1,011
Views
0
CrossRef citations to date
0
Altmetric
Review

Understanding Staphylococcus aureus internalisation and induction of antimicrobial tolerance

ORCID Icon & ORCID Icon
Pages 87-101 | Received 13 Nov 2023, Accepted 04 Jan 2024, Published online: 10 Jan 2024

References

  • Antimicrobial Resistance C, Ikuta KS, Sharara F. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet. 2022 Feb 12;399(10325):629–655.
  • WHO. 2017. WHO publishes list of bacteria for which new antibiotics are urgently needed. Available from: https://wwwwhoint/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
  • Williams RE. Healthy carriage of staphylococcus aureus: its prevalence and importance. Bacteriol Rev. 1963 Mar;27(1):56–71. doi: 10.1128/br.27.1.56-71.1963
  • Aguila A, Herrera AG, Morrison D, et al. Bacteriostatic activity of human lactoferrin against staphylococcus aureus is a function of its iron-binding properties and is not influenced by antibiotic resistance. FEMS Immunol Med Microbiol. 2001 Aug;31(2):145–152.
  • Wertheim HF, Melles DC, Vos MC, et al. The role of nasal carriage in staphylococcus aureus infections. Lancet Infect Dis. 2005 Dec;5(12):751–762.
  • Liu GY. Molecular pathogenesis of staphylococcus aureus infection. Pediatr Res. 2009 May;65(5 Pt 2):71R–77R. doi: 10.1203/PDR.0b013e31819dc44d
  • Bogaert D, van Belkum A, Sluijter M, et al. Colonisation by streptococcus pneumoniae and staphylococcus aureus in healthy children. Lancet. 2004 Jun 5;363(9424):1871–1872. doi: 10.1016/S0140-6736(04)16357-5
  • Shinefield HR, Wilsey JD, Ribble JC, et al. Interactions of staphylococcal colonization. Influence of normal nasal flora and antimicrobials on inoculated staphylococcus aureus strain 502A. Am J Dis Child. 1966 Jan;111(1):11–21.
  • Kluytmans J, van Belkum A, Verbrugh H. Nasal carriage of staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev. 1997 Jul;10(3):505–520. doi: 10.1128/CMR.10.3.505
  • van Belkum A, Melles DC, Nouwen J, et al. Co-evolutionary aspects of human colonisation and infection by Staphylococcus aureus. Infect Genet Evol. 2009 Jan;9(1):32–47.
  • Nouwen J, Boelens H, van Belkum A, et al. Human factor in Staphylococcus aureus nasal carriage. Infect Immun. 2004 Nov;72(11):6685–6688.
  • Piewngam P, Zheng Y, Nguyen TH, et al. Pathogen elimination by probiotic bacillus via signalling interference. Nature. 2018 Oct;562(7728):532–537.
  • Raineri EJM, Altulea D, van Dijl JM. Staphylococcal trafficking and infection-from ‘nose to gut’ and back. FEMS Microbiol Rev. 2022 Jan 18;46(1). doi: 10.1093/femsre/fuab041
  • Gonzalez BE, Martinez-Aguilar G, Hulten KG, et al. Severe staphylococcal sepsis in adolescents in the era of community-acquired methicillin-resistant Staphylococcus aureus. Pediatrics. 2005 Mar;115(3):642–648.
