223
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Automatic detection of root rot and resin in felled Scots pine stems using convolutional neural networks

ORCID Icon, , , , , , , & show all
Pages 153-165 | Received 20 Feb 2023, Accepted 01 Mar 2024, Published online: 14 Mar 2024

References

  • Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, et al. 2016. TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXivorg. https://arxiv.org/abs/1603.04467.
  • Abdulridha J, Ehsani R, de Castro A. 2016. Detection and differentiation between Laurel Wilt disease, phytophthora disease, and salinity damage using a hyperspectral sensing technique. Agriculture. 6(4):56. doi: 10.3390/agriculture6040056.
  • Alpaydin E. 2016. Introduction to machine learning. Cambridge, MA, USA: MIT Press.
  • Burdekin DA. 1972. A study of losses in scots pine caused by fomes annosus. Forestry. 45(2):189–196. doi: 10.1093/forestry/45.2.189.
  • Chollet F. 2015. Keras. https://keras.io.
  • Chollet F 2017. Xception: deep learning with depthwise separable convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; Honolulu, USA. p. 1251–1258.
  • Fabijańska A, Danek M. 2018. DeepDendro – a tree rings detector based on a deep convolutional neural network. Comp Electr Agr. 150:353–363. doi: 10.1016/j.compag.2018.05.005.
  • Garbelotto M, Gonthier P. 2013. Biology, epidemiology, and control of heterobasidion species worldwide. Ann Rev Phyt. 51(1):39–59. doi: 10.1146/annurev-phyto-082712-102225.
  • Goodfellow I, Bengio Y, Courville A. 2016. Deep learning. Cambridge: MIT Press. https://www.deeplearningbook.org/.
  • Greig BJW. 1995. Butt-rot of scots pine in Thetford Forest caused by heterobasidion annosum: a local phenomenon. For Path. 25(2):95–99. doi: 10.1111/j.1439-0329.1995.tb00323.x.
  • He K, Zhang X, Ren S, Sun J. 2016. Identity mappings in deep residual networks. Computer Vision - ECCV; Amsterdam, The Netherlands. p. 630–645.
  • Holmström E, Raatevaara A, Pohjankukka J, Korpunen H, Uusitalo J. 2023. Tree log identification using convolutional neural networks. Smart Agric Technol. 4:100201. doi: 10.1016/j.atech.2023.100201.
  • Huang G, Liu Z, van der Maaten L, Weinberger KQ. 2017. Densely connected convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; Honolulu, USA. p. 4700–4708.
  • Kingma DP, Ba J. 2014. Adam: a method for stochastic optimization. arXivorg. https://arxiv.org/abs/1412.6980.
  • Laine L. 1976. The occurrence of Heterobasidion annosum (Fr.) Bref. In woody plants in Finland. Metsant Julk. 90(3).
  • Liaghat S, Ehsani R, Mansor S, Shafri HZM, Meon S, Sankaran S, Azam SHMN. 2014. Early detection of basal stem rot disease (Ganoderma) in oil palms based on hyperspectral reflectance data using pattern recognition algorithms. Int J Rem Sens. 35(10):3427–3439. doi: 10.1080/01431161.2014.903353.
  • Müller MM, Sievänen R, Beuker E, Meesenburg H, Kuuskeri J, Hamberg L, Korhonen K, Sturrock RN. 2014. Predicting the activity of Heterobasidion parviporum on Norway spruce in warming climate from its respiration rate at different temperatures. For Path. 44(4):325–336. doi: 10.1111/efp.12104.
  • Mäkinen H, Korpunen H, Raatevaara A, Heikkinen J, Alatalo J, Uusitalo J. 2019. Predicting knottiness of Scots pine stems for quality bucking. Eur J W W Prod. 78(1):143–150. doi: 10.1007/s00107-019-01476-x.
  • Nowell TC. 2019. Detection and quantification of rot in harvested trees using convolutional neural networks. Norway: Norwegian University of Life Sciences, Ås.
  • Ojala T, Pietikainen M, Maenpaa T. 2002. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pat An Mach Intel. 24(7):971–987. doi: 10.1109/TPAMI.2002.1017623.
  • Ostovar A, Talbot B, Puliti S, Astrup R, Ringdahl O. 2019. Detection and classification of root and butt-rot (RBR) in stumps of Norway spruce using RGB images and machine learning. Sensors. 19(7):1579. doi: 10.3390/s19071579.
  • Pitkänen TP, Piri T, Lehtonen A, Peltoniemi M. 2021. Detecting structural changes induced by heterobasidion root rot on scots pines using terrestrial laser scanning. For Ecol Manag. 492:119239. doi: 10.1016/j.foreco.2021.119239.
  • Puliti S, Talbot B, Astrup R. 2018. Tree-stump detection, segmentation, classification, and measurement using unmanned aerial vehicle (UAV) imagery. Forests. 9(3):102. doi: 10.3390/f9030102.
  • Robert M, Dallaire P, Giguère P. 2020. Tree bark re-identification using a deep-learning feature descriptor. 17th Conference on Computer and Robot Vision (CRV); Ottawa, Canada.
  • Ruotsalainen S. 2014. Increased forest production through forest tree breeding. Scand J For Res. 29(4):333–344. doi: 10.1080/02827581.2014.926100.
  • Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, et al. 2015. ImageNet Large Scale Visual Recognition Challenge. Int J Comp V. 115(3):211–252. doi:10.1007/s11263-015-0816-y.
  • Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C. 2018. MobileNetV2: Inverted Residuals and Linear Bottlenecks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; Salt Lake City, USA. p. 4510–4520.
  • Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G, Wild J, Ascoli D, Petr M, Honkaniemi J, et al. 2017. Forest disturbances under climate change. Nat Clim Chan. 7(6):395–402. doi:10.1038/nclimate3303.
  • Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image recognition. arXivorg. https://arxiv.org/abs/1409.1556.
  • Syrjälä E, Jiang M, Pahikkala T, Salanterä S, Liljeberg P. 2019. Skin Conductance Response to Gradual-Increasing Experimental Pain. 41st Annual International Conference; Berlin.
  • Tan M, Le Q. 2019. EfficientNet: rethinking model scaling for convolutional neural networks. PMLR. 97:6105–6114.
  • van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, Gouillart E, Yu T. 2014. Scikit-image: image processing in python. PeerJ. 2:e453. doi: 10.7717/peerj.453.
  • Vihlman M, Kulovesi J, Visala A. 2019. Tree log identity matching using convolutional correlation networks. International Conference on Digital Image Computing: Techniques and Applications; Perth, Australia.
  • Wang L, Zhang J, Drobyshev I, Cleary M, Rönnberg J. 2014. Incidence and impact of root infection by Heterobasidion spp., and the justification for preventative silvicultural measures on scots pine trees: a case study in southern Sweden. For Ecol And Manag. 315:153–159. doi: 10.1016/j.foreco.2013.12.023.
  • Yosinski J, Clune J, Bengio Y, Lipson H. 2014. How transferable are features in deep neural networks?. Advances in Neural Information Processing Systems; Montréal, Canada.
  • Zoph B, Vasudevan V, Shlens J, Le QV. 2018. Learning transferable architectures for scalable image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; Salt Lake City, USA. p. 8697–8710.