117
Views
0
CrossRef citations to date
0
Altmetric
Original Article

A new approach to map-based monitoring of logging-induced changes in soil penetration resistance

, , , ORCID Icon &
Pages 270-283 | Received 02 Mar 2023, Accepted 21 Dec 2023, Published online: 07 Jan 2024

References

  • Aalijahan M, Khosravichenar A. 2021. A multimethod analysis for average annual precipitation mapping in the Khorasan Razavi Province (Northeastern Iran). Atmosphere. 12(5):592. doi: 10.3390/atmos12050592.
  • Adhikary SK, Muttil N, Yilmaz AG. 2017. Cokriging for enhanced spatial interpolation of rainfall in two Australian catchments. Hydrol Process. 31(12):2143–2161. doi: 10.1002/hyp.11163.
  • Agherkakli B, Najafi A, Sadeghi SH. 2010. Ground based operation effects on soil disturbance by steel tracked skidder in a steep slope of forest. J For Sci. 56(6):278–284. doi: 10.17221/93/2009-JFS.
  • Akay A, Erdaş O. 2007. Orman traktörü ile sürütme sırasında oluşan tekerlek izi derinliğinin hesaplanması [Estimating rut depth during skidding with a rubber-tired skidder]. Turk J For. 8(1):49–57. Turkish. doi:10.18182/tjf.95509.
  • Akgul M, Akburak S, Yurtseven H, Akay AO, Cigizoglu HK, Demir M, Ozturk T, Eksi M. 2019. Potential impacts of weather and traffic conditions on road surface performance in terms of forest operations continuity. Appl Ecol Env Res. 17(2):2533–2550. [accessed 2022 Sep 16]. doi:10.15666/aeer/1702_25332550.
  • Alaoui A, Diserens E. 2018. Mapping soil compaction – a review. Curr Opin Environ Sci Health. 5:60–66. doi: 10.1016/j.coesh.2018.05.003.
  • Alaoui A, Rogger M, Peth S, Blöschl G. 2018. Does soil compaction increase floods? A review. J Hydrol. 557:631–642. doi: 10.1016/j.jhydrol.2017.12.052.
  • Allman M, Dudáková Z, Jankovský M, Vlčková M, Juško V, Tomčík D. 2022. Soil compaction after increasing the number of wheeled tractors passes on forest soils in west Carpathians. Forests. 13(1):109. doi: 10.3390/f13010109.
  • Ampoorter E, Van Nevel L, De Vos B, Hermy M, Verheyen K. 2010. Assessing the effects of initial soil characteristics, machine mass and traffic intensity on forest soil compaction. For Ecol Manag. 260(10):1664–1676. doi: 10.1016/j.foreco.2010.08.002.
  • Andersson J, Dynesius M, Hjältén J. 2017. Short-term response to stump harvesting by the ground flora in boreal clearcuts. Scand J For Res. 32(3):239–245. doi: 10.1080/02827581.2016.1269943.
  • Arrouays D, Mulder VL, Richer-de-Forges AC. 2021. Soil mapping, digital soil mapping and soil monitoring over large areas and the dimensions of soil security – a review. Soil Secur. 5:100018. doi: 10.1016/j.soisec.2021.100018.
  • Beckett CTS, Bewsher S, Guzzomi AL, Lehane BM, Fourie AB, Riethmuller G. 2018. Evaluation of the dynamic cone penetrometer to detect compaction in ripped soils. Soil And Tillage Res. 175:150–157. doi: 10.1016/j.still.2017.09.009.
  • Belkhiri L, Tiri A, Mouni L. 2020. Spatial distribution of the groundwater quality using kriging and co-kriging interpolations. Groundw Sustain Dev. 11:100473. doi: 10.1016/j.gsd.2020.100473.
  • Bonnin JJ, Mirás-Avalos JM, Lanças KP, González AP, Vieira SR. 2010. Spatial variability of soil penetration resistance influenced by season of sampling. Bragantia. 69(suppl):163–173. doi: 10.1590/S0006-87052010000500017.