  • Fridkin SK, Hageman JC, Morrison M, et al. Methicillin-resistant Staphylococcus aureus disease in three communities. N Engl J Med. 2005 Apr 7;352(14):1436–1444. doi: 10.1056/NEJMoa043252
  • von Eiff C, Becker K, Machka K, et al. Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group N Engl J Med. 2001 Jan 4;344(1):11–16. doi: 10.1056/NEJM200101043440102
  • Lowy FD. Staphylococcus aureus infections. N Engl J Med. 1998 Aug 20;339(8):520–532. doi: 10.1056/NEJM199808203390806
  • Cheung GYC, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence. 2021 Dec;12(1):547–569. doi: 10.1080/21505594.2021.1878688
  • Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol. 2011 Feb;30(1):16–34. doi: 10.3109/08830185.2010.529976
  • Jenul C, Horswill AR, Fischetti VA, et al. Regulation of Staphylococcus aureus Virulence. Microbiol Spectr. 2019 Apr 5;7(2):10.1128. doi: 10.1128/microbiolspec.GPP3-0031-2018
  • Foster TJ. Immune evasion by staphylococci. Nat Rev Microbiol. 2005 Dec;3(12):948–58. doi: 10.1038/nrmicro1289
  • Prince A, Wong Fok Lung T. Consequences of metabolic interactions during Staphylococcus aureus infection. Toxins (Basel). 2020 Sep 9;12(9):581. doi: 10.3390/toxins12090581
  • Lekstrom-Himes JA, Gallin JI, Mackay IR, et al. Immunodeficiency diseases caused by defects in phagocytes. N Engl J Med. 2000 Dec 7;343(23):1703–1714. doi: 10.1056/NEJM200012073432307
  • Bestebroer J, Poppelier MJ, Ulfman LH, et al. Staphylococcal superantigen-like 5 binds PSGL-1 and inhibits P-selectin-mediated neutrophil rolling. Blood. 2007 Apr 1;109(7):2936–2943. doi: 10.1182/blood-2006-06-015461
  • Itoh S, Hamada E, Kamoshida G, et al. Staphylococcal superantigen-like protein 10 (SSL10) binds to human immunoglobulin G (IgG) and inhibits complement activation via the classical pathway. Mol Immunol. 2010 Jan;47(4):932–938.
  • de Haas CJ, Veldkamp KE, Peschel A, et al. Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J Exp Med. 2004 Mar 1;199(5):687–695. doi: 10.1084/jem.20031636
  • Walenkamp AM, Boer IG, Bestebroer J, et al. Staphylococcal superantigen-like 10 inhibits CXCL12-induced human tumor cell migration. Neoplasia. 2009 Apr;11(4):333–344.
  • Postma B, Poppelier MJ, van Galen JC, et al. Chemotaxis inhibitory protein of Staphylococcus aureus binds specifically to the C5a and formylated peptide receptor. J Immunol. 2004 Jun 1;172(11):6994–7001. doi: 10.4049/jimmunol.172.11.6994
  • Laarman AJ, Mijnheer G, Mootz JM, et al. Staphylococcus aureus staphopain a inhibits CXCR2-dependent neutrophil activation and chemotaxis. EMBO J. 2012 Aug 29;31(17):3607–3619. doi: 10.1038/emboj.2012.212
  • Higgins J, Loughman A, van Kessel KP, et al. Clumping factor a of Staphylococcus aureus inhibits phagocytosis by human polymorphonuclear leucocytes. FEMS Microbiol Lett. 2006 May;258(2):290–296.
  • Forsgren A, Sjoquist J. “Protein A” from S. aureus. I. Pseudo-immune reaction with human gamma-globulin. J Immunol. 1966 Dec;97(6):822–827. doi: 10.4049/jimmunol.97.6.822
  • Smith EJ, Visai L, Kerrigan SW, et al. The Sbi protein is a multifunctional immune evasion factor of Staphylococcus aureus. Infect Immun. 2011 Sep;79(9):3801–3809.
  • Atkins KL, Burman JD, Chamberlain ES, et al. S. aureus IgG-binding proteins SpA and Sbi: host specificity and mechanisms of immune complex formation. Mol Immunol. 2008 Mar;45(6):1600–1611.
  • Pidwill GR, Gibson JF, Cole J, et al. The role of macrophages in Staphylococcus aureus infection. Front Immunol. 2020;11:620339. doi: 10.3389/fimmu.2020.620339
  • O’Riordan K, Lee JC. Staphylococcus aureus capsular polysaccharides. Clin Microbiol Rev. 2004 Jan;17(1):218–234. doi: 10.1128/CMR.17.1.218-234.2004
  • Kuipers A, Stapels DAC, Weerwind LT, et al. The Staphylococcus aureus polysaccharide capsule and Efb-dependent fibrinogen shield act in concert to protect against phagocytosis. Microbiology (Reading). 2016 Jul;162(7):1185–1194.
