Elekhnawy E, et al. Antidiarrheal and antibacterial activities of Monterey cypress phytochemicals: in vivo and in vitro approach. Molecules. 2022;27(2):346. doi: 10.3390/molecules27020346
  • Sekkien A, Swilam N, Ebada SS, et al. Polyphenols from Tamarix nilotica: lC–ESI-MSn profiling and in vivo antifibrotic activity. Molecules. 2018;23(6):1411. doi: 10.3390/molecules23061411
  • Tsugawa H, Cajka T, Kind T, et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nature Methods. 2015;12(6):523–526. doi: 10.1038/nmeth.3393
  • Attallah NGM, Al-Fakhrany OM, Elekhnawy E, et al. Anti-biofilm and antibacterial activities of cycas media r. br secondary metabolites: in silico, in vitro, and in vivo approaches. Antibiotics. 2022;11(8):993. doi: 10.3390/antibiotics11080993
  • Almukainzi M, A El-Masry T, A Negm W, et al. Gentiopicroside PLGA nanospheres: fabrication, in vitro characterization, antimicrobial action, and in vivo effect for enhancing wound healing in diabetic rats. Int J Nanomed. 2022;17:1203–1225.
  • Negm WA, El-Kadem AH, Elekhnawy E, et al. Wound-healing potential of rhoifolin-rich fraction isolated from sanguisorba officinalis roots supported by enhancing re-epithelization, angiogenesis, anti-inflammatory, and antimicrobial effects. Pharmaceuticals. 2022;15(2):178. doi: 10.3390/ph15020178
  • Elekhnawy E, Negm WA, El-Aasr M, et al. Histological assessment, anti-quorum sensing, and anti-biofilm activities of Dioon spinulosum extract: in vitro and in vivo approach. Sci Rep. 2022;12(1):1–15. doi: 10.1038/s41598-021-03953-x
  • Negm WA, El-Aasr M, Attia G, et al. Promising antifungal activity of encephalartos laurentianus de wild against candida albicans clinical isolates: in vitro and in vivo effects on renal cortex of adult albino Rats. Journal Of Fungi. 2022;8(5):426. doi: 10.3390/jof8050426
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402–408. doi: 10.1006/meth.2001.1262
  • Sanches MDA, Mimura LA, Oliveira LR, et al. Differential behavior of non-albicans Candida species in the central nervous system of immunocompetent and immunosuppressed mice. Front Microbiol. 2019;9:2968. doi: 10.3389/fmicb.2018.02968
  • Abdelkader DH, Negm WA, Elekhnawy E, et al. Zinc oxide nanoparticles as potential delivery carrier: green synthesis by Aspergillus niger endophytic fungus, characterization, and in vitro/in vivo antibacterial activity. Pharmaceuticals. 2022;15(9):1057. doi: 10.3390/ph15091057
  • Hasan Khudhair D, Al-Gareeb AI, Al-Kuraishy HM, et al. Combination of vitamin C and curcumin safeguards against methotrexate-induced acute liver injury in mice by synergistic antioxidant effects. Front Med (Lausanne). 2022;9:866343. doi: 10.3389/fmed.2022.866343
  • Alotaibi B, Negm WA, Elekhnawy E, et al. Antibacterial, immunomodulatory, and lung protective effects of boswellia dalzielii oleoresin ethanol extract in pulmonary diseases: in vitro and in vivo studies. Antibiotics. 2021;10(12):1444. doi: 10.3390/antibiotics10121444
  • Fan F, Liu Y, Liu Y, et al. C. albicans biofilms: antifungal resistance, immune evasion, and emerging therapeutic strategies. Int J Antimicrob Agents. 2022;106673(5–6):106673. doi: 10.1016/j.ijantimicag.2022.106673
  • Murray CJL, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–655. doi: 10.1016/S0140-6736(21)02724-0
  • Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Natural Prod. 2020;83(3):770–803. doi: 10.1021/acs.jnatprod.9b01285
  • Zain ME, Awaad AS, Al-Outhman MR, et al. Antimicrobial activities of Saudi Arabian desert plants. Phytopharmacology. 2012;2(1):106–113.
  • El-Aarag B, Khairy A, Khalifa SAM, et al. Protective effects of flavone from Tamarix aphylla against CCl4-induced liver injury in mice mediated by suppression of oxidative stress, apoptosis and angiogenesis. Int J Mol Sci. 2019;20(20):5215. doi: 10.3390/ijms20205215
  • Shelby BD, Nelson A, Morris C. γ‐Herpesvirus neoplasia: a growing role for COX‐2. Microsc Res Tech. 2005;68(3‐4):120–129. doi: 10.1002/jemt.20226
  • Ali M, Alhazmi HA, Ansari S, et al. Tamarix aphylla (L.) Karst. Phytochemical and bioactive profile compilations of less discussed but effective naturally growing Saudi plant. In: Plant and human health. 2019;Vol. 3. Springer:p. 343–352. doi: 10.1007/978-3-030-04408-4_16
  • Almatroodi SA, Khan AA, Aloliqi AA, et al. Therapeutic potential of Tamarix aphylla in the prevention of lung injury through the regulation of inflammation, oxidative stress and cell-signaling molecules. Appl Sci. 2022;12(19):9925. doi: 10.3390/app12199925

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.