  • Brzeziński K, Ciężkowski P, Kwaśniewski A, Michalczyk R, Bąk S, Józefiak K. 2022. Soil compaction monitoring via photogrammetric settlement measurement – feasibility study. Measurement. 205:112164. doi: 10.1016/j.measurement.2022.112164.
  • Cambi M, Certini G, Neri F, Marchi E. 2015. The impact of heavy traffic on forest soils: a review. For Ecol Manag. 338:124–138. doi: 10.1016/j.foreco.2014.11.022.
  • Cambi M, Hoshika Y, Mariotti B, Paoletti E, Picchio R, Venanzi R, Marchi E. 2017. Compaction by a forest machine affects soil quality and Quercus robur L. seedling performance in an experimental field. For Ecol Manag. 384:406–414. doi: 10.1016/j.foreco.2016.10.045.
  • Castrignanò A, Maiorana M, Fornaro F, Lopez N. 2002. 3D spatial variability of soil strength and its change over time in a durum wheat field in Southern Italy. Soil And Tillage Res. 65(1):95–108. doi: 10.1016/S0167-1987(01)00288-4.
  • Cherubin M, Santi A, Basso C, Eitelwein M, Vian AL. 2011. Variabilidade da resistência a penetração do solo em função da dimensão da malha amostral. Rev Plantio Direto. 125(5):4–9.
  • Debiasi H, Franchini JC, de Oliveira FA, Machado TM. 2011. Ajuste de grades amostrais para o mapeamento da resistência à penetração de um Latossolo Bruno. Agricultura de Precisão: Um novo olhar. 138–42. http://www.alice.cnptia.embrapa.br/handle/doc/908820.
  • Demir M, Makineci E, Yilmaz E. 2007. Investigation of timber harvesting impacts on herbaceous cover, forest floor and surface soil properties on skid road in an oak (Quercus petrea L.) stand. Build Environ. 42(3):1194–1199. doi: 10.1016/j.buildenv.2005.11.008.
  • Edlund J, Keramati E, Servin M. 2013. A long-tracked bogie design for forestry machines on soft and rough terrain. J Terramechanics. 50(2):73–83. doi: 10.1016/j.jterra.2013.02.001.
  • Fentanes JP, Gould I, Duckett T, Pearson S, Cielniak G. 2018. 3-D soil compaction mapping through kriging-based exploration with a Mobile robot. IEEE Robot Autom Lett. 3(4):3066–3072. doi: 10.1109/LRA.2018.2849567.
  • Fernandes MMH, Coelho AP, da Silva MF, Bertonha RS, de Queiroz RF, Furlani CEA, Fernandes C. 2020. Estimation of soil penetration resistance with standardized moisture using modeling by artificial neural networks. CATENA. 189:104505. doi: 10.1016/j.catena.2020.104505.
  • Ghadernejad K, Shahgholi G, Mardani A, Chiyaneh HG. 2018. Prediction effect of farmyard manure, multiple passes and moisture content on clay soil compaction using adaptive neuro-fuzzy inference system. J Terramechanics. 77:49–57. doi: 10.1016/j.jterra.2018.03.002.
  • Głąb T, Gondek K. 2014. The influence of soil compaction and N fertilization on physico-chemical properties of Mollic Fluvisol soil under red clover/grass mixture. Geoderma. 226–227:204–212. doi: 10.1016/j.geoderma.2014.02.021.
  • Goovaerts P, Goovaerts D of C and EEP. 1997. Geostatistics for natural resources evaluation. New York: Oxford University Press.
  • Grečenko A, Prikner P. 2014. Tire rating based on soil compaction capacity. J Terramechanics. 52:77–92. doi: 10.1016/j.jterra.2013.08.001.
  • Hamza MA, Anderson WK. 2005. Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil And Tillage Res. 82(2):121–145. doi: 10.1016/j.still.2004.08.009.