  • Song L, Hobaugh MR, Shustak C, et al. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science. 1996 Dec 13;274(5294):1859–1866. doi: 10.1126/science.274.5294.1859
  • Spaan AN, van Strijp JAG, Torres VJ. Leukocidins: staphylococcal bi-component pore-forming toxins find their receptors. Nat Rev Microbiol. 2017 Jul;15(7):435–447. doi: 10.1038/nrmicro.2017.27
  • Haider S, Wright D. Panton-valentine leukocidin Staphylococcus causing fatal necrotising pneumonia in a young boy. BMJ Case Rep. 2013 Mar 14;2013(mar14 1):bcr2012007655–bcr2012007655.
  • Cheung GY, Joo HS, Chatterjee SS, et al. Phenol-soluble modulins–critical determinants of staphylococcal virulence. FEMS Microbiol Rev. 2014 Jul;38(4):698–719. doi: 10.1111/1574-6976.12057
  • Hayes SM, Howlin R, Johnston DA, et al. Intracellular residency of Staphylococcus aureus within mast cells in nasal polyps: a novel observation. J Allergy Clin Immunol. 2015 Jun;135(6):1648–1651.
  • Clement S, Vaudaux P, Francois P, et al. Evidence of an intracellular reservoir in the nasal mucosa of patients with recurrent Staphylococcus aureus rhinosinusitis. J Infect Dis. 2005 Sep 15;192(6):1023–1028. doi: 10.1086/432735
  • Zautner AE, Krause M, Stropahl G, et al. Intracellular persisting Staphylococcus aureus is the major pathogen in recurrent tonsillitis. PloS One. 2010 Mar 1;5(3):e9452. doi: 10.1371/journal.pone.0009452
  • Li C, Wu Y, Riehle A, et al. Staphylococcus aureus survives in cystic fibrosis macrophages, forming a reservoir for chronic pneumonia. Infect Immun. 2017 May;85(5):e00883–e008816.
  • Sendi P, Rohrbach M, Graber P, et al. Staphylococcus aureus small colony variants in prosthetic joint infection. Clin Infect Dis. 2006 Oct 15;43(8):961–967. doi: 10.1086/507633
  • Rigaill J, Gavid M, Fayolle M, et al. Staphylococcus aureus nasal colonization level and intracellular reservoir: a prospective cohort study. Eur J Clin Microbiol Infect Dis. 2023 May;42(5):621–629. doi: 10.1007/s10096-023-04591-z
  • Hanssen AM, Kindlund B, Stenklev NC, et al. Localization of Staphylococcus aureus in tissue from the nasal vestibule in healthy carriers. BMC Microbiol. 2017 Apr 5;17(1):89. doi: 10.1186/s12866-017-0997-3
  • Lehar SM, Pillow T, Xu M, et al. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. Nature. 2015 Nov 19;527(7578):323–328. doi: 10.1038/nature16057
  • Moldovan A, Fraunholz MJ. In or out: phagosomal escape of Staphylococcus aureus. Cell Microbiol. 2019 Mar;21(3):e12997. doi: 10.1111/cmi.12997
  • Surewaard BG, Deniset JF, Zemp FJ, et al. Identification and treatment of the Staphylococcus aureus reservoir in vivo. J Exp Med. 2016 Jun 27;213(7):1141–1151. doi: 10.1084/jem.20160334
  • Kubica M, Guzik K, Koziel J, et al. A potential new pathway for Staphylococcus aureus dissemination: the silent survival of S. aureus phagocytosed by human monocyte-derived macrophages. PloS One. 2008 Jan 9;3(1):e1409. doi: 10.1371/journal.pone.0001409
  • Thwaites GE, Gant V. Are bloodstream leukocytes trojan horses for the metastasis of Staphylococcus aureus? Nat Rev Microbiol. 2011 Mar;9(3):215–222. doi: 10.1038/nrmicro2508
  • Velasco E, Byington R, Martins CA, et al. Comparative study of clinical characteristics of neutropenic and non-neutropenic adult cancer patients with bloodstream infections. Eur J Clin Microbiol Infect Dis. 2006 Jan;25(1):1–7.
  • Venditti M, Falcone M, Micozzi A, et al. Staphylococcus aureus bacteremia in patients with hematologic malignancies: a retrospective case-control study. Haematologica. 2003 Aug;88(8):923–930.
  • Krezalek MA, Hyoju S, Zaborin A, et al. Can methicillin-resistant Staphylococcus aureus silently travel from the gut to the wound and cause postoperative infection? Modeling the “trojan horse hypothesis”. Ann Surg. 2018 Apr;267(4):749–758.
  • Pollitt EJG, Szkuta PT, Burns N, et al. Staphylococcus aureus infection dynamics. PLOS Pathog. 2018 Jun;14(6):e1007112.
  • Kinchen JM, Ravichandran KS. Phagosome maturation: going through the acid test. Nat Rev Mol Cell Biol. 2008 Oct;9(10):781–795. doi: 10.1038/nrm2515
  • Vergne I, Fratti RA, Hill PJ, et al. Mycobacterium tuberculosis phagosome maturation arrest: mycobacterial phosphatidylinositol analog phosphatidylinositol mannoside stimulates early endosomal fusion. Mol Biol Cell. 2004 Feb;15(2):751–760.
  • Alvarez-Dominguez C, Roberts R, Stahl PD. Internalized listeria monocytogenes modulates intracellular trafficking and delays maturation of the phagosome. J Cell Sci. 1997 Mar;110(Pt 6):731–743. doi: 10.1242/jcs.110.6.731
  • Flannagan RS, Heit B, Heinrichs DE. Intracellular replication of Staphylococcus aureus in mature phagolysosomes in macrophages precedes host cell death, and bacterial escape and dissemination. Cell Microbiol. 2016 Apr;18(4):514–535. doi: 10.1111/cmi.12527
  • Tranchemontagne ZR, Camire RB, O’Donnell VJ, et al. Staphylococcus aureus strain USA300 perturbs acquisition of lysosomal enzymes and requires phagosomal acidification for survival inside macrophages. Infect Immun. 2016 Jan;84(1):241–53.
  • Jubrail J, Morris P, Bewley MA, et al. Inability to sustain intraphagolysosomal killing of Staphylococcus aureus predisposes to bacterial persistence in macrophages. Cell Microbiol. 2016 Jan;18(1):80–96.
  • Rathman M, Sjaastad MD, Falkow S. Acidification of phagosomes containing salmonella typhimurium in murine macrophages. Infect Immun. 1996 Jul;64(7):2765–2773. doi: 10.1128/iai.64.7.2765-2773.1996
  • Flannagan RS, Kuiack RC, McGavin MJ, et al. Staphylococcus aureus uses the GraXRS regulatory system to sense and adapt to the acidified phagolysosome in macrophages. MBio. 2018 Jul 17;9(4). doi: 10.1128/mBio.01143-18
  • Sedlyarov V, Eichner R, Girardi E, et al. The bicarbonate transporter SLC4A7 plays a key role in macrophage phagosome acidification. Cell Host Microbe. 2018 Jun 13;23(6):766–774 e5. doi: 10.1016/j.chom.2018.04.013
  • Nathan C, Shiloh MU. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8841–8848. doi: 10.1073/pnas.97.16.8841
  • Gaupp R, Ledala N, Somerville GA. Staphylococcal response to oxidative stress. Front Cell Infect Microbiol. 2012;2:33. doi: 10.3389/fcimb.2012.00033
  • Clauditz A, Resch A, Wieland KP, et al. Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infect Immun. 2006 Aug;74(8):4950–4953.
  • Liu GY, Essex A, Buchanan JT, et al. Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J Exp Med. 2005 Jul 18;202(2):209–215. doi: 10.1084/jem.20050846
  • Olivier AC, Lemaire S, Van Bambeke F, et al. Role of rsbU and staphyloxanthin in phagocytosis and intracellular growth of Staphylococcus aureus in human macrophages and endothelial cells. J Infect Dis. 2009 Nov 1;200(9):1367–1370. doi: 10.1086/606012
  • Cosgrove K, Coutts G, Jonsson IM, et al. Catalase (KatA) and alkyl hydroperoxide reductase (AhpC) have compensatory roles in peroxide stress resistance and are required for survival, persistence, and nasal colonization in Staphylococcus aureus. J Bacteriol. 2007 Feb;189(3):1025–1035.