  • Horn R, Vossbrink J, Peth S, Becker S. 2007. Impact of modern forest vehicles on soil physical properties. For Ecol Manag. 248(1):56–63. doi: 10.1016/j.foreco.2007.02.037.
  • Jaafari A, Najafi A, Zenner EK. 2014. Ground-based skidder traffic changes chemical soil properties in a mountainous oriental beech (fagus orientalis Lipsky) forest in Iran. J Terramechanics. 55:39–46. doi:10.1016/j.jterra.2014.06.001.
  • Keshavarzi A, Tuffour HO, Brevik EC, Ertunç G. 2021. Spatial variability of soil mineral fractions and bulk density in Northern Ireland: assessing the influence of topography using different interpolation methods and fractal analysis. CATENA. 207:105646. doi: 10.1016/j.catena.2021.105646.
  • Koren M, Slančík M, Suchomel J, Dubina J. 2015. Use of terrestrial laser scanning to evaluate the spatial distribution of soil disturbance by skidding operations. IForest - Biogeosciences For. 8(3):386. doi: 10.3832/ifor1165-007.
  • Lark RM, Dove D, Green SL, Richardson AE, Stewart H, Stevenson A. 2012. Spatial prediction of seabed sediment texture classes by cokriging from a legacy database of point observations. Sediment Geol. 281:35–49. doi: 10.1016/j.sedgeo.2012.07.009.
  • Majnounian B, Jourgholami M. 2013. Effects of rubber-tired cable skidder on soil compaction in Hyrcanian Forest. Croat J For Eng J Theory Appl For Eng. 34(1):123–135.
  • Marra E, Cambi M, Fernandez-Lacruz R, Giannetti F, Marchi E, Nordfjell T. 2018. Photogrammetric estimation of wheel rut dimensions and soil compaction after increasing numbers of forwarder passes. Scand J For Res. 33(6):613–620. doi: 10.1080/02827581.2018.1427789.
  • McNabb DH, Startsev AD, Nguyen H. 2001. Soil wetness and traffic level effects on bulk density and air-filled porosity of compacted boreal forest soils. Soil Sci Soc Am J. 65(4):1238–1247. doi: 10.2136/sssaj2001.6541238x.
  • Mouazen AM, Ramon H. 2002. A numerical–statistical hybrid modelling scheme for evaluation of draught requirements of a subsoiler cutting a sandy loam soil, as affected by moisture content, bulk density and depth. Soil And Tillage Res. 63(3):155–165. doi: 10.1016/S0167-1987(01)00243-4.
  • Naghdi R, Solgi A. 2014. Effects of skidder passes and Slope on Soil Disturbance in two Soil water contents. Croat J for Eng J Theory Appl for Eng. 35:73–80.
  • Naghdi R, Solgi A, Zenner EK. 2015. Soil disturbance caused by different skidding methods in mountainous forests of Northern Iran. Int J For Eng. 26(3):212–224. doi: 10.1080/14942119.2015.1099814.
  • Naghdi R, Solgi A, Zenner EK, Behjou FK. 2018. Soil physical properties degrade further on skid trails in the year following operations. J For Res. 29(1):93–101. doi: 10.1007/s11676-017-0413-8.
  • Patel SK, Mani I. 2011. Effect of multiple passes of tractor with varying normal load on subsoil compaction. J Terramechanics. 48(4):277–284. doi: 10.1016/j.jterra.2011.06.002.
  • de Pias OHC, Cherubin MR, Basso CJ, Santi AL, Molin JP, Bayer C. 2018. Soil penetration resistance mapping quality: effect of the number of subsamples. Acta Sci Agron [Internet]. [accessed 2023 Jan 20] 40(1): 34989. 10.4025/actasciagron.v40i1.34989
  • Picchio R, Mederski PS, Tavankar F. 2020. How and how much, do harvesting activities affect forest soil, regeneration and stands? Curr For Rep. 6(2):115–128. doi: 10.1007/s40725-020-00113-8.