  • Horsburgh MJ, Clements MO, Crossley H, et al. PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in Staphylococcus aureus. Infect Immun. 2001 Jun;69(6):3744–3754.
  • Horsburgh MJ, Ingham E, Foster SJ. In Staphylococcus aureus, fur is an interactive regulator with PerR, contributes to virulence, and is necessary for oxidative stress resistance through positive regulation of catalase and iron homeostasis. J Bacteriol. 2001 Jan;183(2):468–475. doi: 10.1128/JB.183.2.468-475.2001
  • de Jong NWM, Ramyar KX, Guerra FE, et al. Immune evasion by a staphylococcal inhibitor of myeloperoxidase. Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):9439–9444. doi: 10.1073/pnas.1707032114
  • Nguyen GT, Green ER, Mecsas J. Neutrophils to the ROScue: mechanisms of NADPH oxidase activation and bacterial resistance. Front Cell Infect Microbiol. 2017;7:373. doi: 10.3389/fcimb.2017.00373
  • Richardson AR, Libby SJ, Fang FC. A nitric oxide-inducible lactate dehydrogenase enables Staphylococcus aureus to resist innate immunity. Science. 2008 Mar 21;319(5870):1672–1676. doi: 10.1126/science.1155207
  • Richardson AR, Dunman PM, Fang FC. The nitrosative stress response of Staphylococcus aureus is required for resistance to innate immunity. Mol Microbiol. 2006 Aug;61(4):927–39. doi: 10.1111/j.1365-2958.2006.05290.x
  • Peschel A, Otto M, Jack RW, et al. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem. 1999 Mar 26;274(13):8405–8410. doi: 10.1074/jbc.274.13.8405
  • Peschel A, Jack RW, Otto M, et al. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J Exp Med. 2001 May 7;193(9):1067–1076. doi: 10.1084/jem.193.9.1067
  • Li M, Cha DJ, Lai Y, et al. The antimicrobial peptide-sensing system aps of Staphylococcus aureus. Mol Microbiol. 2007 Dec;66(5):1136–1147.
  • Falord M, Karimova G, Hiron A, et al. GraXSR proteins interact with the VraFG ABC transporter to form a five-component system required for cationic antimicrobial peptide sensing and resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 2012 Feb;56(2):1047–1058.
  • Lai Y, Villaruz AE, Li M, et al. The human anionic antimicrobial peptide dermcidin induces proteolytic defence mechanisms in staphylococci. Mol Microbiol. 2007 Jan;63(2):497–506.
  • Jin T, Bokarewa M, Foster T, et al. Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol. 2004 Jan 15;172(2):1169–1176. doi: 10.4049/jimmunol.172.2.1169
  • Laarman AJ, Ruyken M, Malone CL, et al. Staphylococcus aureus metalloprotease aureolysin cleaves complement C3 to mediate immune evasion. J Immunol. 2011 Jun 1;186(11):6445–6453. doi: 10.4049/jimmunol.1002948
  • Sieprawska-Lupa M, Mydel P, Krawczyk K, et al. Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother. 2004 Dec;48(12):4673–4679.
  • Bera A, Herbert S, Jakob A, et al. Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol Microbiol. 2005 Feb;55(3):778–787. doi: 10.1111/j.1365-2958.2004.04446.x
  • Strobel M, Pfortner H, Tuchscherr L, et al. Post-invasion events after infection with Staphylococcus aureus are strongly dependent on both the host cell type and the infecting S. aureus strain. Clin Microbiol Infect. 2016 Sep;22(9):799–809.
  • Walter N, Mendelsohn D, Brochhausen C, et al. Intracellular S. aureus in osteoblasts in a clinical sample from a patient with chronic osteomyelitis-a case report. Pathogens. 2021 Aug 22;10(8):1064. doi: 10.3390/pathogens10081064
  • Yokota M, Haffner N, Kassier M, et al. Staphylococcus aureus impairs dermal fibroblast functions with deleterious effects on wound healing. FASEB J. 2021 Jul;35(7):e21695.
  • Josse J, Laurent F, Diot A. Staphylococcal adhesion and host cell invasion: fibronectin-binding and other mechanisms. Front Microbiol. 2017;8:2433. doi: 10.3389/fmicb.2017.02433
  • Foster TJ, Geoghegan JA, Ganesh VK, et al. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol. 2014 Jan;12(1):49–62.
  • Horn J, Stelzner K, Rudel T, et al. Inside job: Staphylococcus aureus host-pathogen interactions. Int J Med Microbiol. 2018 Aug;308(6):607–624. doi: 10.1016/j.ijmm.2017.11.009
  • Soe YM, Bedoui S, Stinear TP, et al. Intracellular Staphylococcus aureus and host cell death pathways. Cell Microbiol. 2021 May;23(5):e13317.
  • Grosz M, Kolter J, Paprotka K, et al. Cytoplasmic replication of Staphylococcus aureus upon phagosomal escape triggered by phenol-soluble modulin alpha. Cell Microbiol. 2014 Apr;16(4):451–465.
  • Loffler B, Tuchscherr L, Niemann S, et al. Staphylococcus aureus persistence in non-professional phagocytes. Int J Med Microbiol. 2014 Mar;304(2):170–176. doi: 10.1016/j.ijmm.2013.11.011
  • Al Kindi A, Alkahtani AM, Nalubega M, et al. Staphylococcus aureus internalized by skin keratinocytes evade antibiotic killing. Front Microbiol. 2019;10:2242. doi: 10.3389/fmicb.2019.02242
  • Barcia-Macay M, Seral C, Mingeot-Leclercq MP, et al. Pharmacodynamic evaluation of the intracellular activities of antibiotics against Staphylococcus aureus in a model of THP-1 macrophages. Antimicrob Agents Chemother. 2006 Mar;50(3):841–851.
  • Sandberg A, Hessler JH, Skov RL, et al. Intracellular activity of antibiotics against Staphylococcus aureus in a mouse peritonitis model. Antimicrob Agents Chemother. 2009 May;53(5):1874–1883.
  • Carryn S, Chanteux H, Seral C, et al. Intracellular pharmacodynamics of antibiotics. Infect Dis Clin North Am. 2003 Sep;17(3):615–634.
  • Van Bambeke F, Barcia-Macay M, Lemaire S, et al. Cellular pharmacodynamics and pharmacokinetics of antibiotics: current views and perspectives. Curr Opin Drug Discovery Dev. 2006 Mar;9(2):218–230.
  • Lemaire S, Tulkens PM, Van Bambeke F. Contrasting effects of acidic pH on the extracellular and intracellular activities of the anti-gram-positive fluoroquinolones moxifloxacin and delafloxacin against Staphylococcus aureus. Antimicrob Agents Chemother. 2011 Feb;55(2):649–658. doi: 10.1128/AAC.01201-10
  • Balaban NQ, Helaine S, Lewis K, et al. Definitions and guidelines for research on antibiotic persistence. Nat Rev Microbiol. 2019 Jul;17(7):441–448. doi: 10.1038/s41579-019-0196-3
  • Rowe SE, Wagner NJ, Li L, et al. Reactive oxygen species induce antibiotic tolerance during systemic Staphylococcus aureus infection. Nat Microbiol. 2020 Feb;5(2):282–290.
  • Beam JE, Wagner NJ, Shook JC, et al. Macrophage-produced peroxynitrite induces antibiotic tolerance and supersedes intrinsic mechanisms of persister formation. Infect Immun. 2021 Sep 16;89(10):e0028621. doi: 10.1128/IAI.00286-21
  • Peyrusson F, Nguyen TK, Najdovski T, et al. Host cell oxidative stress induces dormant Staphylococcus aureus persisters. Microbiol Spectr. 2022 Feb 23;10(1):e0231321. doi: 10.1128/spectrum.02313-21
  • Peyrusson F, Varet H, Nguyen TK, et al. Intracellular Staphylococcus aureus persisters upon antibiotic exposure. Nat Commun. 2020 May 4;11(1):2200. doi: 10.1038/s41467-020-15966-7
  • Yaginuma H, Kawai S, Tabata KV, et al. Diversity in ATP concentrations in a single bacterial cell population revealed by quantitative single-cell imaging. Sci Rep. 2014 Oct 6;4(1):6522. doi: 10.1038/srep06522
  • Lobas MA, Tao R, Nagai J, et al. A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP. Nat Commun. 2019 Feb 12;10(1):711. doi: 10.1038/s41467-019-08441-5
  • Kaplan Y, Reich S, Oster E, et al. Observation of universal ageing dynamics in antibiotic persistence. Nature. 2021 Dec;600(7888):290–294.