  • Pouyat RV, Page-Dumroese DS, Patel-Weynand T, Geiser LH, editors. 2020. Forest and rangeland soils of the United States under changing conditions: a comprehensive science synthesis [Internet]. [place unknown]: Springer Nature; [accessed 2023 Jan 20]. doi: 10.1007/978-3-030-45216-2
  • Reichert JM, Cechin NF, Reinert DJ, Rodrigues MF, Suzuki LEAS. 2018. Ground-based harvesting operations of Pinus taeda affects structure and pore functioning of clay and sandy clay soils. Geoderma. 331:38–49. doi: 10.1016/j.geoderma.2018.06.012.
  • Rossiter DG. 2007. Co-kriging with the gstat package of the R environment for statistical computing. Holland: International Institute for Geo-information Science & Earth Observation (ITC).
  • Soares MF, Centeno LN, Timm LC, Mello CR, Kaiser DR, Beskow S. 2020. Identifying covariates to assess the spatial variability of saturated soil hydraulic conductivity using robust cokriging at the watershed scale. J Soil Sci Plant Nutr. 20(3):1491–1502. doi: 10.1007/s42729-020-00228-8.
  • Solgi A, Najafi A. 2014. The impacts of ground-based logging equipment on forest soil. J For Sci. 60(1):28–34. doi: 10.17221/76/2013-JFS.
  • Solgi A, Najafi A, Page-Dumroese DS, Zenner EK. 2020. Assessment of topsoil disturbance caused by different skidding machine types beyond the margins of the machine operating trail. Geoderma. 367:114238. doi: 10.1016/j.geoderma.2020.114238.
  • Team RC. 2013. R: a language and environment for statistical computing.
  • Tekin Y, Kul B, Okursoy R. 2008. Sensing and 3D Mapping of soil compaction. Sensors. 8(5):3447–3459. doi: 10.3390/s8053447.
  • Varol T, Emir T, Akgul M, Ozel HB, Acar HH, Cetin M. 2020. Impacts of small-scale mechanized logging equipment on soil compaction in forests. J Soil Sci Plant Nutr. 20(3):953–963. doi: 10.1007/s42729-020-00182-5.
  • Varol T, Ozel HB, Ertugrul M, Emir T, Tunay M, Cetin M, Sevik H. 2021. Prediction of soil-bearing capacity on forest roads by statistical approaches. Environ Monit Assess. 193(8):527. doi: 10.1007/s10661-021-09335-0.
  • Veronesi F, Corstanje R, Mayr T. 2012. Mapping soil compaction in 3D with depth functions. Soil And Tillage Res. 124:111–118. doi: 10.1016/j.still.2012.05.009.
  • Wagenbrenner JW, Robichaud PR, Brown RE. 2016. Rill erosion in burned and salvage logged western montane forests: effects of logging equipment type, traffic level, and slash treatment. J Hydrol. 541:889–901. doi: 10.1016/j.jhydrol.2016.07.049.
  • Wan H, Li J, Shang S, Rahman KU. 2021. Exploratory factor analysis-based co-kriging method for spatial interpolation of multi-layered soil particle-size fractions and texture. J Soils Sediments. 21(12):3868–3887. doi: 10.1007/s11368-021-03044-4.
  • Vitlox O. 1998. Répartition de la pression de contact des pneumatiques déterminée par la mesure de déformation du sol. Journée à thème conjointe de Pédologie et de Génie Rural, FUSAGx-Gembloux. 65–69.
  • Zandi S, Ghobakhlou A, Sallis P. 2011. Evaluation of spatial interpolation techniques for mapping soil pH. In: Eval Spat Interpolat Tech Mapp Soil PH [Internet]. Perth, Australia: Modelling and Simulation Society of Australia and New Zealand. http://mssanz.org.au/modsim2011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.