  • Geiger T, Francois P, Liebeke M, et al. The stringent response of Staphylococcus aureus and its impact on survival after phagocytosis through the induction of intracellular PSMs expression. PLOS Pathog. 2012;8(11):e1003016. doi: 10.1371/journal.ppat.1003016
  • Goormaghtigh F, Van Melderen L. Single-cell imaging and characterization of Escherichia coli persister cells to ofloxacin in exponential cultures. Sci Adv. 2019 Jun;5(6):eaav9462. doi: 10.1126/sciadv.aav9462
  • Volzing KG, Brynildsen MP, Ausubel FM. Stationary-phase persisters to ofloxacin sustain DNA damage and require repair systems only during recovery. MBio. 2015 Sep 1;6(5):e00731–e00815. doi: 10.1128/mBio.00731-15
  • Miller C, Thomsen LE, Gaggero C, et al. SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science. 2004 Sep 10;305(5690):1629–1631. doi: 10.1126/science.1101630
  • Buchmeier NA, Heffron F. Induction of salmonella stress proteins upon infection of macrophages. Science. 1990 May 11;248(4956):730–732. doi: 10.1126/science.1970672
  • Jones CH, Bolken TC, Jones KF, et al. Conserved DegP protease in gram-positive bacteria is essential for thermal and oxidative tolerance and full virulence in Streptococcus pyogenes. Infect Immun. 2001 Sep;69(9):5538–5545.
  • Johnson K, Charles I, Dougan G, et al. The role of a stress-response protein in Salmonella typhimurium virulence. Mol Microbiol. 1991 Feb;5(2):401–407. doi: 10.1111/j.1365-2958.1991.tb02122.x
  • Schuster CF, Bertram R. Toxin-antitoxin systems of Staphylococcus aureus. Toxins (Basel). 2016 May 5;8(5):140. doi: 10.3390/toxins8050140
  • Proctor RA, van Langevelde P, Kristjansson M, et al. Persistent and relapsing infections associated with small-colony variants of Staphylococcus aureus. Clin Infect Dis. 1995 Jan;20(1):95–102.
  • Tuchscherr L, Loffler B, Proctor RA. Persistence of Staphylococcus aureus: multiple metabolic pathways impact the expression of virulence factors in small-colony variants (SCVs). Front Microbiol. 2020;11:1028. doi: 10.3389/fmicb.2020.01028
  • Kahl BC, Becker K, Loffler B. Clinical significance and pathogenesis of staphylococcal small colony variants in persistent infections. Clin Microbiol Rev. 2016 Apr;29(2):401–427. doi: 10.1128/CMR.00069-15
  • Proctor RA, von Eiff C, Kahl BC, et al. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol. 2006 Apr;4(4):295–305.
  • Painter KL, Strange E, Parkhill J, et al. Staphylococcus aureus adapts to oxidative stress by producing H2O2-resistant small-colony variants via the SOS response. Infect Immun. 2015 May;83(5):1830–1844.
  • Tuchscherr L, Heitmann V, Hussain M, et al. Staphylococcus aureus small-colony variants are adapted phenotypes for intracellular persistence. J Infect Dis. 2010 Oct 1;202(7):1031–1040. doi: 10.1086/656047
  • Acar JF, Goldstein FW, Lagrange P. Human infections caused by thiamine- or menadione-requiring Staphylococcus aureus. J Clin Microbiol. 1978 Aug;8(2):142–147. doi: 10.1128/jcm.8.2.142-147.1978
  • Besier S, Smaczny C, von Mallinckrodt C, et al. Prevalence and clinical significance of Staphylococcus aureus small-colony variants in cystic fibrosis lung disease. J Clin Microbiol. 2007 Jan;45(1):168–172. doi: 10.1128/JCM.01510-06
  • Balaban NQ, Merrin J, Chait R, et al. Bacterial persistence as a phenotypic switch. Science. 2004 Sep 10;305(5690):1622–1625. doi: 10.1126/science.1099390
  • Huemer M, Mairpady Shambat S, Bergada-Pijuan J, et al. Molecular reprogramming and phenotype switching in Staphylococcus aureus lead to high antibiotic persistence and affect therapy success. Proc Natl Acad Sci U S A. 2021 Feb 16;118(7):e2014920118. doi: 10.1073/pnas.2014920118
  • Hommes JW, Surewaard BGJ. Intracellular habitation of Staphylococcus aureus: molecular mechanisms and prospects for antimicrobial therapy. Biomedicines. 2022 Jul 27;10(8):1804. doi: 10.3390/biomedicines10081804
  • Conlon BP, Nakayasu ES, Fleck LE, et al. Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature. 2013 Nov 21;503(7476):365–370. doi: 10.1038/nature12790
  • Dombach JL, Quintana JLJ, Detweiler CS, et al. Staphylococcal Bacterial Persister Cells, Biofilms, and Intracellular Infection Are Disrupted by JD1, a Membrane-Damaging Small Molecule. MBio. 2021 Oct 26;12(5):e0180121. doi: 10.1128/mBio.01801-21
  • Ganesan N, Mishra B, Felix L, et al. Antimicrobial peptides and small molecules targeting the cell membrane of Staphylococcus aureus. Microbiol Mol Biol Rev. 2023 Jun 28;87(2):e0003722. doi: 10.1128/mmbr.00037-22
  • Brinch KS, Sandberg A, Baudoux P, et al. Plectasin shows intracellular activity against Staphylococcus aureus in human THP-1 monocytes and in a mouse peritonitis model. Antimicrob Agents Chemother. 2009 Nov;53(11):4801–4808.
  • Bai S, Song J, Pu H, et al. Chemical Biology Approach to Reveal the Importance of Precise Subcellular Targeting for Intracellular Staphylococcus aureus Eradication. J Am Chem Soc. 2023 Oct 25;145(42):23372–23384. doi: 10.1021/jacs.3c09587
  • Mohamed MF, Abdelkhalek A, Seleem MN. Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus. Sci Rep. 2016 Jul 11;6(1):29707. doi: 10.1038/srep29707
  • Zhao H, Brooks SA, Eszterhas S, et al. Globally deimmunized lysostaphin evades human immune surveillance and enables highly efficacious repeat dosing. Sci Adv. 2020 Sep;6(36):eabb9011.
  • Kolenda C, Josse J, Medina M, et al. Evaluation of the activity of a combination of three bacteriophages alone or in association with antibiotics on Staphylococcus aureus embedded in biofilm or internalized in Osteoblasts. Antimicrob Agents Chemother. 2020 Feb 21;64(3):e02231–e02319. doi: 10.1128/AAC.02231-19
  • Mannala GK, Rupp M, Walter N, et al. Microbiological and ultrastructural evaluation of bacteriophage 191219 against planktonic, intracellular and biofilm infection with staphylococcus aureus. Eur Cell Mater. 2022 Feb 24;43:66–78. doi: 10.22203/eCM.v043a07
  • McCarthy MW. Exebacase: a novel approach to the treatment of staphylococcal infections. Drugs R D. 2022 Jun;22(2):113–117. doi: 10.1007/s40268-022-00383-6
  • Guo L, Xu R, Zhao Y, et al. Gas plasma pre-treatment increases antibiotic sensitivity and persister eradication in methicillin-resistant staphylococcus aureus. Front Microbiol. 2018;9:537. doi: 10.3389/fmicb.2018.00537
  • Duchesne C, Frescaline N, Blaise O, et al. Cold atmospheric plasma promotes killing of staphylococcus aureus by macrophages. mSphere. mSphere. 2021 Jun 16;6(3):e0021721. doi: 10.1128/mSphere.00217-21

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.